Advertisement

The Human Orexin/Hypocretin Receptor Crystal Structures

  • Jie Yin
  • Daniel M. Rosenbaum
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 33)

Abstract

The human orexin/hypocretin receptors (hOX1R and hOX2R) are G protein-coupled receptors (GPCRs) that mediate the diverse functions of the orexin/hypocretin neuropeptides. Orexins/hypocretins produced by neurons in the lateral hypothalamus stimulate their cognate GPCRs in multiple regions of the central nervous system to control sleep and arousal, circadian rhythms, metabolism, reward pathways, and other behaviors. Dysfunction of orexin/hypocretin signaling is associated with human disease, and the receptors are active targets in a number of therapeutic areas. To better understand the molecular mechanism of the orexin/hypocretin neuropeptides, high-resolution three-dimensional structures of hOX1R and hOX2R are critical. We have solved high-resolution crystal structures of both human orexin/hypocretin receptors bound to high-affinity antagonists. These atomic structures have elucidated how different small molecule antagonists bind with high potency and selectivity, and have also provided clues as to how the native ligands may associate with their receptors. The orexin/hypocretin receptor coordinates, now available to the broader academic and drug discovery community, will facilitate rational design of new therapeutics that modulate orexin/hypocretin signaling in humans.

Keywords

Antagonist Crystal structure GPCR High-resolution Hypocretin Orexin 

References

  1. 1.
    Li J, Hu Z, de Lecea L (2014) The hypocretins/orexins: integrators of multiple physiological functions. Br J Pharmacol 171:332–350. doi: 10.1111/bph.12415CrossRefPubMedGoogle Scholar
  2. 2.
    Marcus JN, Aschkenasi CJ, Lee CE et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25CrossRefGoogle Scholar
  3. 3.
    Wong KKY, Ng SYL, Lee LTO et al (2011) Orexins and their receptors from fish to mammals: a comparative approach. Gen Comp Endocrinol 171:124–130. doi: 10.1016/j.ygcen.2011.01.001CrossRefPubMedGoogle Scholar
  4. 4.
    Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–376CrossRefGoogle Scholar
  5. 5.
    Willie JT, Chemelli RM, Sinton CM et al (2003) Distinct narcolepsy syndromes in orexin receptor-2 and orexin null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron 38:715–730CrossRefGoogle Scholar
  6. 6.
    Boutrel B, Kenny PJ, Specio SE et al (2005) Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci U S A 102:19168–19173. doi: 10.1073/pnas.0507480102CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harris GC, Wimmer M, Aston-Jones G (2005) A role for lateral hypothalamic orexin neurons in reward seeking. Nature 437:556–559. doi: 10.1038/nature04071CrossRefPubMedGoogle Scholar
  8. 8.
    Bingham S, Davey PT, Babbs AJ et al (2001) Orexin-A, an hypothalamic peptide with analgesic properties. Pain 92:81–90CrossRefGoogle Scholar
  9. 9.
    Johnson PL, Truitt W, Fitz SD et al (2010) A key role for orexin in panic anxiety. Nat Med 16:111–115. doi: 10.1038/nm.2075CrossRefPubMedGoogle Scholar
  10. 10.
    Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121. doi: 10.1016/j.neuropharm.2008.06.060CrossRefPubMedGoogle Scholar
  11. 11.
    Kobilka BK (1995) Amino and carboxyl terminal modifications to facilitate the production and purification of a G protein-coupled receptor. Anal Biochem 231:269–271CrossRefGoogle Scholar
  12. 12.
    Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240. doi: 10.1038/nature10750CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Shimamura T, Shiroishi M, Weyand S et al (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475:65–70. doi: 10.1038/nature10236CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kang Y, Zhou XE, Gao X et al (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567. doi: 10.1038/nature14656CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rosenbaum DM, Cherezov V, Hanson MA et al (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266–1273. doi: 10.1126/science.1150609CrossRefPubMedGoogle Scholar
  16. 16.
    Vaidehi N, Grisshammer R, Tate CG (2016) How can mutations thermostabilize G-protein-coupled receptors? Trends Pharmacol Sci 37:37–46. doi: 10.1016/j.tips.2015.09.005CrossRefPubMedGoogle Scholar
  17. 17.
    Rasmussen SGF, Choi H-J, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387. doi: 10.1038/nature06325CrossRefPubMedGoogle Scholar
  18. 18.
    Rasmussen SGF, Choi H-J, Fung JJ et al (2011) Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469:175–180. doi: 10.1038/nature09648CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Rasmussen SGF, DeVree BT, Zou Y et al (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555. doi: 10.1038/nature10361CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chae PS, Rasmussen SGF, Rana RR et al (2010) Maltose–neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nat Methods 7:1003–1008. doi: 10.1038/nmeth.1526CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Caffrey M, Cherezov V (2009) Crystallizing membrane proteins using lipidic mesophases. Nat Protoc 4:706–731. doi: 10.1038/nprot.2009.31CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14:836–840. doi: 10.1110/ps.041167605CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Egloff P, Hillenbrand M, Klenk C et al (2014) Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 111:E655–E662. doi: 10.1073/pnas.1317903111CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Krumm BE, White JF, Shah P, Grisshammer R (2015) Structural prerequisites for G-protein activation by the neurotensin receptor. Nat Commun 6:7895. doi: 10.1038/ncomms8895CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    White JF, Noinaj N, Shibata Y et al (2012) Structure of the agonist-bound neurotensin receptor. Nature 490:508–513. doi: 10.1038/nature11558CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yin J, Babaoglu K, Brautigam CA et al (2016) Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat Struct Mol Biol 23:293–299. doi: 10.1038/nsmb.3183CrossRefPubMedGoogle Scholar
  27. 27.
    Yin J, Mobarec JC, Kolb P, Rosenbaum DM (2015) Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant. Nature 519:247–250. doi: 10.1038/nature14035CrossRefPubMedGoogle Scholar
  28. 28.
    Chun E, Thompson AA, Liu W et al (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20:967–976. doi: 10.1016/j.str.2012.04.010CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Manglik A, Kruse AC, Kobilka TS et al (2012) Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 485:321–326. doi: 10.1038/nature10954CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wu B, Chien EYT, Mol CD et al (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071. doi: 10.1126/science.1194396CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Granier S, Manglik A, Kruse AC et al (2012) Structure of the δ-opioid receptor bound to naltrindole. Nature 485:400–404. doi: 10.1038/nature11111CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science 341:1387–1390. doi: 10.1126/science.1241475CrossRefPubMedGoogle Scholar
  33. 33.
    Malherbe P, Roche O, Marcuz A et al (2010) Mapping the binding pocket of dual antagonist almorexant to human orexin 1 and orexin 2 receptors: comparison with the selective OX1 antagonist SB-674042 and the selective OX2 antagonist N-ethyl-2-[(6-methoxy-pyridin-3-yl)-(toluene-2-sulfonyl)-amino]-N-pyridin-3-ylmethyl-acetamide (EMPA). Mol Pharmacol 78:81–93. doi: 10.1124/mol.110.064584CrossRefPubMedGoogle Scholar
  34. 34.
    Pioszak AA, Xu HE (2008) Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A 105:5034–5039. doi: 10.1073/pnas.0801027105CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 469:236–240. doi: 10.1038/nature09665CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kruse AC, Ring AM, Manglik A et al (2013) Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504:101–106. doi: 10.1038/nature12735CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yin J, Li L, Shaw N et al (2009) Structural basis and catalytic mechanism for the dual functional endo-beta-N-acetylglucosaminidase A. PLoS One 4:e4658. doi: 10.1371/journal.pone.0004658CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhu Y, Miwa Y, Yamanaka A et al (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci 92:259–266CrossRefGoogle Scholar
  39. 39.
    Ballesteros JA (2001) Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J Biol Chem 276:29171–29177. doi: 10.1074/jbc.M103747200CrossRefPubMedGoogle Scholar
  40. 40.
    Rasmussen SG, Jensen AD, Liapakis G et al (1999) Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 56:175–184CrossRefGoogle Scholar
  41. 41.
    Cox CD, Breslin MJ, Whitman DB et al (2010) Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem 53:5320–5332. doi: 10.1021/jm100541cCrossRefPubMedGoogle Scholar
  42. 42.
    Heifetz A, Morris GB, Biggin PC et al (2012) Study of human orexin-1 and -2 G-protein-coupled receptors with novel and published antagonists by modeling, molecular dynamics simulations, and site-directed mutagenesis. Biochemistry 51:3178–3197. doi: 10.1021/bi300136hCrossRefPubMedGoogle Scholar
  43. 43.
    Langmead CJ, Jerman JC, Brough SJ et al (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol 141:340–346. doi: 10.1038/sj.bjp.0705610CrossRefPubMedGoogle Scholar
  44. 44.
    Putula J, Kukkonen JP (2012) Mapping of the binding sites for the OX1 orexin receptor antagonist, SB-334867, using orexin/hypocretin receptor chimaeras. Neurosci Lett 506:111–115. doi: 10.1016/j.neulet.2011.10.061CrossRefPubMedGoogle Scholar
  45. 45.
    Tran D-T, Bonaventure P, Hack M et al (2011) Chimeric, mutant orexin receptors show key interactions between orexin receptors, peptides and antagonists. Eur J Pharmacol 667:120–128. doi: 10.1016/j.ejphar.2011.05.074CrossRefPubMedGoogle Scholar
  46. 46.
    Cox CD, McGaughey GB, Bogusky MJ et al (2009) Conformational analysis of N,N-disubstituted-1,4-diazepane orexin receptor antagonists and implications for receptor binding. Bioorg Med Chem Lett 19:2997–3001. doi: 10.1016/j.bmcl.2009.04.026CrossRefPubMedGoogle Scholar
  47. 47.
    Lebold TP, Bonaventure P, Shireman BT (2013) Selective orexin receptor antagonists. Bioorg Med Chem Lett 23:4761–4769. doi: 10.1016/j.bmcl.2013.06.057CrossRefPubMedGoogle Scholar
  48. 48.
    Biela A, Nasief NN, Betz M et al (2013) Dissecting the hydrophobic effect on the molecular level: the role of water, enthalpy, and entropy in ligand binding to thermolysin. Angew Chem Int Ed Engl 52:1822–1828. doi: 10.1002/anie.201208561CrossRefPubMedGoogle Scholar
  49. 49.
    Isberg V, Vroling B, van der Kant R et al (2014) GPCRDB: an information system for G protein-coupled receptors. Nucleic Acids Res 42:D422–D425. doi: 10.1093/nar/gkt1255CrossRefPubMedGoogle Scholar
  50. 50.
    Kim H-Y, Hong E, Kim J-I, Lee W (2004) Solution structure of human orexin-A: regulator of appetite and wakefulness. J Biochem Mol Biol 37:565–573PubMedGoogle Scholar
  51. 51.
    Lee JH, Bang E, Chae KJ et al (1999) Solution structure of a new hypothalamic neuropeptide, human hypocretin-2/orexin-B. Eur J Biochem 266:831–839CrossRefGoogle Scholar
  52. 52.
    German NA, Decker AM, Gilmour BP et al (2013) Truncated orexin peptides: structure-activity relationship studies. ACS Med Chem Lett 4:1224–1227. doi: 10.1021/ml400333aCrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Perez HD, Vilander L, Andrews WH, Holmes R (1994) Human formyl peptide receptor ligand binding domain(s). Studies using an improved mutagenesis/expression vector reveal a novel mechanism for the regulation of receptor occupancy. J Biol Chem 269:22485–22487PubMedGoogle Scholar
  54. 54.
    Kennedy K, Gigoux V, Escrieut C et al (1997) Identification of two amino acids of the human cholecystokinin-A receptor that interact with the N-terminal moiety of cholecystokinin. J Biol Chem 272:2920–2926CrossRefGoogle Scholar
  55. 55.
    Valentin-Hansen L, Park M, Huber T et al (2014) Mapping substance P binding sites on the neurokinin-1 receptor using genetic incorporation of a photoreactive amino acid. J Biol Chem 289:18045–18054. doi: 10.1074/jbc.M113.527085CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Burg JS, Ingram JR, Venkatakrishnan AJ et al (2015) Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor. Science 347:1113–1117. doi: 10.1126/science.aaa5026CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Qin L, Kufareva I, Holden LG et al (2015) Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science 347:1117–1122. doi: 10.1126/science.1261064CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Manglik A, Kim TH, Masureel M et al (2015) Structural insights into the dynamic process of β2-adrenergic receptor signaling. Cell 161:1101–1111. doi: 10.1016/j.cell.2015.04.043CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Huang W, Manglik A, Venkatakrishnan AJ et al (2015) Structural insights into μ-opioid receptor activation. Nature 524:315–321. doi: 10.1038/nature14886CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21:567–572. doi: 10.1016/j.sbi.2011.06.011CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yao X, Parnot C, Deupi X et al (2006) Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor. Nat Chem Biol 2:417–422. doi: 10.1038/nchembio801CrossRefPubMedGoogle Scholar
  62. 62.
    Nygaard R, Zou Y, Dror RO et al (2013) The dynamic process of β(2)-adrenergic receptor activation. Cell 152:532–542. doi: 10.1016/j.cell.2013.01.008CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations