Serotonergic Hallucinogen-Induced Visual Perceptual Alterations

  • Michael Kometer
  • Franz X. Vollenweider
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 36)


Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD), psilocybin, and N,N-dimethyltryptamine (DMT), are famous for their capacity to temporally and profoundly alter an individual’s visual experiences. These visual alterations show consistent attributes despite large inter- and intra-individual variances. Many reports document a common perception of colors as more saturated, with increased brightness and contrast in the environment (“Visual Intensifications”). Environmental objects might be altered in size (“Visual illusions”) or take on a modified and special meaning for the subject (“Altered self-reference”). Subjects may perceive light flashes or geometrical figures containing recurrent patterns (“Elementary imagery and hallucinations”) influenced by auditory stimuli (“Audiovisual synesthesia”), or they may envision images of people, animals, or landscapes (“Complex imagery and hallucinations”) without any physical stimuli supporting their percepts. This wide assortment of visual phenomena suggests that one single neuropsychopharmacological mechanism is unlikely to explain such vast phenomenological diversity. Starting with mechanisms that act at the cellular level, the key role of 5-HT2A receptor activation and the subsequent increased cortical excitation will be considered. Next, it will be shown that area specific anatomical and dynamical features link increased excitation to the specific visual contents of hallucinations. The decrease of alpha oscillations by hallucinogens will then be introduced as a systemic mechanism for amplifying internal-driven excitation that overwhelms stimulus-induced excitations. Finally, the hallucinogen-induced parallel decrease of the N170 visual evoked potential and increased medial P1 potential will be discussed as key mechanisms for inducing a dysbalance between global integration and early visual gain that may explain several hallucinogen-induced visual experiences, including visual hallucinations, illusions, and intensifications.


Hallucination Imagery Hallucinogen Psilocybin LSD Ayahuasca 


  1. Achterberg J (1987) The shaman: master healer in the imaginary realm. In: Shamanism expanded view reality, pp 103–124Google Scholar
  2. Achterberg J (2013) Imagery in healing: shamanism and modern medicine. Shambhala Publications, BoulderGoogle Scholar
  3. Aghajanian GK (2009) Modeling “psychosis” in vitro by inducing disordered neuronal network activity in cortical brain slices. Psychopharmacology 206:575–585PubMedPubMedCentralCrossRefGoogle Scholar
  4. Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599PubMedCrossRefGoogle Scholar
  5. Allen P, Larøi F, McGuire PK, Aleman A (2008) The hallucinating brain: a review of structural and functional neuroimaging studies of hallucinations. Neurosci Biobehav Rev 32:175–191PubMedCrossRefGoogle Scholar
  6. Aurora S, Ahmad B, Welch K, Bhardhwaj P, Ramadan N (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50:1111–1114PubMedCrossRefGoogle Scholar
  7. Aurora S, Welch K, Al-Sayed F (2003) The threshold for phosphenes is lower in migraine. Cephalalgia 23:258–263PubMedCrossRefGoogle Scholar
  8. Barlow HB, Kohn HI, Walsh EG (1947) Visual sensations aroused by magnetic fields. Am J Physiol 148:372–375PubMedGoogle Scholar
  9. Becker DI, Appel J, Freedman D (1967) Some effects of lysergic acid diethylamide on visual discrimination in pigeons. Psychopharmacologia 11:354–364PubMedCrossRefGoogle Scholar
  10. Béïque JC, Imad M, Mladenovic L, Gingrich JA, Andrade R (2007) Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc Natl Acad Sci USA 104:9870–9875PubMedPubMedCentralCrossRefGoogle Scholar
  11. Benneyworth MA, Xiang Z, Smith RL, Garcia EE, Conn PJ, Sanders-Bush E (2007) A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol Pharmacol 72:477–484PubMedCrossRefGoogle Scholar
  12. Berlin L, Guthrie T, Weider A, Goodell H, Wolff HG (1955) Studies in human cerebral function: the effects of mescaline and lysergic acid on cerebral processes pertinent to creative activity. J Nerv Ment Dis 122:487–491PubMedCrossRefGoogle Scholar
  13. Bernasconi F, Schmidt A, Pokorny T, Kometer M, Seifritz E, Vollenweider FX (2013) Spatiotemporal brain dynamics of emotional face processing modulations induced by the serotonin 1A/2A receptor agonist psilocybin. Cereb Cortex 24:3221–3231PubMedCrossRefGoogle Scholar
  14. Billock VA, Tsou BH (2007) Neural interactions between flicker-induced self-organized visual hallucinations and physical stimuli. Proc Natl Acad Sci USA 104:8490–8495PubMedPubMedCentralCrossRefGoogle Scholar
  15. Billock VA, Tsou BH (2012) Elementary visual hallucinations and their relationships to neural pattern-forming mechanisms. Psychol Bull 138:744PubMedCrossRefGoogle Scholar
  16. Blough DS (1957) Effect of lysergic acid diethylamide on absolute visual threshold of the pigeon. Science 126:304–305PubMedCrossRefGoogle Scholar
  17. Bonnefond M, Jensen O (2012) Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 22:1969–1974PubMedCrossRefGoogle Scholar
  18. Boroojerdi B, Bushara KO, Corwell B, Immisch I, Battaglia F, Muellbacher W, Cohen LG (2000) Enhanced excitability of the human visual cortex induced by short-term light deprivation. Cereb Cortex 10:529–534PubMedCrossRefGoogle Scholar
  19. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2001) Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos Trans R Soc Lond B Biol Sci 356:299–330PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener MC (2002) What geometric visual hallucinations tell us about the visual cortex. Neural Comput 14:473–491PubMedCrossRefGoogle Scholar
  21. Brogaard B (2013) Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia. Front Hum Neurosci 7:657PubMedPubMedCentralCrossRefGoogle Scholar
  22. Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29:7869–7876PubMedCrossRefGoogle Scholar
  23. Butler TC, Benayoun M, Wallace E, van Drongelen W, Goldenfeld N, Cowan J (2012) Evolutionary constraints on visual cortex architecture from the dynamics of hallucinations. Proc Natl Acad Sci USA 109:606–609PubMedCrossRefGoogle Scholar
  24. Butterworth AT (1967) The psychotomimetic effect: a discussion of its unique nature and character. Existential Psychiatry Winter, p 9Google Scholar
  25. Capotosto P, Babiloni C, Romani GL, Corbetta M (2009) Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 29:5863–5872PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carhart-Harris RL, Leech R, Williams TM, Erritzoe D, Abbasi N, Bargiotas T, Hobden P, Sharp DJ, Evans J, Feilding A, Wise RG, Nutt DJ (2012) Implications for psychedelic-assisted psychotherapy: functional magnetic resonance imaging study with psilocybin. Br J Psychiatry 200:238–244PubMedCrossRefGoogle Scholar
  27. Carlson VR (1958) Effect of lysergic acid diethylamide (LSD-25) on the absolute visual threshold. J Comp Physiol Psychol 51:528PubMedCrossRefGoogle Scholar
  28. Carter OL, Pettigrew JD, Burr DC, Alais D, Hasler F, Vollenweider FX (2004) Psilocybin impairs high-level but not low-level motion perception. NeuroReport 15:1947–1951PubMedCrossRefGoogle Scholar
  29. Carter O, Burr D, Pettigrew J, Wallis G, Hasler F, Vollenweider F (2005) Using psilocybin to investigate the relationship between attention, working memory, and the serotonin 1A and 2A receptors. J Cogn Neurosci 17:1497–1508PubMedCrossRefGoogle Scholar
  30. Colpaert F, Janssen P (1983) A characterization of LSD-antagonist effects of pirenperone in the rat. Neuropharmacology 22:1001–1005PubMedCrossRefGoogle Scholar
  31. Colpaert FC, Niemegeers C, Janssen P (1982) A drug discrimination analysis of lysergic acid diethylamide (LSD): in vivo agonist and antagonist effects of purported 5-hydroxytryptamine antagonists and of pirenperone, a LSD-antagonist. J Pharmacol Exp Ther 221:206–214PubMedGoogle Scholar
  32. Cott C, Rock A (2008) Phenomenology of N,N-Dimethyltryptamine use: a thematic analysis. J Sci Explor 22:359–370Google Scholar
  33. Díaz JL (2010) Sacred plants and visionary consciousness. Phenomenol Cogn Sci 9:159–170CrossRefGoogle Scholar
  34. Dittrich A (1998) The standardized psychometric assessment of altered states of consciousness (ASCs) in humans. Pharmacopsychiatry 31:80–84PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dunlap K (1911) Visual sensations from the alternating magnetic field. Science 33:68–71PubMedCrossRefGoogle Scholar
  36. Edwards AE, Cohen S (1961) Visual illusion, tactile sensibility and reaction time under LSD-25. Psychopharmacologia 2:297–303PubMedCrossRefGoogle Scholar
  37. Ellis H (1898) Mescal: a new artificial paradise. US Government Printing OfficeGoogle Scholar
  38. Ergenoglu T, Demiralp T, Bayraktaroglu Z, Ergen M, Beydagi H, Uresin Y (2004) Alpha rhythm of the EEG modulates visual detection performance in humans. Brain Res Cogn Brain Res 20:376–383PubMedCrossRefGoogle Scholar
  39. Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biol Cybern 34:137–150PubMedCrossRefGoogle Scholar
  40. Ffytche DH, Howard RJ, Brammer MJ, David A, Woodruff P, Williams S (1998) The anatomy of conscious vision: an fMRI study of visual hallucinations. Nat Neurosci 1:738–742PubMedCrossRefGoogle Scholar
  41. Fischer R, Hill R, Warshay D (1969) Effects of the psychodysleptic drug psilocybin on visual perception. Changes in brightness preference. Experientia 25:166–169PubMedCrossRefGoogle Scholar
  42. Fischer R, Hill R, Thatcher K, Scheib J (1970) Psilocybin-induced contraction of nearby visual space. Agents Actions 1:190–197PubMedCrossRefGoogle Scholar
  43. Ford JM, Gray M, Faustman WO, Roach BJ, Mathalon DH (2007) Dissecting corollary discharge dysfunction in schizophrenia. Psychophysiology 44:522–529PubMedCrossRefGoogle Scholar
  44. Ford JM, Mathalon DH, Roach BJ, Keedy SK, Reilly JL, Gershon ES, Sweeney JA (2013) Neurophysiological evidence of corollary discharge function during vocalization in psychotic patients and their nonpsychotic first-degree relatives. Schizophr Bull 39:1272–1280PubMedCrossRefGoogle Scholar
  45. Foxe JJ, Simpson GV, Ahlfors SP (1998) Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. NeuroReport 9:3929–3933PubMedCrossRefGoogle Scholar
  46. Froese T, Woodward A, Ikegami T (2013) Turing instabilities in biology, culture, and consciousness? On the enactive origins of symbolic material culture. Adapt Behav, 1059712313483145CrossRefGoogle Scholar
  47. Gentsch A, Schütz-Bosbach S (2011) I did it: unconscious expectation of sensory consequences modulates the experience of self-agency and its functional signature. J Cogn Neurosci 23:3817–3828PubMedCrossRefGoogle Scholar
  48. Glennon RA, Young R, Rosecrans JA (1983) Antagonism of the effects of the hallucinogen DOM and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91:189–196PubMedCrossRefGoogle Scholar
  49. Glennon RA, Young R, Hauck AE, McKenney J (1984) Structure-activity studies on amphetamine analogs using drug discrimination methodology. Pharmacol Biochem Behav 21:895–901PubMedCrossRefGoogle Scholar
  50. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53:439–452PubMedCrossRefGoogle Scholar
  51. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97PubMedPubMedCentralCrossRefGoogle Scholar
  52. Grey A, Wilber K (2001) The mission of art. ShambhalaGoogle Scholar
  53. Grill-Spector K, Malach R (2004) The human visual cortex. Annu Rev Neurosci 27:649–677PubMedCrossRefGoogle Scholar
  54. Grinspoon L, Bakalar JB (1986) Can drugs be used to enhance the psychotherapeutic process. Am J Psychother 40:393–404PubMedCrossRefGoogle Scholar
  55. Grof S (1973) Theoretical and empirical basis of transpersonal psychology and psychotherapy: Observations from LSD research. J Trans Pers Psychol 5:15Google Scholar
  56. Gutkin B, Pinto D, Ermentrout B (2003) Mathematical neuroscience: from neurons to circuits to systems. J Physiol Paris 97:209–219PubMedCrossRefGoogle Scholar
  57. Haegens S, Nácher V, Luna R, Romo R, Jensen O (2011) α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking. Proc Natl Acad Sci USA 108:19377–19382PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hallett M (2000) Transcranial magnetic stimulation and the human brain. Nature 406:147–150PubMedCrossRefGoogle Scholar
  59. Hanslmayr S, Aslan A, Staudigl T, Klimesch W, Herrmann CS, Bäuml KH (2007) Prestimulus oscillations predict visual perception performance between and within subjects. Neuroimage 37:1465–1473PubMedCrossRefGoogle Scholar
  60. Hanslmayr S, Spitzer B, Bäuml KH (2009) Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories. Cereb Cortex 19:1631–1640PubMedCrossRefGoogle Scholar
  61. Harner MJ, Mishlove J, Bloch A (1990) The way of the shaman. Harper & Row San FranciscoGoogle Scholar
  62. Hartman AM, Hollister LE (1963) Effect of mescaline, lysergic acid diethylamide and psilocybin on color perception. Psychopharmacologia 4:441–451PubMedCrossRefGoogle Scholar
  63. Heinks-Maldonado TH, Mathalon DH, Houde JF, Gray M, Faustman WO, Ford JM (2007) Relationship of imprecise corollary discharge in schizophrenia to auditory hallucinations. Arch Gen Psychiatry 64:286–296PubMedCrossRefGoogle Scholar
  64. Hill RM, Fischer R (1973) Induction and extinction of psilocybin induced transformations of visual space. Pharmacopsychiatry 6:258–263CrossRefGoogle Scholar
  65. Hill R, Fischer R, Warshay D (1968) Effects of excitatory and tranquilizing drugs on visual perception. Am J Optom Archiv Am Acad Optom 45:454CrossRefGoogle Scholar
  66. Hollister LE, Hartman AM (1962) Mescaline, lysergic acid diethylamide and psilocybin: comparison of clinical syndromes, effects on color perception and biochemical measures. Compr Psychiatry 3:235–241PubMedCrossRefGoogle Scholar
  67. Horowitz MJ (1975) Hallucinations: an information-processing approach. Hallucinations: behavior, experience and theory, pp 163–196Google Scholar
  68. Horowitz M, Adams J (1970) Hallucinations on brain stimulation: evidence for revision of the Penfield hypothesis. In: Origin and mechanisms of hallucinations. Springer, Berlin, pp 13–22CrossRefGoogle Scholar
  69. Howard R, Williams S, Bullmore E, Brammer M, Mellers J, Woodruff P, David A (1995) Cortical response to exogenous visual stimulation during visual hallucinations. Lancet 345:70PubMedCrossRefGoogle Scholar
  70. Hsu TY, Tseng P, Liang WK, Cheng SK, Juan CH (2014) Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task. Neuroimage 98:306–313PubMedCrossRefGoogle Scholar
  71. Hubl D, Koenig T, Strik WK, Garcia LM, Dierks T (2007) Competition for neuronal resources: how hallucinations make themselves heard. Br J Psychiatry 190:57–62PubMedCrossRefGoogle Scholar
  72. Hubl D, Schneider RC, Kottlow M, Kindler J, Strik W, Dierks T, Koenig T (2014) Agency and ownership are independent components of ‘sensing the self’ in the auditory-verbal domain. Brain Topogr 27:1–11PubMedCrossRefGoogle Scholar
  73. Ishibashi T, Hori H, Endo K, Sato T (1964) Hallucinations produced by electrical stimulation of the temporal lobes in schizophrenic patients. Tohoku J Exp Med 82:124–139PubMedCrossRefGoogle Scholar
  74. Janiger O, de Rios MD (1989) LSD and creativity. J Psychoactive Drugs 21:129–134PubMedCrossRefGoogle Scholar
  75. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186Google Scholar
  76. Jensen O, Bonnefond M, VanRullen R (2012) An oscillatory mechanism for prioritizing salient unattended stimuli. Trends Cogn Sci 16:200–206PubMedCrossRefGoogle Scholar
  77. Johnson JS, Olshausen BA (2003) Timecourse of neural signatures of object recognition. J Vis 3:4CrossRefGoogle Scholar
  78. Jonas J, Frismand S, Vignal JP, Colnat‐Coulbois S, Koessler L, Vespignani H, Rossion B, Maillard L (2013) Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Hum Brain Mapp 35:3360–3371PubMedCrossRefGoogle Scholar
  79. Kammer T, Beck S, Erb M, Grodd W (2001) The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clin Neurophysiol 112:2015–2021PubMedCrossRefGoogle Scholar
  80. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425:954–956PubMedCrossRefGoogle Scholar
  81. Klimesch W (2011) Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 1408:52–71PubMedPubMedCentralCrossRefGoogle Scholar
  82. Klimesch W, Sauseng P, Hanslmayr S (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53:63–88PubMedCrossRefGoogle Scholar
  83. Klüver H (1928) Mescal: the divine plant and its psychological effects. Trubner & Company LimitedGoogle Scholar
  84. Klüver H (1942) Mechanisms of hallucinations. McGraw-Hill, New YorkGoogle Scholar
  85. Klüver H (1966) Mescal and mechanisms of hallucinations. University of Chicago Press, ChicagoGoogle Scholar
  86. Knebel JF, Murray MM (2012) Towards a resolution of conflicting models of illusory contour processing in humans. Neuroimage 59:2808–2817PubMedCrossRefGoogle Scholar
  87. Knoll M (1958) Anregung geometrischer Figuren und anderer subjektiver Lichtmuster in elektrischen Feldern. Schweiz Z Psychol 17:110–126Google Scholar
  88. Knoll M, Höfer O, Lawder S, Lawder U (1962a) Die Reproduzierbarkeit von elektrisch angeregten Lichterscheinungen (Phosphenen) bei zwei Versuchspersonen innerhalb von 6 Monaten. Biomedizinische Technik/Biomedical Engineering 7:235–242CrossRefGoogle Scholar
  89. Knoll M, Kugler J, Eichmeier J, Höfer O (1962b) Note on the spectroscopy of subjective light patterns. J Anal Psychol 7:55–70CrossRefGoogle Scholar
  90. Knoll M, Kugler J, Höfer O, Lawder S (1963) Effects of chemical stimulation of electrically-induced phosphenes on their bandwidth, shape, number and intensity. Stereotact Funct Neurosurg 23:201–226CrossRefGoogle Scholar
  91. Kometer M, Cahn BR, Andel D, Carter OL, Vollenweider FX (2011) The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations. Biol Psychiatry 69:399–406PubMedCrossRefGoogle Scholar
  92. Kometer M, Schmidt A, Bachmann R, Studerus E, Seifritz E, Vollenweider FX (2012) Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors. Biol Psychiatry 72:898–906PubMedCrossRefGoogle Scholar
  93. Kometer M, Schmidt A, Jäncke L, Vollenweider FX (2013) Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci 33:10544–10551PubMedCrossRefGoogle Scholar
  94. Krippner S (1985) Psychedelic drugs and creativity. J Psychoactive Drugs 17:235–246PubMedCrossRefGoogle Scholar
  95. Kroeber AL (1925) Handbook of the Indians of California. Courier Dover PublicationsGoogle Scholar
  96. Lee H, Hong S, Seo D, Tae W, Hong S (2000) Mapping of functional organization in human visual cortex Electrical cortical stimulation. Neurology 54:849–854PubMedCrossRefGoogle Scholar
  97. Lesher GW (1995) Illusory contours: toward a neurally based perceptual theory. Psychon Bull Rev 2:279–321PubMedCrossRefGoogle Scholar
  98. Leuner H (1967) Present state of psycholytic therapy and its possibilities. The use of LSD in psychotherapy and alcoholism, p 101Google Scholar
  99. Lewin L (1886) Ueber Piper methysticum (kawa). HirschwaldGoogle Scholar
  100. Lewis-Williams JD, Dowson TA, Bahn PG, Bandi H-G, Bednarik RG, Clegg J, Consens M, Davis W, Delluc B, Delluc G (1988) The signs of all times: entoptic phenomena in Upper Palaeolithic art [and comments and reply]. Curr Anthropol 29:201–245CrossRefGoogle Scholar
  101. Leysen J, Niemegeers C, Van Nueten J, Laduron P (1982) [3H] Ketanserin (R 41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21:301–314PubMedGoogle Scholar
  102. Luke D (2011) Discarnate entities and dimethyltryptamine (DMT): psychopharmacology, phenomenology and ontology. J Soc Psychical Res 75:26Google Scholar
  103. Luke DP, Terhune DB (2013) The induction of synaesthesia with chemical agents: a systematic review. Front Psychol 4:753PubMedPubMedCentralGoogle Scholar
  104. Magnusson C, Stevens H (1911) In our own experiments, we were concerned with the following points: I, To verify the results of Thompson and Dunlap. 2. To ascertain whether the magnetic field induced by the direct current gives a visual sensation. 3. To determine the threshold of the sensation in terms of ampereGoogle Scholar
  105. Mahl GF, Rothenberg A, Delgado JM, Hamlin H (1964) Psychological responses in the human to intracerebral electrical stimulation. Psychosom Med 26:337–368PubMedCrossRefGoogle Scholar
  106. Mathewson KE, Lleras A, Beck DM, Fabiani M, Ro T, Gratton G (2011) Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical processing. Front Psychol 2:99PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mercante MS (2006) Images of healing: spontaneous mental imagery and healing process of the Barquinha, a Brazilian ayahuasca religious system. Saybrook Graduate School and Research Center, San FranciscoGoogle Scholar
  108. Mitchell SW (1896) Remarks on the effects of Anhelonium lewinii (the mescal button). Br Med J 2:1625PubMedPubMedCentralCrossRefGoogle Scholar
  109. Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol 18:375–380PubMedCrossRefGoogle Scholar
  110. Mooney J (1896) The Mescal Plant and Ceremony. Ther Gazette 21:7–11Google Scholar
  111. Moreau AW, Amar M, Le Roux N, Morel N, Fossier P (2010) Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks. Cereb Cortex 20:456–467PubMedCrossRefGoogle Scholar
  112. Murphey DK, Maunsell JH, Beauchamp MS, Yoshor D (2009) Perceiving electrical stimulation of identified human visual areas. Proc Natl Acad Sci 106:5389–5393PubMedPubMedCentralCrossRefGoogle Scholar
  113. Murray MM, Wylie GR, Higgins BA, Javitt DC, Schroeder CE, Foxe JJ (2002) The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. J Neurosci 22:5055–5073PubMedCrossRefGoogle Scholar
  114. Murray MM, Imber ML, Javitt DC, Foxe JJ (2006) Boundary completion is automatic and dissociable from shape discrimination. J Neurosci 26:12043–12054PubMedCrossRefGoogle Scholar
  115. Naranjo C (1973) Psychological aspects of the yage experience in an experimental setting. Hallucinogens Shamanism, p 190Google Scholar
  116. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181CrossRefPubMedGoogle Scholar
  117. Oertel V, Rotarska-Jagiela A, van de Ven VG, Haenschel C, Maurer K, Linden DE (2007) Visual hallucinations in schizophrenia investigated with functional magnetic resonance imaging. Psychiatry Res Neuroimaging 156:269–273CrossRefGoogle Scholar
  118. Oliveri M, Calvo G (2003) Increased visual cortical excitability in ecstasy users: a transcranial magnetic stimulation study. J Neurol Neurosurg Psychiatry 74:1136–1138PubMedPubMedCentralCrossRefGoogle Scholar
  119. Palva S, Palva JM (2011) Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front Psychol 2:204PubMedPubMedCentralCrossRefGoogle Scholar
  120. Penfield W, Rasmussen T (1950) The cerebral cortex of man; a clinical study of localization of function. Macmillan, New YorkGoogle Scholar
  121. Penfield W, Jasper H (1954) Epilepsy and the functional anatomy of the human brain. Little Brown & Co, BostonGoogle Scholar
  122. Prentiss D, Morgan F (1896) Therapeutic uses of mescal buttons (Anhalonium Lewinii). Ther Gaz 20:4–7Google Scholar
  123. Proverbio AM, Zani A (2002) Electrophysiological indexes of illusory contours perception in humans. Neuropsychologia 40:479–491PubMedCrossRefGoogle Scholar
  124. Quednow BB, Kometer M, Geyer MA, Vollenweider FX (2012) Psilocybin-induced deficits in automatic and controlled inhibition are attenuated by ketanserin in healthy human volunteers. Neuropsychopharmacology 37:630–640PubMedCrossRefGoogle Scholar
  125. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I (2005) Invariant visual representation by single neurons in the human brain. Nature 435:1102–1107PubMedCrossRefGoogle Scholar
  126. Ray TS (2010) Psychedelics and the human receptorome. PLoS ONE 5:e9019PubMedPubMedCentralCrossRefGoogle Scholar
  127. Reichel-Dolmatoff G (1972) The cultural context of an aboriginal hallucinogen: banisteriopsis caapi. Flesh of the gods: the ritual use of hallucinogens, pp 84–113Google Scholar
  128. Reichel-Dolmatoff G (1975) The Shaman and the Jaguar. A study of narcotic drugs among the Indians of Colombia Med Hist 21:344–345Google Scholar
  129. Riga MS, Soria G, Tudela R, Artigas F, Celada P (2014) The natural hallucinogen 5-MeO-DMT, component of Ayahuasca, disrupts cortical function in rats: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 17:1–14PubMedCrossRefGoogle Scholar
  130. Rihs TA, Michel CM, Thut G (2007) Mechanisms of selective inhibition in visual spatial attention are indexed by alpha-band EEG synchronization. Eur J Neurosci 25:603–610PubMedCrossRefGoogle Scholar
  131. Rolland B, Jardri R, Amad A, Thomas P, Cottencin O, Bordet R (2014) Pharmacology of hallucinations: several mechanisms for one single symptom? BioMed Res Int 2014:9CrossRefGoogle Scholar
  132. Romei V, Rihs T, Brodbeck V, Thut G (2008a) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. NeuroReport 19:203–208PubMedCrossRefGoogle Scholar
  133. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008b) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018PubMedCrossRefGoogle Scholar
  134. Romei V, Gross J, Thut G (2010) On the role of prestimulus alpha rhythms over occipito-parietal areas in visual input regulation: correlation or causation? J Neurosci 30:8692–8697PubMedCrossRefGoogle Scholar
  135. Rossion B, Gauthier I, Tarr MJ, Despland P, Bruyer R, Linotte S, Crommelinck M (2000) The N170 occipito-temporal component is delayed and enhanced to inverted faces but not to inverted objects: an electrophysiological account of face-specific processes in the human brain. NeuroReport 11:69–72PubMedCrossRefGoogle Scholar
  136. Rule M, Stoffregen M, Ermentrout B (2011) A model for the origin and properties of flicker-induced geometric phosphenes. PLoS Comput Biol 7:e1002158PubMedPubMedCentralCrossRefGoogle Scholar
  137. Rümmele W, Gnirss F (1961) Untersuchungen mit Psilocybin, einer psychotropen Substanz aus Psilocybe Mexicana. Schweiz Arch Neurol Neurochir Psychiatr 87:365–385Google Scholar
  138. Salminen-Vaparanta N, Vanni S, Noreika V, Valiulis V, Móró L, Revonsuo A (2013) Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2. Cereb Cortex 24:2751–2760PubMedCrossRefGoogle Scholar
  139. Sanders-Bush E, Burris KD, Knoth K (1988) Lysergic acid diethylamide and 2, 5-dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther 246:924–928PubMedGoogle Scholar
  140. Sard H, Kumaran G, Morency C, Roth BL, Toth BA, He P, Shuster L (2005) SAR of psilocybin analogs: discovery of a selective 5-HT 2C agonist. Bioorg Med Chem Lett 15:4555–4559PubMedCrossRefGoogle Scholar
  141. Saunders NJ (1994) Predators of culture: Jaguar symbolism and Mesoamerican elites. World Archaeol 26:104–117CrossRefGoogle Scholar
  142. Schmidt A, Kometer M, Bachmann R, Seifritz E, Vollenweider F (2013) The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions. Psychopharmacology 225:227–239PubMedCrossRefGoogle Scholar
  143. Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2, 5-dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112PubMedGoogle Scholar
  144. Seidel D (1968) Der Existenzbereich elektrisch und magnetischinduktiv angeregter subjektiver Lichterscheinungen (Phosphene) in Abhängigkeit von äußeren Reizparametern (Schluß). Biomedizinische Technik/Biomedical Engineering 13:208–211CrossRefGoogle Scholar
  145. Seitz PFD, Molholm HB (1947) Relation of mental imagery to hallucinations. Arch Neurol Psychiatry 57:469–480PubMedCrossRefGoogle Scholar
  146. Shanon B (2002) Ayahuasca visualizations a structural typology. J Conscious Stud 9:3–30Google Scholar
  147. Shanon B (2010) The epistemics of ayahuasca visions. Phenomenol Cogn Sci 9:263–280CrossRefGoogle Scholar
  148. Shepard GH (2004) A sensory ecology of medicinal plant therapy in two Amazonian societies. Am Anthropol 106:252–266CrossRefGoogle Scholar
  149. Siegel RK, Jarvik ME (1975) Drug-induced hallucinations in animals and man. Hallucinations: Behavior, experience and theory, pp 163–195Google Scholar
  150. Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34:3536–3544PubMedCrossRefGoogle Scholar
  151. Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, McCarley RW (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101:17288–17293PubMedPubMedCentralCrossRefGoogle Scholar
  152. Stewart L, Walsh V, Rothwell J (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39:415–419PubMedCrossRefGoogle Scholar
  153. Studerus E, Gamma A, Vollenweider FX (2010) Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS ONE 5:e12412PubMedPubMedCentralCrossRefGoogle Scholar
  154. Studerus E, Kometer M, Hasler F, Vollenweider FX (2011) Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol 25:1434–1452PubMedPubMedCentralCrossRefGoogle Scholar
  155. Studerus E, Gamma A, Kometer M, Vollenweider FX (2012) Prediction of psilocybin response in healthy volunteers. PLoS ONE 7:e30800PubMedPubMedCentralCrossRefGoogle Scholar
  156. Taylor JP, Firbank M, Barnett N, Pearce S, Livingstone A, Mosimann U, Eyre J, McKeith IG, O’Brien JT (2011) Visual hallucinations in dementia with Lewy bodies: transcranial magnetic stimulation study. Br J Psychiatry 199:492–500PubMedPubMedCentralCrossRefGoogle Scholar
  157. Thompson SP (1910) A physiological effect of an alternating magnetic field. Proc Royal Soc Lon Ser B (Containing Papers of a Biological Character) 82:396–398CrossRefGoogle Scholar
  158. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502PubMedCrossRefGoogle Scholar
  159. Tiihonen J, Hari R, Naukkarinen H, Rimón R, Jousmäki V, Kajola M (1992) Modified activity of the human auditory cortex during auditory hallucinations. Am J Psychiatry 149:255–257PubMedCrossRefGoogle Scholar
  160. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72CrossRefGoogle Scholar
  161. van Dijk H, Schoffelen JM, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28:1816–1823PubMedCrossRefGoogle Scholar
  162. Van Rullen R, Zoefel B, Ilhan B (2014) On the cyclic nature of perception in vision versus audition. Philos Trans Royal Soc B Biol Sci 369:20130214CrossRefGoogle Scholar
  163. Vollenweider FX, Kometer M (2010) The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nat Rev Neurosci 11:642–651PubMedCrossRefGoogle Scholar
  164. Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Bäbler A, Vogel H, Hell D (1998) Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. NeuroReport 9:3897–3902PubMedCrossRefGoogle Scholar
  165. Watakabe A, Komatsu Y, Sadakane O, Shimegi S, Takahata T, Higo N, Tochitani S, Hashikawa T, Naito T, Osaki H, Sakamoto H, Okamoto M, Ishikawa A, Hara S, Akasaki T, Sato H, Yamamori T (2009) Enriched expression of serotonin 1B and 2A receptor genes in macaque visual cortex and their bidirectional modulatory effects on neuronal responses. Cereb Cortex 19:1915–1928PubMedCrossRefGoogle Scholar
  166. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80PubMedCrossRefGoogle Scholar
  167. Winkelman M (2002) Shamanism as neurotheology and evolutionary psychology. Am Behav Sci 45:1875–1887CrossRefGoogle Scholar
  168. Wittmann M, Carter O, Hasler F, Cahn BR, Grimberg U, Spring P, Hell D, Flohr H, Vollenweider FX (2007) Effects of psilocybin on time perception and temporal control of behaviour in humans. J Psychopharmacol 21:50–64PubMedCrossRefGoogle Scholar
  169. Zanto TP, Rubens MT, Thangavel A, Gazzaley A (2011) Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat Neurosci 14:656–661PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zhang C, Marek GJ (2008) AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes. Prog Neuropsychopharmacol Biol Psychiatry 32:62–71PubMedCrossRefGoogle Scholar
  171. Zumer JM, Scheeringa R, Schoffelen J-M, Norris DG, Jensen O (2014) Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biol 12:e1001965PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Neuropsychopharmacology and Brain Imaging Research Unit, Heffter Research Center Zurich, Department of Psychiatry, Psychotherapy and PsychosomaticsPsychiatric University Hospital, University of ZurichZurichSwitzerland

Personalised recommendations