Advertisement

Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression

  • Charlotte D’Mello
  • Mark G. Swain
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 31)

Abstract

A growing body of evidence now highlights a key role for inflammation in mediating sickness behaviors and depression. Systemic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and chronic liver disease have high comorbidity with depression. How the periphery communicates with the brain to mediate changes in neurotransmission and thereby behavior is not completely understood. Traditional routes of communication between the periphery and the brain involve neural and humoral pathways with TNFα, IL-1β, and IL-6 being the three main cytokines that have primarily been implicated in mediating signaling via these pathways. However, in recent years communication via peripheral immune-cell-to-brain and the gut-microbiota-to-brain routes have received increasing attention for their ability to modulate brain function. In this chapter we discuss periphery-to-brain communication pathways and their potential role in mediating inflammation-associated sickness behaviors and depression.

Keywords

Cytokines Depression Gut microbiome Microglia Sickness behavior 

References

  1. 1.
    Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dantzer R, O’Connor JC, Freund GC, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Henry CJ, Huang Y, Wynne A et al (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior and anhedonia. J Neuroinflammation 5:15Google Scholar
  4. 4.
    Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an Inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24:558–563CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    D’Mello C, Riazi K, Le T et al (2013) P-selectin-mediated monocyte-cerebral endothelium adhesive interactions link peripheral organ inflammation to sickness behaviors. J Neurosci 33(37):14878–14888Google Scholar
  6. 6.
    Neuman M, Angulo P, Malkiewicz I et al (2002) Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol 17(2):196–202CrossRefPubMedGoogle Scholar
  7. 7.
    Roussaki-Schulze AV, Kouskoukis C, Petinaki E et al (2005) Evaluation of cytokine serum levels in patients with plaque-type psoriasis. Int J Clin Pharmacol Res 25(4):169–173PubMedGoogle Scholar
  8. 8.
    Louis E, Belaiche J, van-Kemseke C et al (1997) A high serum concentration of interleukin-6 is predictive of relapse in quiescent Crohn’s disease. Eur J Gastroenterol Hepatol 9(10):939–944Google Scholar
  9. 9.
    Lasselin L, Laye S, Dexpert S et al (2012) Fatigue symptoms relate to systemic inflammation in patients with type 2 diabetes. Brain Behav Immun 26(8):1211–1219CrossRefPubMedGoogle Scholar
  10. 10.
    Riccio A, Postiglione L, Sabatini P et al (2012) Similar serum levels of IL-6 and its soluble receptors in patients with HCV-related arthritis and rheumatoid arthritis: a pilot study. Int J Immunopathol Pharmacol 25(1):281–285CrossRefPubMedGoogle Scholar
  11. 11.
    Strand V, Khanna D (2010) The impact of rheumatoid arthritis and treatment on patients’ lives. Clin Exp Rheumatol 28(Suppl 59):S32–S40PubMedGoogle Scholar
  12. 12.
    Ban A, Inaba M, Furumitsu Y et al (2010) Time-course of health status in patients with rheumatoid arthritis during the first year of treatment with infliximab. Biomed Pharmacother 64(2):107–112CrossRefPubMedGoogle Scholar
  13. 13.
    Hess A, Axmann R, Rech J et al (2011) Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A 108(9):3731–3736Google Scholar
  14. 14.
    Raison CL, Rutherford RE, Woolwine BJ et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mells GF, Floyd JAB, Morley KI et al (2011) Genome-wide association study identifies 12 new susceptibility loci for primary biliary cirrhosis. Nat Genet 43(4):329–332CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Clerici M, Arosio B, Mundo E et al (2009) Cytokine polymorphisms in the pathophysiology of mood disorders. CNS Spectr 14(8):419–425CrossRefPubMedGoogle Scholar
  17. 17.
    Aouizerat BE, Dodd M, Lee K et al (2009) Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biol Res Nurs 11(1):27–41CrossRefPubMedGoogle Scholar
  18. 18.
    Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 18(22):9471–9479PubMedGoogle Scholar
  19. 19.
    Wan W, Janz L, Vriend CY, Sorensen CM, Greenberg AH, Nance DM (1993) Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32(6):581–587CrossRefPubMedGoogle Scholar
  20. 20.
    Harrison NA, Brydon L, Walker C et al (2009) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66(5):415–422CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bluthe RM, Michaud B, Kelley KW, Dantzer R (1996) Vagotomy blocks behavioral effects of interleukin-1 injected via the intraperitoneal route but not via other systemic routes. Neuroreport 7:2823–2827CrossRefPubMedGoogle Scholar
  22. 22.
    Nadeau S, Rivest S (1999) Effects of circulating tumor necrosis factor-α on the neuronal activity and expression of the genes encoding the tumor necrosis factor receptors (p55 and p75) in the rat brain: a view from the blood-brain barrier. Neuroscience 93(4):1449–1464CrossRefPubMedGoogle Scholar
  23. 23.
    Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223(1):22–38CrossRefPubMedGoogle Scholar
  24. 24.
    Kobayashi Y (2010) The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J Leukoc Biol 88(6):1157–1162CrossRefPubMedGoogle Scholar
  25. 25.
    Peng Y-L, Liu Y-N, Liu L, Wang X, Jiang C-L, Wang Y-X (2012) Inducible nitric oxide synthase is involved in the modulation of depressive behaviors induced by unpredictable chronic mild stress. J Neuroinflammation 9:75Google Scholar
  26. 26.
    Lacroix S, Rivest S (1998) Effect of acute systemic inflammatory response and cytokines on the transcription of the genes encoding cyclooxygenase enzymes (COX-1 and COX-2) in the rat brain. J Neurochem 70:452–466CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang J, Rivest S (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci 11(8):2651–2668CrossRefPubMedGoogle Scholar
  28. 28.
    de-Paiva VN, Lima SN, Fernandes MM, Soncini R, Andrade CA, Giusti-Paiva A (2010) Prostaglandins mediate depressive-like behavior induced by endotoxin in mice. Behav Brain Res 215(1):146–151Google Scholar
  29. 29.
    Vallieres L, Rivest S (1997) Regulation of the genes encoding interleukin-6, its receptor and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J Neurochem 69:1668–1683CrossRefPubMedGoogle Scholar
  30. 30.
    Nguyen K, D’Mello C, Le T, Urbanski S, Swain MG (2012) Regulatory T cells suppress sickness behaviour development without altering liver injury in cholestatic mice. J Hepatol 56(3):626–631CrossRefPubMedGoogle Scholar
  31. 31.
    Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581CrossRefPubMedGoogle Scholar
  32. 32.
    Thibeault I, Laflamme N, Rivest S (2001) Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 434(4):461–477CrossRefPubMedGoogle Scholar
  33. 33.
    Schulz M, Engelhardt B (2005) The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2:8Google Scholar
  34. 34.
    D’Mello C, Le T, Swain M (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factorα signaling during peripheral organ inflammation. J Neurosci 29(7):2089–2102CrossRefPubMedGoogle Scholar
  35. 35.
    Gordon S, Pluddemann A, Estrada FM (2014) Macrophage heterogeneity in tissues: phenotypic diversity and functions. Immunol Rev 262(1):36–55CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kerfoot SM, D’Mello C, Nguyen H et al (2006) TNF-α secreting monocytes are recruited into the brains of cholestatic mice. Hepatology 43:154–162CrossRefPubMedGoogle Scholar
  37. 37.
    Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82CrossRefPubMedGoogle Scholar
  38. 38.
    Fabene PF, Navarro MG, Martinello M et al (2008) A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 14(12):1377–1383CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Putzki N, Yaldizli O, Tettenborn B, Diener HC (2009) Multiple sclerosis associated fatigue during natalizumab treatment. J Neurol Sci 285(1):109–113Google Scholar
  40. 40.
    Penner I-K, Sivertsdotter EC, Celius EG et al (2015) Improvement in fatigue during natalizumab treatment is linked to improvement in depression and day-time sleepiness. Front Neurol 6:18PubMedPubMedCentralGoogle Scholar
  41. 41.
    Targan SR, Feagan BG, Fedorak RN et al (2007) Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE trial. Gastroenterology 132:1672–1683CrossRefPubMedGoogle Scholar
  42. 42.
    Bravata I, Allocca M, Fiorino G, Danese S (2015) Integrins and adhesion molecules as targets to treat inflammatory bowel disease. Curr Opin Pharmacol 25:67–71CrossRefPubMedGoogle Scholar
  43. 43.
    Chandar AK, Singh S, Murad MH, Peyrin-Biroulet L, Loftus EV (2015) Efficacy and safety of natalizumab and vedolizumab for the management of Crohn’s disease: a systematic review and meta-analysis. Inflamm Bowel Dis 21(7):1695–1708CrossRefPubMedGoogle Scholar
  44. 44.
    Pan W, Zadina JE, Harlan RE, Weber JT, Banks WA, Kastin AJ (1997) Tumor necrosis factor-α; a neuromodulator in the CNS. Neurosci Biobehav Rev 21(5):603–613CrossRefPubMedGoogle Scholar
  45. 45.
    Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33(34):13820–13833CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zheng X, Ma S, Kang A et al (2016) Chemical dampening of Ly6Chi monocytes in the periphery produces anti-depressant effects in mice. Sci Rep 6:19406Google Scholar
  47. 47.
    Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59Google Scholar
  48. 48.
    Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ (2008) Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A 105(44):17151–17156CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Corona AW, Huang Y, O’Connor JC et al (2010) Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J Neuroinflammation 7:93Google Scholar
  50. 50.
    Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38(10):637–657CrossRefPubMedGoogle Scholar
  51. 51.
    Newton JL, Hollingsworth KG, Taylor R et al (2008) Cognitive impairment in primary biliary cirrhosis: symptom impact and potential etiology. Hepatology 48:541–549CrossRefPubMedGoogle Scholar
  52. 52.
    Forton DM, Hamilton G, Allsop JM et al (2008) Cerebral immune activation in chronic hepatitis C infection: a magnetic resonance spectroscopy study. J Hepatol 49:316–322CrossRefPubMedGoogle Scholar
  53. 53.
    Grover VPB, Pavese N, Koh S-B et al (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:e89–e96CrossRefPubMedGoogle Scholar
  54. 54.
    Colasanti A, Giannetti P, Wall MB et al (2015) Hippocampal neuroinflammation, functional connectivity and depressive symptoms in multiple sclerosis. Biol PsychiatryGoogle Scholar
  55. 55.
    Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Laye S, Gheusi G, Cremona S et al (2000) Endogenous brain IL-1 mediates LPS induced anorexia and hypothalamic cytokine expression. Am J Physiol Regul Integr Comp Physiol 279:R93–R98PubMedGoogle Scholar
  57. 57.
    Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Haroon E, Fleischer CC, Felger JC et al (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. doi: 10.1038/mp.2015.206
  59. 59.
    Guilarte TR (2013) Manganese toxicity: new perspectives from behavioral, neuroimaging and neuropathological studies in humans and non-human primates. Front Aging Neurosci 5:23CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lucki I (1998) The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162CrossRefPubMedGoogle Scholar
  61. 61.
    Kraus MR, Schafer A, Schottker K et al (2008) Therapy of interferon-induced depression in chronic hepatitis C with citalopram: a randomised, double-blind, placebo-controlled study. Gut 57:531–536CrossRefPubMedGoogle Scholar
  62. 62.
    Cavanagh J, Paterson C, McLean J et al (2010) Tumour necrosis factor blockade mediates altered serotonin transporter availability in rheumatoid arthritis: a clinical, proof-of-concept study. Ann Rheum Dis 69(6):1251–1252CrossRefPubMedGoogle Scholar
  63. 63.
    O’Connor JC, Andre C, Wang Y et al (2009) Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to Bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Raison CL, Dantzer R, Kelley KW et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: relationship to CNS immune responses and depression. Mol Psychiatry 15:393–403CrossRefPubMedGoogle Scholar
  65. 65.
    Steiner J, Walter M, Gos T et al (2011) Severe depression is associated with increased microglial quinolic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission. J Neuroinflammation 8:94Google Scholar
  66. 66.
    Hannestad J, Subramanyam K, DellaGioia N et al (2012) Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans. J Nucl Med 53(4):601–607CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ressler KJ, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depression Anxiety 12(Suppl 1):2–19Google Scholar
  68. 68.
    Burak KW, Le T, Swain MG (2001) Increased midbrain 5-HT1A receptor number and responsiveness in cholestatic rats. Brain Res 892:376–379CrossRefPubMedGoogle Scholar
  69. 69.
    Hirvonen J, Karlsson H, Kajander J et al (2008) Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in vivo-imaging study using PET and [cabonyl-11C]WAY-100635. Int J Neuropsychopharmacol 11:465–476Google Scholar
  70. 70.
    Nguyen H, Wang H, Le T, Ho W, Sharkey K, Swain MG (2007) Downregulated hypothalamic 5-HT3 receptor expression and enhanced 5HT3 receptor antagonist mediated improvement in fatigue like behavior in cholestatic rats. Neurogastroenterol Motil 20:228–235CrossRefPubMedGoogle Scholar
  71. 71.
    Gupta D, Thangaraj D, Radhakrishnan M (2016) A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: modulation of serotonergic system. Behav Brain Res 297:41–50CrossRefPubMedGoogle Scholar
  72. 72.
    Weissenborn K, Ennen JC, Bokemeyer M et al (2006) Monoaminergic neurotransmission is altered in hepatitis C virus infected patients with chronic fatigue and cognitive impairment. Gut 55:1624–1630CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Piche T, Vanbiervliet G, Cherikh F et al (2005) Effect of ondansetron, a 5-HT3 receptor antagonist, on fatigue in chronic hepatitis C: a randomised, double-blind, placebo controlled study. Gut 54:1169–1173CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states. Mol Psychiatry 7(3):254–275CrossRefPubMedGoogle Scholar
  75. 75.
    Swain MG, Maric M (1995) Defective corticotropin-releasing hormone mediated neuroendocrine and behavioral responses in cholestatic rats: implications for cholestatic liver disease – related sickness behaviors. Hepatology 22:1560–1564PubMedGoogle Scholar
  76. 76.
    Burak KW, Le T, Swain MG (2002) Increased sensitivity to the locomotor-activating effects of corticotropin-releasing hormone in cholestatic rats. Gastroenterology 122:681–688CrossRefPubMedGoogle Scholar
  77. 77.
    Swain MG, Maric M (1996) Impaired stress and interleukin -1β induced hypothalamic expression of the neuronal activation marker Fos in cholestatic rats. Hepatology 24:914–918PubMedGoogle Scholar
  78. 78.
    Komuro H, Sato N, Sasaki A et al (2016) Corticotropin-releasing hormone receptor 2 gene variants in irritable bowel syndrome. PLoS One 11(1):e0147817Google Scholar
  79. 79.
    Ishitobi Y, Nakayama S, Yamaguchi K et al (2012) Association of CRHR1 and CRHR2 with major depressive disorder and panic disorder in a Japanese population. Am J Med Genet B Neuropsychiatr Genet 159B(4):429–436Google Scholar
  80. 80.
    Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4(11):430–435CrossRefPubMedGoogle Scholar
  81. 81.
    Honda K, Littman DR (2012) The microbiome in infectious disease and inflammation. Annu Rev Immunol 30:759–795CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Quigley EMM, Stanton C, Murphy EF (2013) The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol 58:1020–1027CrossRefPubMedGoogle Scholar
  83. 83.
    D’Mello C, Swain MG (2014) Liver-brain interactions in inflammatory liver diseases: implications for fatigue and mood disorders. Brain Behav Immun 35:9–20CrossRefPubMedGoogle Scholar
  84. 84.
    Jeffery IB, O’Toole PW, Ohman L et al (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61(7):997–1006CrossRefPubMedGoogle Scholar
  85. 85.
    Jiang H, Ling Z, Zhang Y et al (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun 48:186–194CrossRefPubMedGoogle Scholar
  86. 86.
    Sherwin E, Rea K, Dinan TG, Cryan JF (2016) A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol 32(2):96–102CrossRefPubMedGoogle Scholar
  87. 87.
    Sudo N, Chida Y, Aiba Y et al (2004) Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 558(1):263–275CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Liang S, Wang T, Hu X et al (2015) Administration of Lactobacillus Helveticus NS8 improves behavioral, cognitive and biochemical aberrations caused by chronic restraint stress. Neuroscience 310:561–577CrossRefPubMedGoogle Scholar
  89. 89.
    Martinotti G, Pettorruso M, Berardis DD et al (2016) Agomelatine increases BDNF serum levels in depressed patients in correlation with the improvement of depressive symptoms. Int J Neuropsychopharmacol 19(5)Google Scholar
  90. 90.
    Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP (2016) Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 8(1):56CrossRefPubMedCentralGoogle Scholar
  91. 91.
    Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673Google Scholar
  92. 92.
    Luo J, Wang T, Liang S, Hu X, Li W, Jin F (2014) Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat. Sci China Life Sci 57(3):327–335CrossRefPubMedGoogle Scholar
  93. 93.
    Bercik P, Park AJ, Sinclair D et al (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 23(12):1132–1139CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 108(38):16050–16055CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    van der Kleij H, O’Mahony C, Shanahan F, O’Mahony L, Bienenstock J (2008) Protective effects of Lactobacillus reuteri and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol 295(4):R1131–R1137CrossRefPubMedGoogle Scholar
  96. 96.
    Gitter AH, Bendfeldt K, Schulzke J-D, Fromm M (2000) Leaks in the epithelial barrier caused by spontaneous and TNF-α − induced single-cell apoptosis. FASEB J 14(12):1749–1753Google Scholar
  97. 97.
    Braniste V, Al-Asmakh M, Kowal C et al (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6(263)Google Scholar
  98. 98.
    Keri S, Szabo C, Kelemen O (2014) Expression of Toll-like receptors in peripheral blood mononuclear cells and response to cognitive-behavioral therapy in major depressive disorder. Brain Behav Immun 40:235–243CrossRefPubMedGoogle Scholar
  99. 99.
    Messaoudi M, Lalonde R, Violle N et al (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105(5):755–764CrossRefPubMedGoogle Scholar
  100. 100.
    Tillisch K, Labus J, Kilpatrick L et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401.e1394Google Scholar
  101. 101.
    Arseneault-Bréard J, Rondeau I, Gilbert K et al (2012) Combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 reduces post-myocardial infarction depression symptoms and restores intestinal permeability in a rat model. Br J Nutr 107(12):1793–1799CrossRefPubMedGoogle Scholar
  102. 102.
    Davari S, Talaei SA, Alaei H, Salami M (2013) Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: behavioral and electrophysiological proofs for microbiome-gut-brain axis. Neuroscience 240:287–296CrossRefPubMedGoogle Scholar
  103. 103.
    Rao AV, Bested AC, Beaulne TM et al (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1(6):1–6Google Scholar
  104. 104.
    Mandel DR, Eichas K, Holmes J (2010) Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement Altern Med 10:1Google Scholar
  105. 105.
    Pineda Mde L, Thompson SF, Summers K, de-Leon F, Pope J, Reid G (2011) A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monit 17(6):CR347–CR354Google Scholar
  106. 106.
    O’Mahony L, McCarthy J, Kelly P et al (2005) Lactobacillus and Bifidobacterium in Irritable Bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128(3):541–551CrossRefPubMedGoogle Scholar
  107. 107.
    Belkaid Y, Naik S (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nat Immunol 14(7):646–653CrossRefPubMedGoogle Scholar
  108. 108.
    Mittal VV, Sharma BC, Sharma P, Sarin SK (2011) A randomized controlled trial comparing lactulose, probiotics, and L-ornithine L-aspartate in treatment of minimal hepatic encephalopathy. Eur J Gastroenterol Hepatol 23:725–732CrossRefPubMedGoogle Scholar
  109. 109.
    D’Mello C, Ronaghan N, Zaheer R et al (2015) Probiotics improve inflammation-associated sickness behavior by altering communication between the peripheral immune system and the brain. J Neurosci 35(30):10821–10830CrossRefPubMedGoogle Scholar
  110. 110.
    Groeger D, O’Mahony L, Murphy EF et al (2013) Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 4(4):325–339CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif S-K, Asshari-Jafarabadi M, Zavvari S (2014) Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30(4):430–435Google Scholar
  112. 112.
    Loguercio C, Federico A, Tuccillo C et al (2005) Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol 39(6):540–543CrossRefPubMedGoogle Scholar
  113. 113.
    Dhiman RK, Rana B, Agrawal S et al (2014) Probiotic VSL#3 reduces liver disease severity and hospitalization in patients with cirrhosis: a randomized controlled trial. Gastroenterology 147(6):1327–1337Google Scholar
  114. 114.
    Manichanh C, Borruel N, Casellas F, Guarner F (2012) The gut microbiota in IBD. Nat Rev Gastroenterol Hepatol 9(10):599–608CrossRefPubMedGoogle Scholar
  115. 115.
    Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26: 10.3402/mehd.v3426.26191
  116. 116.
    Harris K, Kassis A, Major G, Chou CJ (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012:879151PubMedPubMedCentralGoogle Scholar
  117. 117.
    Mao L, Franke J (2015) Symbiosis, dysbiosis, and rebiosis-the value of metaproteomics in human microbiome monitoring. Proteomics 15(5-6):1142–1151CrossRefPubMedGoogle Scholar
  118. 118.
    Sanaie S, Ebrahimi-Mameghani M, Hamishehkar H, Mojtahedzadeh M, Mahmoodpoor A (2014) Effect of a multispecies probiotic on inflammatory markers in critically ill patients: a randomized, double-blind, placebo-controlled trial. J Res Med Sci 19(9):827–833PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Immunology Research GroupCalvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of CalgaryCalgaryCanada

Personalised recommendations