Advertisement

Role of Inflammation in the Development of Neuropsychiatric Symptom Domains: Evidence and Mechanisms

  • Lucile CapuronEmail author
  • Nathalie Castanon
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 31)

Abstract

The finding that inflammatory markers are elevated in various neuropsychiatric disorders raises the need of identifying the precise research domain criteria driven by inflammation. Based on the model of inflammation-induced depression it has been possible to identify distinct pathophysiological pathways leading to alterations in neurotransmitter metabolism with specific relevance for the development of symptom constellations that are common to various neuropsychiatric and neurodegenerative conditions. Moreover, converging data indicate that these pathways interact with relevant vulnerability factors and modulatory systems to ultimately impact the presentation of inflammation-driven neuropsychiatric symptoms. Altogether, these findings make inflammation a key pivotal factor in psychopathology. Developing treatments that target inflammation and modulate the pathways and systems by which inflammatory processes selectively affect brain function will be of particular relevance for the treatment of specific neurobehavioral symptom domains.

Keywords

Cytokines Depression Inflammation Neuropsychiatric symptom domains Pathophysiology Research domain criteria Vulnerability 

Notes

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

References

  1. 1.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130(2):226–238CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31CrossRefPubMedGoogle Scholar
  4. 4.
    Castanon N, Medina C, Mormede C, Dantzer R (2004) Chronic administration of tianeptine balances lipopolysaccharide-induced expression of cytokines in the spleen and hypothalamus of rats. Psychoneuroendocrinology 29(6):778–790CrossRefPubMedGoogle Scholar
  5. 5.
    Layé S, Parnet P, Goujon E, Dantzer R (1994) Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res 27(1):157–162CrossRefPubMedGoogle Scholar
  6. 6.
    Anisman H, Merali Z, Hayley S (2008) Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog Neurobiol 85(1):1–74CrossRefPubMedGoogle Scholar
  7. 7.
    Borsini A, Zunszain PA, Thuret S, Pariante CM (2015) The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 38:145–157CrossRefPubMedGoogle Scholar
  8. 8.
    Noble F, Rubira E, Boulanouar M et al (2007) Acute systemic inflammation induces central mitochondrial damage and mnesic deficit in adult Swiss mice. Neurosci Lett 424(2):106–110CrossRefPubMedGoogle Scholar
  9. 9.
    Hein AM, Stasko MR, Matousek SB et al (2010) Sustained hippocampal IL-1beta overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun 24(2):243–253CrossRefPubMedGoogle Scholar
  10. 10.
    Musselman DL, Lawson DH, Gumnick JF et al (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344(13):961–966CrossRefPubMedGoogle Scholar
  11. 11.
    Capuron L, Gumnick JF, Musselman DL et al (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26(5):643–652CrossRefPubMedGoogle Scholar
  12. 12.
    Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56(11):819–824CrossRefPubMedGoogle Scholar
  13. 13.
    Barbosa IG, Bauer ME, Machado-Vieira R, Teixeira AL (2014) Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast 2014:360481CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dargel AA, Godin O, Kapczinski F, Kupfer DJ, Leboyer M (2015) C-reactive protein alterations in bipolar disorder: a meta-analysis. J Clin Psychiatry 76(2):142–150CrossRefPubMedGoogle Scholar
  15. 15.
    Solmi M, Veronese N, Favaro A et al (2015) Inflammatory cytokines and anorexia nervosa: a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 51:237–252CrossRefPubMedGoogle Scholar
  16. 16.
    Hoge EA, Brandstetter K, Moshier S, Pollack MH, Wong KK, Simon NM (2009) Broad spectrum of cytokine abnormalities in panic disorder and posttraumatic stress disorder. Depress Anxiety 26(5):447–455CrossRefPubMedGoogle Scholar
  17. 17.
    Masi A, Quintana DS, Glozier N, Lloyd AR, Hickie IB, Guastella AJ (2015) Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry 20(4):440–446CrossRefPubMedGoogle Scholar
  18. 18.
    Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808CrossRefPubMedGoogle Scholar
  19. 19.
    Lee KS, Chung JH, Choi TK, Suh SY, Oh BH, Hong CH (2009) Peripheral cytokines and chemokines in Alzheimer’s disease. Dement Geriatr Cogn Disord 28(4):281–287CrossRefPubMedGoogle Scholar
  20. 20.
    Insel TR (2014) The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 171(4):395–397CrossRefPubMedGoogle Scholar
  21. 21.
    De La Garza R 2nd (2005) Endotoxin- or pro-inflammatory cytokine-induced sickness behavior as an animal model of depression: focus on anhedonia. Neurosci Biobehav Rev 29(4–5):761–770Google Scholar
  22. 22.
    Dunn AJ, Swiergiel AH (2005) Effects of interleukin-1 and endotoxin in the forced swim and tail suspension tests in mice. Pharmacol Biochem Behav 81(3):688–693CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Makino M, Kitano Y, Komiyama C et al (2000) Human interferon-alpha induces immobility in the mouse forced swimming test: involvement of the opioid system. Brain Res 852(2):482–484CrossRefPubMedGoogle Scholar
  24. 24.
    Castanon N, Bluthe RM, Dantzer R (2001) Chronic treatment with the atypical antidepressant tianeptine attenuates sickness behavior induced by peripheral but not central lipopolysaccharide and interleukin-1beta in the rat. Psychopharmacology (Berl) 154(1):50–60CrossRefGoogle Scholar
  25. 25.
    Frenois F, Moreau M, O’Connor J et al (2007) Lipopolysaccharide induces delayed FosB/DeltaFosB immunostaining within the mouse extended amygdala, hippocampus and hypothalamus, that parallel the expression of depressive-like behavior. Psychoneuroendocrinology 32(5):516–531CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Godbout JP, Moreau M, Lestage J et al (2008) Aging exacerbates depressive-like behavior in mice in response to activation of the peripheral innate immune system. Neuropsychopharmacology 33(10):2341–2351CrossRefPubMedGoogle Scholar
  27. 27.
    O’Connor JC, Lawson MA, Andre C et al (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522CrossRefPubMedGoogle Scholar
  28. 28.
    Salazar A, Gonzalez-Rivera BL, Redus L, Parrott JM, O’Connor JC (2012) Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav 62(3):202–209CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Moreau M, Lestage J, Verrier D et al (2005) Bacille Calmette-Guerin inoculation induces chronic activation of peripheral and brain indoleamine 2,3-dioxygenase in mice. J Infect Dis 192(3):537–544CrossRefPubMedGoogle Scholar
  30. 30.
    Moreau M, Andre C, O’Connor JC et al (2008) Inoculation of Bacillus Calmette-Guerin to mice induces an acute episode of sickness behavior followed by chronic depressive-like behavior. Brain Behav Immun 22(7):1087–1095CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    O’Connor JC, Andre C, Wang Y et al (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to Bacillus Calmette-Guerin. J Neurosci 29(13):4200–4209CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    O’Connor JC, Lawson MA, Andre C et al (2009) Induction of IDO by bacille Calmette-Guerin is responsible for development of murine depressive-like behavior. J Immunol 182(5):3202–3212CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dantzer R, Heijnen CJ, Kavelaars A, Laye S, Capuron L (2014) The neuroimmune basis of fatigue. Trends Neurosci 37(1):39–46CrossRefPubMedGoogle Scholar
  34. 34.
    Capuron L, Pagnoni G, Drake DF et al (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69(10):1044–1053CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Campbell BM, Charych E, Lee AW, Moller T (2014) Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci 8:12CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dantzer R, Walker AK (2014) Is there a role for glutamate-mediated excitotoxicity in inflammation-induced depression? J Neural Transm (Vienna) 121(8):925–932CrossRefGoogle Scholar
  37. 37.
    Stone TW, Forrest CM, Stoy N, Darlington LG (2012) Involvement of kynurenines in Huntington’s disease and stroke-induced brain damage. J Neural Transm 119(2):261–274CrossRefPubMedGoogle Scholar
  38. 38.
    Erhardt S, Lim CK, Linderholm KR et al (2013) Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology 38(5):743–752CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Steiner J, Walter M, Gos T et al (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8:94CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151CrossRefPubMedGoogle Scholar
  41. 41.
    Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50(7):521–530CrossRefPubMedGoogle Scholar
  42. 42.
    Savitz J, Dantzer R, Wurfel BE et al (2015) Neuroprotective kynurenine metabolite indices are abnormally reduced and positively associated with hippocampal and amygdalar volume in bipolar disorder. Psychoneuroendocrinology 52:200–211CrossRefPubMedGoogle Scholar
  43. 43.
    Savitz J, Drevets WC, Smith CM et al (2015) Putative neuroprotective and neurotoxic kynurenine pathway metabolites are associated with hippocampal and amygdalar volumes in subjects with major depressive disorder. Neuropsychopharmacology 40(2):463–471CrossRefPubMedGoogle Scholar
  44. 44.
    Zunszain PA, Anacker C, Cattaneo A et al (2012) Interleukin-1beta: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology 37(4):939–949CrossRefPubMedGoogle Scholar
  45. 45.
    Capuron L, Schroecksnadel S, Feart C et al (2011) Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol Psychiatry 70(2):175–182CrossRefPubMedGoogle Scholar
  46. 46.
    Murr C, Widner B, Wirleitner B, Fuchs D (2002) Neopterin as a marker for immune system activation. Curr Drug Metab 3(2):175–187CrossRefPubMedGoogle Scholar
  47. 47.
    Oxenkrug GF (2010) Metabolic syndrome, age-associated neuroendocrine disorders, and dysregulation of tryptophan-kynurenine metabolism. Ann N Y Acad Sci 1199:1–14CrossRefPubMedGoogle Scholar
  48. 48.
    Capuron L, Neurauter G, Musselman DL et al (2003) Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol Psychiatry 54(9):906–914CrossRefPubMedGoogle Scholar
  49. 49.
    Raison CL, Dantzer R, Kelley KW et al (2010) CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry 15(4):393–403CrossRefPubMedGoogle Scholar
  50. 50.
    Bay-Richter C, Linderholm KR, Lim CK et al (2015) A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun 43:110–117CrossRefPubMedGoogle Scholar
  51. 51.
    Barichello T, Generoso JS, Simoes LR et al (2013) Inhibition of indoleamine 2,3-dioxygenase prevented cognitive impairment in adult Wistar rats subjected to pneumococcal meningitis. Transl Res 162(6):390–397CrossRefPubMedGoogle Scholar
  52. 52.
    Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ (2013) Poly I:C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav Immun 28:170–181CrossRefPubMedGoogle Scholar
  53. 53.
    Lawson MA, Kelley KW, Dantzer R (2011) Intracerebroventricular administration of HIV-1 Tat induces brain cytokine and indoleamine 2,3-dioxygenase expression: a possible mechanism for AIDS comorbid depression. Brain Behav Immun 25(8):1569–1575CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Xie W, Cai L, Yu Y et al (2014) Activation of brain indoleamine 2,3-dioxygenase contributes to epilepsy-associated depressive-like behavior in rats with chronic temporal lobe epilepsy. J Neuroinflammation 11:41CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Henry CJ, Huang Y, Wynne AM, Godbout JP (2009) Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 23(3):309–317CrossRefPubMedGoogle Scholar
  56. 56.
    Walker AK, Budac DP, Bisulco S et al (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Felger JC, Mun J, Kimmel HL et al (2013) Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 38(11):2179–2187CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kitagami T, Yamada K, Miura H, Hashimoto R, Nabeshima T, Ohta T (2003) Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood-brain barrier. Brain Res 978(1–2):104–114CrossRefPubMedGoogle Scholar
  59. 59.
    Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49(12):1023–1039CrossRefPubMedGoogle Scholar
  60. 60.
    Pariante CM, Miller AH (2001) Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 49(5):391–404CrossRefPubMedGoogle Scholar
  61. 61.
    Capuron L, Raison CL, Musselman DL, Lawson DH, Nemeroff CB, Miller AH (2003) Association of exaggerated HPA axis response to the initial injection of interferon-alpha with development of depression during interferon-alpha therapy. Am J Psychiatry 160(7):1342–1345CrossRefPubMedGoogle Scholar
  62. 62.
    Lamers F, Vogelzangs N, Merikangas KR, de Jonge P, Beekman AT, Penninx BW (2013) Evidence for a differential role of HPA-axis function, inflammation and metabolic syndrome in melancholic versus atypical depression. Mol Psychiatry 18(6):692–699CrossRefPubMedGoogle Scholar
  63. 63.
    Stetler C, Miller GE (2011) Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research. Psychosom Med 73(2):114–126CrossRefPubMedGoogle Scholar
  64. 64.
    Castanon N, Lasselin J, Capuron L (2014) Neuropsychiatric comorbidity in obesity: role of inflammatory processes. Front Endocrinol (Lausanne) 5:74Google Scholar
  65. 65.
    Capuron L, Su S, Miller AH et al (2008) Depressive symptoms and metabolic syndrome: is inflammation the underlying link? Biol Psychiatry 64(10):896–900CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Capuron L, Poitou C, Machaux-Tholliez D et al (2011) Relationship between adiposity, emotional status and eating behaviour in obese women: role of inflammation. Psychol Med 41(7):1517–1528CrossRefPubMedGoogle Scholar
  67. 67.
    Lojko D, Buzuk G, Owecki M, Ruchala M, Rybakowski JK (2015) Atypical features in depression: association with obesity and bipolar disorder. J Affect Disord 185:76–80CrossRefPubMedGoogle Scholar
  68. 68.
    McElroy SL, Kotwal R, Malhotra S, Nelson EB, Keck PE, Nemeroff CB (2004) Are mood disorders and obesity related? A review for the mental health professional. J Clin Psychiatry 65(5):634–651, quiz 730CrossRefPubMedGoogle Scholar
  69. 69.
    Luppino FS, de Wit LM, Bouvy PF et al (2010) Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 67(3):220–229CrossRefPubMedGoogle Scholar
  70. 70.
    Capuron L, Pagnoni G, Demetrashvili MF et al (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32(11):2384–2392CrossRefPubMedGoogle Scholar
  71. 71.
    Wang GJ, Volkow ND, Logan J et al (2001) Brain dopamine and obesity. Lancet 357(9253):354–357CrossRefPubMedGoogle Scholar
  72. 72.
    Volkow ND, Wang GJ, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46CrossRefPubMedGoogle Scholar
  73. 73.
    Milaneschi Y, Lamers F, Bot M, Drent ML, Penninx BW (2015) Leptin dysregulation is specifically associated with major depression with atypical features: evidence for a mechanism connecting obesity and depression. Biol Psychiatry. doi: 10.1016/j.biopsych.2015.10.023
  74. 74.
    Constant A, Castera L, Dantzer R et al (2005) Mood alterations during interferon-alfa therapy in patients with chronic hepatitis C: evidence for an overlap between manic/hypomanic and depressive symptoms. J Clin Psychiatry 66(8):1050–1057CrossRefPubMedGoogle Scholar
  75. 75.
    Capuron L, Ravaud A, Miller AH, Dantzer R (2004) Baseline mood and psychosocial characteristics of patients developing depressive symptoms during interleukin-2 and/or interferon-alpha cancer therapy. Brain Behav Immun 18(3):205–213CrossRefPubMedGoogle Scholar
  76. 76.
    Albrecht K, Droll H, Giesler JM, Nashan D, Meiss F, Reuter K (2013) Self-efficacy for coping with cancer in melanoma patients: its association with physical fatigue and depression. Psychooncology 22(9):1972–1978CrossRefPubMedGoogle Scholar
  77. 77.
    Parneix M, Pericaud M, Clement JP (2014) Irritability associated with major depressive episodes: its relationship with mood disorders and temperament. Turk Psikiyatri Derg 25(2):106–113PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, INRAUniversity Victor Segalen Bordeaux 2BordeauxFrance
  2. 2.INRA, Laboratory of Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286University of BordeauxBordeauxFrance

Personalised recommendations