The Promise and Limitations of Anti-Inflammatory Agents for the Treatment of Major Depressive Disorder

  • Charles L. Raison
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 31)


This review provides a critical perspective on recent meta-analyses suggesting that several anti-inflammatory modalities, including nonsteroidal anti-inflammatory drugs (NSAIDs), omega-3 fatty acids, and cytokine antagonist, possess generalizable antidepressant properties. By examining confounds and limitations in the available literature it is suggested that current data suggest that only a sub-group of individuals with major depressive disorder (MDD) have evidence of increased inflammatory biomarkers and it is in these individuals that anti-inflammatory agents show promise for reducing depressive symptoms. The treatment implications of this cautionary perspective are discussed.


Antidepressants Cytokine antagonists Cytokines Inflammation Major depressive disorder Nonsteroidal anti-inflammatory drugs Omega-3 fatty acids 


  1. 1.
    Miller AH, Raison CL (2015) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34CrossRefGoogle Scholar
  2. 2.
    Dowlati Y, Herrmann N, Swardfager W et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457CrossRefPubMedGoogle Scholar
  3. 3.
    Mostafavi S, Battle A, Zhu X et al (2014) Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing. Mol Psychiatry 19(12):1267–1274CrossRefPubMedGoogle Scholar
  4. 4.
    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71(2):171–186CrossRefPubMedGoogle Scholar
  6. 6.
    Pasco JA, Nicholson GC, Williams LJ et al (2010) Association of high-sensitivity C-reactive protein with de novo major depression. Br J Psychiatry 197:372–377CrossRefPubMedGoogle Scholar
  7. 7.
    Vaccarino V, Johnson BD, Sheps DS et al (2007) Depression, inflammation, and incident cardiovascular disease in women with suspected coronary ischemia: the National Heart, Lung, and Blood Institute-sponsored WISE study. J Am Coll Cardiol 50(21):2044–2050CrossRefPubMedGoogle Scholar
  8. 8.
    Huang TL, Lin FC (2007) High-sensitivity C-reactive protein levels in patients with major depressive disorder and bipolar mania. Prog Neuropsychopharmacol Biol Psychiatry 31(2):370–372CrossRefPubMedGoogle Scholar
  9. 9.
    Liukkonen T, Silvennoinen-Kassinen S, Jokelainen J et al (2006) The association between C-reactive protein levels and depression: results from the northern Finland 1966 birth cohort study. Biol Psychiatry 60(8):825–830CrossRefPubMedGoogle Scholar
  10. 10.
    Panagiotakos DB, Pitsavos C, Chrysohoou C et al (2004) Inflammation, coagulation, and depressive symptomatology in cardiovascular disease-free people; the ATTICA study. Eur Heart J 25(6):492–499CrossRefPubMedGoogle Scholar
  11. 11.
    Danner M, Kasl SV, Abramson JL, Vaccarino V (2003) Association between depression and elevated C-reactive protein. Psychosom Med 65(3):347–356CrossRefPubMedGoogle Scholar
  12. 12.
    Pearson TA, Mensah GA, Alexander RW et al (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. [see comment]. Circulation 107(3):499–511CrossRefPubMedGoogle Scholar
  13. 13.
    Duval F, Mokrani MC, Bailey P et al (2000) Serotonergic and noradrenergic function in depression: clinical correlates. Dialogues Clin Neurosci 2(3):299–308PubMedPubMedCentralGoogle Scholar
  14. 14.
    Anisman H, Gibb J, Hayley S (2008) Influence of continuous infusion of interleukin-1beta on depression-related processes in mice: corticosterone, circulating cytokines, brain monoamines, and cytokine mRNA expression. Psychopharmacology (Berl) 199(2):231–244CrossRefGoogle Scholar
  15. 15.
    Muller N, Schwarz MJ (2007) The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 12(11):988–1000CrossRefPubMedGoogle Scholar
  16. 16.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haroon E, Raison CL, Miller AH (2011) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. EpubGoogle Scholar
  18. 18.
    Moieni M, Irwin MR, Jevtic I, Olmstead R, Breen EC, Eisenberger NI (2015) Sex differences in depressive and socioemotional responses to an inflammatory challenge: implications for sex differences in depression. Neuropsychopharmacology 40(7):1709–1716CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Raison CL, Borisov AS, Broadwell SD et al (2005) Depression during pegylated interferon-alpha plus ribavirin therapy: prevalence and prediction. J Clin Psychiatry 66(1):41–48CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Franzen PL, Buysse DJ, Rabinovitz M, Pollock BG, Lotrich FE (2010) Poor sleep quality predicts onset of either major depression or subsyndromal depression with irritability during interferon-alpha treatment. Psychiatry Res 177(1–2):240–245CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lotrich FE (2009) Major depression during interferon-alpha treatment: vulnerability and prevention. Dialogues Clin Neurosci 11(4):417–425PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lotrich FE, Ferrell RE, Rabinovitz M, Pollock BG (2009) Risk for depression during interferon-alpha treatment is affected by the serotonin transporter polymorphism. Biol Psychiatry 65(4):344–348CrossRefPubMedGoogle Scholar
  23. 23.
    Prather AA, Rabinovitz M, Pollock BG, Lotrich FE (2009) Cytokine-induced depression during IFN-alpha treatment: the role of IL-6 and sleep quality. Brain Behav ImmunGoogle Scholar
  24. 24.
    Raison CL, Rutherford RE, Woolwine BJ et al (2012) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Arch Gen Psychiatry 1–11Google Scholar
  25. 25.
    Rapaport MH, Nierenberg AA, Schettler PJ et al (2016) Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Mol Psychiatry 21(1):71–79CrossRefPubMedGoogle Scholar
  26. 26.
    Kohler O, Benros ME, Nordentoft M et al (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA PsychiatryGoogle Scholar
  27. 27.
    Rosenblat JD, Kakar R, Berk M et al (2016) Anti-inflammatory agents in the treatment of bipolar depression: a systematic review and meta-analysis. Bipolar Disord 18(2):89–101CrossRefPubMedGoogle Scholar
  28. 28.
    Mocking RJ, Harmsen I, Assies J, Koeter MW, Ruhe HG, Schene AH (2016) Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Transl Psychiatry 6:e756CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Scher JU, Pillinger MH (2009) The anti-inflammatory effects of prostaglandins. J Investig Med 57(6):703–708CrossRefPubMedGoogle Scholar
  30. 30.
    Manabe T, Togashi H, Uchida N et al (2000) Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol Cell Neurosci 15(6):534–546CrossRefPubMedGoogle Scholar
  31. 31.
    Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A 108(22):9262–9267CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Calder PC (2012) Mechanisms of action of (n-3) fatty acids. J Nutr 142(3):592S–599SCrossRefPubMedGoogle Scholar
  33. 33.
    Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Katakura M, Hashimoto M, Okui T, Shahdat HM, Matsuzaki K, Shido O (2013) Omega-3 polyunsaturated Fatty acids enhance neuronal differentiation in cultured rat neural stem cells. Stem Cells Int 2013:490476CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Iyengar RL, Gandhi S, Aneja A et al (2013) NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med 126(11):1017 e1011–e1018Google Scholar
  36. 36.
    Tyring S, Gottlieb A, Papp K et al (2006) Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. [see comment]. Lancet 367(9504):29–35CrossRefPubMedGoogle Scholar
  37. 37.
    Menter A, Augustin M, Signorovitch J et al (2010) The effect of adalimumab on reducing depression symptoms in patients with moderate to severe psoriasis: a randomized clinical trial. J Am Acad Dermatol 62(5):812–818CrossRefPubMedGoogle Scholar
  38. 38.
    Langley RG, Feldman SR, Han C et al (2010) Ustekinumab significantly improves symptoms of anxiety, depression, and skin-related quality of life in patients with moderate-to-severe psoriasis: results from a randomized, double-blind, placebo-controlled phase III trial. J Am Acad DermatolGoogle Scholar
  39. 39.
    Fields C, Drye L, Vaidya V, Lyketsos C, Group AR (2012) Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. Am J Geriatr Psychiatry 20(6):505–513CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bloch MH, Hannestad J (2012) Omega-3 fatty acids for the treatment of depression: systematic review and meta-analysis. Mol Psychiatry 17(12):1272–1282CrossRefPubMedGoogle Scholar
  41. 41.
    Nery FG, Monkul ES, Hatch JP et al (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23(2):87–94CrossRefPubMedGoogle Scholar
  42. 42.
    Saroukhani S, Emami-Parsa M, Modabbernia A et al (2013) Aspirin for treatment of lithium-associated sexual dysfunction in men: randomized double-blind placebo-controlled study. Bipolar Disord 15(6):650–656CrossRefPubMedGoogle Scholar
  43. 43.
    Muller N, Schwarz MJ, Dehning S et al (2006) The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 11(7):680–684CrossRefPubMedGoogle Scholar
  44. 44.
    Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S (2012) Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: randomized double-blind placebo-controlled study. J Affect Disord 141(2–3):308–314CrossRefPubMedGoogle Scholar
  45. 45.
    Akhondzadeh S, Jafari S, Raisi F et al (2009) Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety 26(7):607–611CrossRefPubMedGoogle Scholar
  46. 46.
    Moshiri E, Basti AA, Noorbala AA, Jamshidi AH, Hesameddin Abbasi S, Akhondzadeh S (2006) Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine 13(9–10):607–611CrossRefPubMedGoogle Scholar
  47. 47.
    Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213CrossRefPubMedGoogle Scholar
  48. 48.
    Kreisel T, Frank MG, Licht T et al (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19(6):699–709CrossRefPubMedGoogle Scholar
  49. 49.
    Bauer J, Hohagen F, Gimmel E et al (1995) Induction of cytokine synthesis and fever suppresses REM sleep and improves mood in patients with major depression. Biol Psychiatry 38(9):611–621CrossRefPubMedGoogle Scholar
  50. 50.
    Gueorguieva R, Mallinckrodt C, Krystal JH (2011) Trajectories of depression severity in clinical trials of duloxetine: insights into antidepressant and placebo responses. Arch Gen Psychiatry 68(12):1227–1237CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Papakostas GI, Shelton RC, Zajecka JM et al (2014) Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: results from a randomized clinical trial. J Clin Psychiatry 75(8):855–863CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Human Development and Family StudiesSchool of Human Ecology, University of Wisconsin-MadisonMadisonUSA
  2. 2.Department of PsychiatrySchool of Medicine and Public Health, University of Wisconsin-MadisonMadisonUSA

Personalised recommendations