Advertisement

Attention-Deficit/Hyperactivity Disorder: Focus upon Aberrant N-Methyl-d-Aspartate Receptors Systems

  • Trevor ArcherEmail author
  • Danilo Garcia
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 29)

Abstract

Attention-deficit/hyperactivity disorder (ADHD) pathophysiology persists in an obscure manner with complex interactions between symptoms, staging, interventions, genes, and environments. Only on the basis of increasing incidence of the disorder, the need for understanding is greater than ever. The notion of an imbalance between central inhibitory/excitatory neurotransmitters is considered to exert an essential role. In this chapter, we first review how the default mode network functions and dysfunction in individuals diagnosed with ADHD. We also present and briefly review some of the animal models used to examine the neurobiological aspects of ADHD. There is much evidence indicating that compounds/interventions that antagonize/block glutamic acid receptors and/or block the glutamate signal during the “brain growth spurt” or in the adult animal may induce functional and biomarker deficits. Additionally, we present evidence suggesting that animals treated with glutamate blockers at the period of the “brain growth spurt” fail to perform the exploratory activity, observed invariably with control mice, that is associated with introduction to a novel environment (the test cages). Later, when the control animals show less locomotor and rearing activity, i.e., interest in the test cages, the MK-801, ketamine and ethanol treated mice showed successively greater levels of locomotion and rearing (interest), i.e., they fail to “habituate” effectively, implying a cognitive dysfunction. These disturbances of glutamate signaling during a critical period of brain development may contribute to the ADHD pathophysiology. As a final addition, we have briefly identified new research venues in the interaction between ADHD, molecular studies, and personality research.

Keywords

Hyperactivity Attention-deficit Glutamate antagonists Motor activity Deficits Brain regions Mice 

References

  1. Akutagava-Martins GC, Salatino-Oliveira A, Genro JP, Contini V, Polanczyk G, Zeni C, Chazan R, Kieling C, Anselmi L, Menezes AM, Grevet EH, Bau CH, Rohde LA, Hutz MH (2014) Glutamatergic copy number variants and their role in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 165B(6):502–509. doi: 10.1002/ajmg.b.32253 CrossRefPubMedGoogle Scholar
  2. Anckarsäter H, Ståhlberg O, Larson T, Håkansson C, Jutblad SB, Niklasson L, Nydén A, Wentz E, Westergren S, Cloninger CR, Gillberg C, Rastam M (2006) The impact of ADHD and autism spectrum disorders on temperament, character, and personality development. Am J Psychiatry 163(7):1239–1244CrossRefGoogle Scholar
  3. Antonini TN, Becker SP, Tamm L, Epstein JN (2015) Hot and cool executive functions in children with attention-deficit/hyperactivity disorder and comorbid oppositional defiant disorder. J Int Neuropsychol Soc 21(8):584–595. doi: 10.1017/S1355617715000752 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Archer T, Bright P (2012) Functional and structural MRI studies on impulsiveness: attention deficit/hyperactive disorder and borderline personality disorders. In: Bright P (ed) Neuroimaging—cognitive and clinical neuroscience. InTech, London, pp 205–228. ISBN 978-953-51-0606-7Google Scholar
  5. Archer T, Kostrzewa RM (2012) Physical exercise alleviates ADHD symptoms: regional deficits and development trajectory. Neurotox Res 21(2):195–209. doi: 10.1007/s12640-011-9260-0 CrossRefPubMedGoogle Scholar
  6. Archer T, Oscar-Berman M, Blum K (2011) Epigenetics in developmental disorder: ADHD and endophenotypes. J Genet Syndr Gene Ther 2(104). pii: 1000104Google Scholar
  7. Arcos-Burgos M, Castellanos FX, Pineda D, Lopera F, Palacio JD, Palacio LG, Rapoport JL, Berg K, Bailey-Wilson JE, Muenke M (2004) Attention-deficit/hyperactivity disorder in a population isolate: linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am J Hum Genet 75(6):998–1014CrossRefGoogle Scholar
  8. Babenko O, Kovalchuk I, Metz GA (2015) Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 48:70–91. doi: 10.1016/j.neubiorev.2014.11.013 CrossRefPubMedGoogle Scholar
  9. Barkley RA, Fisher M, Smallish L, Fletcher K (2002) The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder. J Abnorm Psychol 111:279–289CrossRefGoogle Scholar
  10. Benjamin J, Li L, Patterson C, Greenberg BD, Murphy DL, Hamer DH (1996) Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat Genet 12:81–84CrossRefGoogle Scholar
  11. Bollmann S, Ghisleni C, Poil SS, Martin E, Ball J, Eich-Höchli D, Edden RA, Klaver P, Michels L, Brandeis D, O’Gorman RL (2015) Developmental changes in gamma-aminobutyric acid levels in attention-deficit/hyperactivity disorder. Transl Psychiatry 5:e589. doi: 10.1038/tp.2015.79 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bussing R, Meyer J, Zima BT, Mason DM, Gary FA, Garvan CW (2015) Childhood ADHD symptoms: association with parental social networks and mental health service use during adolescence. Int J Environ Res Public Health. 12(9):11893–11909. doi: 10.3390/ijerph120911893 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Byrnes ML, Reynolds JN, Brien JF (2001) Effect of prenatal ethanol exposure during the brain growth spurt of the guinea pig. Neurotoxicol Teratol 23(4):355–364CrossRefGoogle Scholar
  14. Byrnes ML, Reynolds JN, Brien JF (2003) Brain growth spurt-prenatal ethanol exposure and the guinea pig hippocampal glutamate signaling system. Neurotoxicol Teratol 25(3):303–310CrossRefGoogle Scholar
  15. Byrnes ML, Richardson DP, Brien JF, Reynolds JN, Dringenberg HC (2004) Spatial acquisition in the Morris water maze and hippocampal long-term potentiation in the adult guinea pig following brain growth spurt–prenatal ethanol exposure. Neurotoxicol Teratol 26(4):543–551CrossRefGoogle Scholar
  16. Centers for Disease Control and Prevention (CDC) (2011) Key findings: trends in the parent-report of health care provider-diagnosis and medication treatment for ADHD: United States, 2003–2011Google Scholar
  17. Chen WA, Parnell SE, West JR (1999) Early postnatal alcohol exposure produced long-term deficits in brain weight, but not the number of neurons in the locus coeruleus. Brain Res Dev Brain Res 118(1–2):33–38CrossRefGoogle Scholar
  18. Class QA, Abel KM, Khashan AS, Rickert ME, Dalman C, Larsson H, Hultman CM, Långström N, Lichtenstein P, D’Onofrio BM (2014) Offspring psychopathology following preconception, prenatal and postnatal maternal bereavement stress. Psychol Med 44(1):71–84. doi: 10.1017/S0033291713000780 CrossRefPubMedGoogle Scholar
  19. Cloninger CR (2004) Feeling good: the science of well-being. Oxford University Press, New YorkGoogle Scholar
  20. Cloninger CR, Svrakic DM, Przybeck TR (1993) A psychobiological model of temperament and character. Arch Gen Psychiatry 50:975–989CrossRefGoogle Scholar
  21. Cohen Kadosh K, Krause B, King AJ, Near J, Cohen Kadosh R (2015) Linking GABA and glutamate levels to cognitive skill acquisition during development. Hum Brain Mapp. doi: 10.1002/hbm.22921 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Costa Dde S, Rosa DV, Barros AG, Romano-Silva MA, Malloy-Diniz LF, Mattos P, de Miranda DM (2015) Telomere length is highly inherited and associated with hyperactivity-impulsivity in children with attention deficit/hyperactivity disorder. Front Mol Neurosci. 8:28. doi: 10.3389/fnmol.2015.00028 CrossRefPubMedGoogle Scholar
  23. Dalsgaard S, Østergaard SD, Leckman JF, Mortensen PB, Pedersen MG (2015) Mortality in children, adolescents and adults with attention deficit hyperactivity disorder: a nationwide cohort study. Lancet 385(9983):2190–2196. doi: 10.1016/S0140-6736(14)61684-6 CrossRefPubMedGoogle Scholar
  24. Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22(1):40–44CrossRefGoogle Scholar
  25. Davison AN, Dobbing J (1968) Applied neurochemistry. Blackwell, Oxford, pp 253–316Google Scholar
  26. Di Miceli M, Gronier B (2015) Psychostimulants and atomoxetine alter the electrophysiological activity of prefrontal cortex neurons, interaction with catecholamine and glutamate NMDA receptors. Psychopharmacology 232(12):2191–2205. doi: 10.1007/s00213-014-3849-y CrossRefPubMedGoogle Scholar
  27. Diana MC, Santoro ML, Xavier G, Santos CM, Spindola LN, Moretti PN, Ota VK, Bressan RA, Abilio VC, Belangero SI (2015) Low expression of Gria1 and Grin1 glutamate receptors in the nucleus accumbens of spontaneously hypertensive rats (SHR). Psychiatry Res 229(3):690–694. doi: 10.1016/j.psychres.2015.08.021 CrossRefPubMedGoogle Scholar
  28. Dikranian K, Ishimaru MJ, Tenkova T, Labruyere J, Qin YQ, Ikonomidou C, Olney JW (2001) Apoptosis in the in vivo mammalian forebrain. Neurobiol Dis 8(3):359–379CrossRefGoogle Scholar
  29. Dimatelis JJ, Hsieh JH, Sterley TL, Marais L, Womersley JS, Vlok M, Russell VA (2015) Impaired energy metabolism and disturbed dopamine and glutamate signalling in the striatum and prefrontal cortex of the spontaneously hypertensive rat model of attention-deficit hyperactivity disorder. J Mol Neurosci 56(3):696–707. doi: 10.1007/s12031-015-0491-z CrossRefPubMedGoogle Scholar
  30. Dobbing J (1970a) Undernutrition and the developing brain. The relevance of animal models to the human problem. Am J Dis Child 120(5):411–415CrossRefGoogle Scholar
  31. Dobbing J (1970b) The kinetics of growth. Lancet 2(7687):1358CrossRefGoogle Scholar
  32. Dobbing J (1970c) Undernutrition and the developing brain. The relevance of animal models to the human problem. Am J Dis Child 120(5):411–415CrossRefGoogle Scholar
  33. Dobbing J, Sands J (1970) Growth and development of the brain and spinal cord of the guinea pig. Brain Res 17(1):115–123CrossRefGoogle Scholar
  34. Dobbing J (1971) Undernutrition and the developing brain: the use of animal models ot elucidate the human problem. Psychiatr Neurol Neurochir 74(6):433–442Google Scholar
  35. Dobbing J, Sands J (1979) Comparative aspects of the brain growth spurt. Early Hum Dev. 3(1):79–83CrossRefGoogle Scholar
  36. Dueck A, Berger C, Wunsch K, Thome J, Cohrs S, Reis O, Haessler F (2015) The role of sleep problems and circadian clock genes in attention-deficithyperactivity disorder and mood disorders during childhood and adolescence: an update. J Neural Transm (15 Oct 2015)Google Scholar
  37. Ebstein RP, Novick O, Umansky R, Priel B, Osher Y, Blaine D, Bennett ER, Nemanov L, Katz M, Belmaker RH (1996) Dopamine D4 receptor (D4DR) exon III polymorphism associated with the human personality trait of novelty seeking. Nat Genet 12:78–80CrossRefGoogle Scholar
  38. Ehli EA, Abdellaoui A, Hu Y, Hottenga JJ, Kattenberg M, van Beijsterveldt T, Bartels M, Althoff RR, Xiao X, Scheet P, de Geus EJ, Hudziak JJ, Boomsma DI, Davies GE (2012) De novo and inherited CNVs in MZ twin pairs selected for discordance and concordance on attention problems. Eur J Hum Genet 20(10):1037–1043. doi: 10.1038/ejhg.2012.49 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ende G, Cackowski S, Van Eijk J, Sack M, Demirakca T, Kleindienst N, Bohus M, Sobanski E, Krause-Utz A, Schmahl C (2015) Impulsivity and aggression in female BPD and ADHD patients: associations with ACC glutamate and GABA concentrations. Neuropsychopharmacology. doi: 10.1038/npp.2015.153 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Endres D, Perlov E, Maier S, Feige B, Nickel K, Goll P, Bubl E, Lange T, Glauche V, Graf E, Ebert D, Sobanski E, Philipsen A, Tebartz van Elst L (2015) Normal neurochemistry in the prefrontal and cerebellar brain of adults with attention-deficit hyperactivity disorder. Front Behav Neurosci 9:242. doi: 10.3389/fnbeh.2015.00242 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Falhgren E, Nima AA, Archer T, Garcia D (2015) Person-centered osteopathic practice: patients’ personality (body, mind, and soul) and health (ill-being and well-being). PeerJ 3:e1349. doi: 10.7717/peerj.1349 CrossRefGoogle Scholar
  42. Fang Y, Ji N, Cao Q, Su Y, Chen M, Wang Y, Yang L (2015) Variants of dopamine beta hydroxylase gene moderate atomoxetine response in children with attention-deficit/hyperactivity disorder. J Child Adolesc Psychopharmacol (8 Oct 2015)Google Scholar
  43. Franke B, Neale BM, Faraone SV (2009) Genome wide association studies in ADHD. Hum Genet 126:13–50. doi: 10.1007/s00439-009-0663-4 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Fredriksson A, Archer T (2002) Functional alteration by NMDA antagonist: effects of l-Dopa, neuroleptic drugs and postnatal administration. Amino Acids 25:111–132CrossRefGoogle Scholar
  45. Fredriksson A, Archer T (2003) Hyperactivity following postnatal NMDA antagonist treatment: reversal by d-amphetamine. Neurotox Res 5:549–564CrossRefGoogle Scholar
  46. Fredriksson A, Archer T (2004) Neurobehavioral deficits associated with apoptotic neurodegeneration and vulnerability for ADHD. Neurotox Res 6:435–456CrossRefGoogle Scholar
  47. Fredriksson A, Archer T, Alm H, Gordh T, Eriksson P (2004) Neurofunctional deficits and potentiated apoptosis by neonatal NMDA antagonist administration. Behav Brain Res 153:367–376CrossRefGoogle Scholar
  48. Froehlich TE, Lanphear BP, Epstein JN, Barbaresi WJ, Katusic SK, Kahn RS (2007) Prevalence, recognition, and treatment of attention-deficit/hyperactivity disorder in a national sample of US children. Arch Pediatr Adolesc Med 161(9):857–864CrossRefGoogle Scholar
  49. Froehlich TE, Lanphear BP, Auinger P, Hornung R, Epstein JN, Braun J, Kahn RS (2009) Association of tobacco and lead exposures with attention-deficit/hyperactivity disorder. Pediatrics 124(6):e1054–e1063. doi: 10.1542/peds.2009-0738 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Froehlich TE, McGough JJ, Stein MA (2010) Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs. 24(2):99–117. doi: 10.2165/11530290-000000000-00000 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Froehlich TE, Anixt JS, Loe IM, Chirdkiatgumchai V, Kuan L, Gilman RC (2011) Update on environmental risk factors for attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 13(5):333–344. doi: 10.1007/s11920-011-0221-3 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Garcia D, Anckarsäter H, Lundström S (2013) Self-directedness and cooperativeness, psychosocial dysfunction and suffering in ESSENCE. Sci World J 2013, Article ID 416981, 1–10. doi: 10.1155/2013/416981 CrossRefGoogle Scholar
  53. Garcia D, Stråge A, Lundström S, Radovic S, Brändström S, Råstam M, Nilsson T, Cloninger CR, Kerekes N, Anckarsäter H (2014) Responsibility and cooperativeness are constrained not determined. Front Psychol 5:308. doi: 10.3389/fpsyg.2014.00308 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gorter JA, de Bruin JP (1992) Chronic neonatal MK-801 treatment results in an impairment of spatial learning in the adult rat. Brain Res 580(1–2):12–17CrossRefGoogle Scholar
  55. Gorter JA, Botterblom MH, Feenstra MG, Boer GJ (1992a) Chronic neonatal NMDA receptor blockade with MK-801 alters monoamine metabolism in the adult rat. Neurosci Lett 137(1):97–100CrossRefGoogle Scholar
  56. Gorter JA, Veerman M, Mirmiran M (1992b) Hippocampal neuronal responsiveness to NMDA agonists and antagonists in the adult rat neonatally treated with MK-801. Brain Res 572(1–2):176–181CrossRefGoogle Scholar
  57. Gorter JA, Veerman M, Mirmiran M, Bos NP, Corner MA (1991) Spectral analysis of the electroencephalogram in neonatal rats chronically treated with the NMDA antagonist MK-801. Brain Res Dev Brain Res 64(1–2):37–41CrossRefGoogle Scholar
  58. Grissom NM, Reyes TM (2013) Gestational overgrowth and undergrowth affect neurodevelopment: similarities and differences from behavior to epigenetics. Int J Dev Neurosci 31(6):406–414. doi: 10.1016/j.ijdevneu.2012.11.006 CrossRefGoogle Scholar
  59. Grizenko N, Fortier MÈ, Gaudreau-Simard M, Jolicoeur C, Joober R (2015) The effect of maternal stress during pregnancy on IQ and ADHD symptomatology. J Can Acad Child Adolesc Psychiatry 24(2):92–99PubMedPubMedCentralGoogle Scholar
  60. Grünblatt E, Bartl J, Iuhos DI, Knezovic A, Trkulja V, Riederer P, Walitza S, Salkovic-Petrisic M (2015) Characterization of cognitive deficits in spontaneously hypertensive rats, accompanied by brain insulin receptor dysfunction. J Mol Psychiatry 3(1):6. doi: 10.1186/s40303-015-0012-6 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Higuera-Matas A, Ucha M, Ambrosio E (2015) Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci Biobehav Rev 55:119–146. doi: 10.1016/j.neubiorev.2015.04.020 CrossRefPubMedGoogle Scholar
  62. Huebner SM, Tran TD, Rufer ES, Crump PM, Smith SM (2015) Maternal iron deficiency worsens the associative learning deficits and hippocampal and cerebellar losses in a rat model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res. doi: 10.1111/acer.12876 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ikonomidou C, Bittigau P, Koch C, Genz K, Hoerster F, Felderhoff-Mueser U, Tenkova T, Dikranian K, Olney JW (2001) Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol 62(4):401–405Google Scholar
  64. Ishii S, Hashimoto-Torii K (2015) Impact of prenatal environmental stress on cortical development. Front Cell Neurosci 9:207. doi: 10.3389/fncel.2015.00207 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ishimaru MJ, Ikonomidou C, Tenkova TI, Der TC, Dikranian K, Sesma MA, Olney JW (1999) Distinguishing excitotoxic from apoptotic neurodegeneration in the developing rat brain. J Comp Neurol 408(4):461–476CrossRefGoogle Scholar
  66. Jaber L, Kirsh D, Diamond G, Shuper A (2015) Long-term functional outcomes in Israeli adults diagnosed in childhood with attention-deficit hyperactivity disorder. Isr Med Assoc J 17(8):481–485PubMedGoogle Scholar
  67. Jantzie LL, Talos DM, Jackson MC, Park HK, Graham DA, Lechpammer M, Folkerth RD, Volpe JJ, Jensen FE (2015) Developmental expression of N-methyl-d-aspartate (NMDA) receptor subunits in human white and gray matter: potential mechanism of increased vulnerability in the immature brain. Cereb Cortex 25(2):482–495. doi: 10.1093/cercor/bht246 CrossRefPubMedGoogle Scholar
  68. Jégou S, El Ghazi F, de Lendeu PK, Marret S, Laudenbach V, Uguen A, Marcorelles P, Roy V, Laquerrière A, Gonzalez BJ (2012) Prenatal alcohol exposure affects vasculature development in the neonatal brain. Ann Neurol 72(6):952–960. doi: 10.1002/ana.23699 CrossRefPubMedGoogle Scholar
  69. Jordan CJ, Taylor DM, Dwoskin LP, Kantak KM (2015) Adolescent d-amphetamine treatment in a rodent model of ADHD: Pro-cognitive effects in adolescence without an impact on cocaine cue reactivity in adulthood. Behav Brain Res. pii: S0166-4328(15)30233-3doi:  10.1016/j.bbr.2015.10.017 CrossRefGoogle Scholar
  70. Josefsson K, Jokela M, Cloninger CR, Hintsanen M, Salo J, Hintsa T, Pulkki-Råback L, Keltikangas-Järvinen L (2013) Maturity and Change in Personality: De-velopmental Trends of Temperament and Character in Adulthood. Dev Psychopathol 25:713–727CrossRefGoogle Scholar
  71. Kalat JW (2001) Biological psychology. Wadsworth/Thomson Learning, Belmont, CAGoogle Scholar
  72. Keimpema E, Zheng K, Barde SS, Berghuis P, Dobszay MB, Schnell R, Mulder J, Luiten PG, Xu ZD, Runesson J, Langel Ü, Lu B, Hökfelt T, Harkany T (2014) GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain. Cereb Cortex 24(12):3277–3288. doi: 10.1093/cercor/bht192 CrossRefPubMedGoogle Scholar
  73. Kim J, Son Y, Kim J, Lee S, Kang S, Park K, Kim SH, Kim JC, Kim J, Takayama C, Im HI, Yang M, Shin T, Moon C (2015) Developmental and degenerative modulation of GABAergic transmission in the mouse hippocampus. Int J Dev Neurosci. pii: S0736-5748(15)30048-4. doi:  10.1016/j.ijdevneu.2015.08.009 CrossRefGoogle Scholar
  74. Kleteckova L, Tsenov G, Kubova H, Stuchlik A, Vales K (2014) Neuroprotective effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci Lett 564:11–15. doi: 10.1016/j.neulet.2014.01.057 CrossRefPubMedGoogle Scholar
  75. Kucyi A, Hove MJ, Biederman J, Van Dijk KR, Valera EM (2015) Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder. Hum Brain Mapp 36(9):3373–3386. doi: 10.1002/hbm.22850 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kyeong S, Park S, Cheon KA, Kim JJ, Song DH, Kim E (2015) A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivitydisorder: topological neuroimaging data analysis. PLoS One 10(9):e0137296. doi: 10.1371/journal.pone.0137296 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Langner I, Garbe E, Banaschewski T, Mikolajczyk RT (2013) Twin and sibling studies using health insurance data: the example of attention-deficit/hyperactivity disorder (ADHD). PLoS One 8(4):e62177. doi: 10.1371/journal.pone.0062177 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Li JT, Zhao YY, Wang HL, Wang XD, Su YA, Si TM (2015) Long-term effects of neonatal exposure to MK-801 on recognition memory and excitatory-inhibitory balance in rat hippocampus. Neuroscience 308:134–143. doi: 10.1016/j.neuroscience.2015.09.003 CrossRefPubMedGoogle Scholar
  79. Lin HY, Gau SS (2015) Atomoxetine treatment strengthens an anti-correlated relationship between functional brain networks in medication-naïve adults with attention-deficit hyperactivity disorder: a randomized double-blind placebo-controlled clinical trial. Int J Neuropsychopharmacol. pii: pyv094. doi: 10.1093/ijnp/pyv094 CrossRefGoogle Scholar
  80. Lindström K, Lindblad F, Hjern A (2011) Preterm birth and attention-deficit/hyperactivity disorder in schoolchildren. Pediatrics 127:858–865. doi: 10.1542/peds.2010-1279 CrossRefGoogle Scholar
  81. Liso Navarro AA, Sikoglu EM, Heinze CR, Rogan RC, Russell VA, King JA, Moore CM (2014) Effect of diet on brain metabolites and behavior in spontaneously hypertensive rats. Behav Brain Res 270:240–247. doi: 10.1016/j.bbr.2014.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Marriott AL, Ryan CL, Doucette TA (2012) Neonatal domoic acid treatment produces alterations to prepulse inhibition and latent inhibition in adult rats. Pharmacol Biochem Behav 103(2):338–344. doi: 10.1016/j.pbb.2012.08.022 CrossRefPubMedGoogle Scholar
  83. Mc Fie S, Sterley TL, Howells FM, Russell VA (2012) Clozapine decreases exploratory activity and increases anxiety-like behaviour in the Wistar-Kyoto rat but not the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Brain Res 1467:91–103. doi: 10.1016/j.brainres.2012.05.047 CrossRefPubMedGoogle Scholar
  84. McLoughlin G, Palmer JA, Rijsdijk F, Makeig S (2014) Genetic overlap between evoked frontocentral theta-band phase variability, reaction time variability, and attention-deficit/hyperactivity disorder symptoms in a twinstudy. Biol Psychiatry 75(3):238–247. doi: 10.1016/j.biopsych.2013.07.020 CrossRefPubMedGoogle Scholar
  85. Meechan DW, Maynard TM, Tucker ES, Fernandez A, Karpinski BA, Rothblat LA, LaMantia AS (2015) Modeling a model: Mouse genetics, 22q11.2 Deletion Syndrome, and disorders of cortical circuit development. Prog Neurobiol 130:1–28. doi: 10.1016/j.pneurobio.2015.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Micoulaud-Franchi JA, Lopez R, Vaillant F, Richieri R, El-Kaim A, Bioulac S, Philip P, Boyer L, Lancon C (2015) Perceptual abnormalities related to sensory gating deficit are core symptoms inadults with ADHD. Psychiatry Res. pii: S0165-1781(15)30319-X. doi: 10.1016/j.psychres.2015.09.016 CrossRefGoogle Scholar
  87. Miller EM, Pomerleau F, Huettl P, Russell VA, Gerhardt GA, Glaser PE (2012) The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Neuropharmacology 63(8):1327–1334. doi: 10.1016/j.neuropharm.2012.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Miller EM, Pomerleau F, Huettl P, Gerhardt GA, Glaser PE (2014) Aberrant glutamate signaling in the prefrontal cortex and striatum of the spontaneously hypertensive rat model of attention-deficit/hyperactivity disorder. Psychopharmacology (Berl) 231(15):3019–3029. doi: 10.1007/s00213-014-3479-4 CrossRefGoogle Scholar
  89. Mitchison GM, Njardvik U (2015) Prevalence and Gender Differences of ODD, Anxiety, and Depression in a Sample of Children With ADHD. J Atten Disord. pii:1087054715608442Google Scholar
  90. Noble EP, Ozkaragoz TZ, Ritchie TL, Zhang X, Belin TR, Sparkes RS (1998) D2 and D4 dopamine receptor polymorphisms and personality. Am J Med Genet 81:257–267CrossRefGoogle Scholar
  91. Ono Y, Manki H, Yoshimura K, Muramatsu T, Mizushima H, Higuchi S, Yagi G, Kanba S, Asai M (1997) Association between dopamine D4 receptor (D4DR) exon III polymorphism and novelty seeking in Japanese subjects. Am J Med Genet 74:501–503CrossRefGoogle Scholar
  92. Olney JW, Ishimaru MJ, Bittigau P, Ikonomidou C (2000) Ethanol-induced apoptotic neurodegeneration in the developing brain. Apoptosis 5(6):515–521CrossRefGoogle Scholar
  93. Pettersson E, Anckarsäter H, Gillberg C, Lichtenstein P (2013) Different neurodevelopmental symptoms have a common genetic etiology. J Child Psychol Psychiatr Allied Discip 54(12):1356–1365CrossRefGoogle Scholar
  94. Pires T de O, de Silva CM, de Assis SG (2013) Association between family environment and attention deficit hyperactivity disorder in children—mothers’ and teachers’ views. BMC Psychiatr 13:215–230. doi: 10.1186/1471-244X-13-215
  95. Pozzi L, Baviera M, Sacchetti G, Calcagno E, Balducci C, Invernizzi RW, Carli M (2011) Attention deficit induced by blockade of N-methyl d-aspartate receptors in the prefrontal cortex is associated with enhanced glutamate release and cAMP response element binding protein phosphorylation: role of metabotropic glutamate receptors 2/3. Neuroscience 176:336–348. doi: 10.1016/j.neuroscience.2010.11.060 CrossRefPubMedGoogle Scholar
  96. Purkayastha P, Malapati A, Yogeeswari P, Sriram D (2015) A review on GABA/glutamate pathway for therapeutic intervention of ASD and ADHD. Curr Med Chem (9 Feb 2015)Google Scholar
  97. Richards JS, Hartman CA, Franke B, Hoekstra PJ, Heslenfeld DJ, Oosterlaan J, Arias Vásquez A, Buitelaar JK (2015) Differential susceptibility to maternal expressed emotion in children with ADHD and their siblings? Investigating plasticity genes, prosocial and antisocial behaviour. Eur Child Adolesc Psychiatry 24(2):209–217. doi: 10.1007/s00787-014-0567-2 CrossRefPubMedGoogle Scholar
  98. Rommel AS, Halperin JM, Mill J, Asherson P, Kuntsi J (2013) Protection from genetic diathesis in attention-deficit/hyperactivity disorder: possible complementary roles of exercise. J Am Acad Child Adolesc Psychiatry 52(9):900–910. doi: 10.1016/j.jaac.2013.05.018 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Russell VA (2003) In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneous hypertensive rats. Metab Brain Dis 18:161–168CrossRefGoogle Scholar
  100. Russell VA (2007) Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 161(2):185–198CrossRefGoogle Scholar
  101. Russell VA (2011) Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci Chapter 9:Unit9.35. doi: 10.1002/0471142301.ns0935s54 CrossRefGoogle Scholar
  102. Rybakowski F, Slopien A, Dmitrzak-Weglarz M, Czerski P, Rajewski A, Hauser J (2006) The 5-HT2A-1438 A/G and 5-HTTLPR polymorphisms and personality dimensions in adolescent anorexia nervosa: association study. Neuropsychobiology 53:33–39CrossRefGoogle Scholar
  103. Sadile AG, Pellicano MP, Sagvolden T, Sergeant JA (1996) NMDA and non-NMDA sensitive [L-3H]glutamate receptor binding in the brain of the Naples high- and low-excitability rats: an autoradiographic study. Behav Brain Res 78(2):163–174CrossRefGoogle Scholar
  104. Salatino-Oliveira A, Wagner F, Akutagava-Martins GC, Bruxel EM, Genro JP, Zeni C, Kieling C, Polanczyk GV, Rohde LA, Hutz MH (2015) MAP1B and NOS1 genes are associated with working memory in youths withattention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci (2 Aug 2015)Google Scholar
  105. Samochowiec J, Rybakowski F, Czerski P, Zakrzewska M, Stepien G, Pelka-Wysiecka J, Horodnicki J, Rybakowski JK, Hauser J (2001) Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationship to temperamental dimensions measured by the Temperament and Character Inventory in healthy volunteers. Neuropsychobiology 43:248–253CrossRefGoogle Scholar
  106. Santoro ML, Santos CM, Ota VK, Gadelha A, Stilhano RS, Diana MC, Silva PN, Spíndola LM, Melaragno MI, Bressan RA, Han SW, Abílio VC, Belangero SI (2015) Expression profile of neurotransmitter receptor and regulatory genes in the prefrontal cortex of spontaneously hypertensive rats: relevance to neuropsychiatric disorders. Psychiatry Res 219(3):674–679. doi: 10.1016/j.psychres.2014.05.034 CrossRefGoogle Scholar
  107. Sasaki T, Hashimoto K, Oda Y, Ishima T, Kurata T, Takahashi J, Kamata Y, Kimura H, Niitsu T, Komatsu H, Ishikawa M, Hasegawa T, Shiina A, Hashimoto T, Kanahara N, Shiraishi T, Iyo M (2015) Decreased levels of serum oxytocin in pediatric patients with AttentionDeficit/Hyperactivity Disorder. Psychiatry Res 228(3):746–751. doi: 10.1016/j.psychres.2015.05.029 CrossRefPubMedGoogle Scholar
  108. Schuch V, Utsumi DA, Costa TV, Kulikowski LD, Muszkat M (2015) Attention deficit hyperactivity disorder in the light of the epigenetic paradigm. Front Psychiatry 6:126. doi: 10.3389/fpsyt.2015.00126 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Sidlauskaite J, Sonuga-Barke E, Roeyers H, Wiersema JR (2015) Default mode network abnormalities during state switching in attention deficit hyperactivity disorder. Psychol Med 1–10 (12 Oct 2015)Google Scholar
  110. Simões RV, Cruz-Lemini M, Bargalló N, Gratacós E, Sanz-Cortés M (2015) Brain metabolite differences in one-year-old infants born small at term and association with neurodevelopmental outcome. Am J Obstet Gynecol. 213(2):210.e1–210.e11. doi: 10.1016/j.ajog.2015.04.011 CrossRefGoogle Scholar
  111. Somandepalli K, Kelly C, Reiss PT, Zuo XN, Cameron Craddock R, Yan CG, Petkova E, Xavier Castellanos F, Milham MP, Di Martino A (2015) Short-term test-retest reliability of resting state fMRI metrics in children with and without attention-deficit/hyperactivity disorder. Dev Cogn Neurosci. pii: S1878-9293(15)00082-1. doi: 10.1016/j.dcn.2015.08.003 CrossRefGoogle Scholar
  112. Sterley TL, Howells FM, Dimatelis JJ, Russell VA (2015) Genetic predisposition and early life experience interact to determine glutamate transporter (GLT1) and solute carrier family 12 member 5 (KCC2) levels in rat hippocampus. Metab Brain Dis (14 Oct 2015)Google Scholar
  113. Sterley TL, Howells FM, Russell VA (2013) Evidence for reduced tonic levels of GABA in the hippocampus of an animal model of ADHD, the spontaneously hypertensive rat. Brain Res 1541:52–60. doi: 10.1016/j.brainres.2013.10.023 CrossRefPubMedGoogle Scholar
  114. Swanson JM, Sergeant JA, Taylor E, Sonuga-Barke EJS, Jensen PS, Cantwell DP (1998) Attention deficit hyperactivity disorder and hyperkynetic disorder. Lancet 351:329–343CrossRefGoogle Scholar
  115. Thapar A, Cooper M (2015) Attention deficit hyperactivity disorder. Lancet. pii: S0140-6736(15)00238-X. doi:  10.1016/S0140-6736(15)00238-X CrossRefGoogle Scholar
  116. Thissen AJ, Bralten J, Rommelse NN, Arias-Vasquez A, Greven CU, Heslenfeld D, Luman M, Oosterlaan J, Hoekstra PJ, Hartman C, Franke B, Buitelaar JK (2015) The role of age in association analyses of ADHD and related neurocognitive functioning: A proof of concept for dopaminergic and serotonergic genes. Am J Med Genet B Neuropsychiatr Genet. doi: 10.1002/ajmg.b.32290 CrossRefPubMedGoogle Scholar
  117. Tzanoulinou S, García-Mompó C, Riccio O, Grosse J, Zanoletti O, Dedousis P, Nacher J, Sandi C (2015) Neuroligin-2 expression in the prefrontal cortex is involved in attention deficits induced by peripubertal stress. Neuropsychopharmacology. doi: 10.1038/npp.2015.200 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Turski CA, Ikonomidou C (2012) Neuropathological sequelae of developmental exposure to antiepileptic and anesthetic drugs. Front Neurol 3:120. eCollection 2012Google Scholar
  119. van der Kolk A, Bouwmans CA, Schawo SJ, Buitelaar JK, van Agthoven M, Hakkaart-van Roijen L (2015) Association between societal costs and treatment response in children and adolescents with ADHD and their parents. A cross-sectional study in the Netherlands. Springerplus. 4:224. doi: 10.1186/s40064-015-0978-7
  120. van Mil NH, Steegers-Theunissen RP, Bouwland-Both MI, Verbiest MM, Rijlaarsdam J, Hofman A, Steegers EA, Heijmans BT, Jaddoe VW, Verhulst FC, Stolk L, Eilers PH, Uitterlinden AG, Tiemeier H (2014) DNA methylation profiles at birth and child ADHD symptoms. J Psychiatry Res 49:51–59. doi: 10.1016/j.jpsychires.2013.10.017 CrossRefGoogle Scholar
  121. van Rooij D, Hartman CA, van Donkelaar MM, Bralten J, von Rhein D, Hakobjan M, Franke B, Heslenfeld DJ, Oosterlaan J, Rommelse N, Buitelaar JK, Hoekstra PJ (2015a) Variation in serotonin neurotransmission genes affects neural activation during response inhibition in adolescents and young adults with ADHD and healthy controls. World J Biol Psychiatry 1–10 (Oct 1 2015)Google Scholar
  122. van Rooij D, Hoekstra PJ, Bralten J, Hakobjan M, Oosterlaan J, Franke B, Rommelse N, Buitelaar JK, Hartman CA (2015b) Influence of DAT1 and COMT variants on neural activation during response inhibition in adolescents with attention-deficit/hyperactivity disorder and healthy controls. Psychol Med 45(15):3159–3170. doi:  10.1017/S0033291715001130 CrossRefGoogle Scholar
  123. Volk HE, Neuman RJ, Todd RD (2005) A systematic evaluation of ADHD and comorbid psychopathology in a population-based twin sample. J Am Acad Child Adolesc Psychiatry 44(8):768–775CrossRefGoogle Scholar
  124. Webb E (2013) Poverty, maltreatment and attention deficit hyperactivity disorder. Arch Dis Child 98:397–400. doi: 10.1136/archdischild-2012-303578 CrossRefPubMedGoogle Scholar
  125. Wong KM, Cloninger CR (2010) A person-centered approach to clinical practice. Focus 8(2):199–215CrossRefGoogle Scholar
  126. Womersley JS, Kellaway LA, Stein DJ, Gerhardt GA, Russell VA (2015) Effect of cocaine on striatal dopamine clearance in a rat model of developmental stress and attention-deficit/hyperactivity disorder. Stress 1–17 (23 Sep 2015)Google Scholar
  127. Ye ZY, Li DP, Pan HL (2013) Regulation of hypothalamic presympathetic neurons and sympathetic outflow by group II metabotropic glutamate receptors in spontaneously hypertensive rats. Hypertension 62(2):255–262. doi: 10.1161/HYPERTENSIONAHA.113.01466 CrossRefPubMedPubMedCentralGoogle Scholar
  128. Zimmermann AM, Jene T, Wolf M, Görlich A, Gurniak CB, Sassoè-Pognetto M, Witke W, Friauf E, Rust MB (2015) Attention-deficit/hyperactivity disorder-like phenotype in a mouse model with impaired actin dynamics. Biol Psychiatry 78(2):95–106. doi: 10.1016/j.biopsych.2014.03.011 CrossRefPubMedGoogle Scholar
  129. Zha YP, Wang YK, Deng Y, Zhang RW, Tan X, Yuan WJ, Deng XM, Wang WZ (2013) Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neurosci Ther. 19(4):244–251. doi: 10.1111/cns.12065 CrossRefPubMedGoogle Scholar
  130. Zhang K, Chammas C, Soghomonian JJ (2015) Loss of glutamic acid decarboxylase (Gad67) in striatal neurons expressing the Drdr1a dopamine receptor prevents l-DOPA-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience. 303:586–594. doi: 10.1016/j.neuroscience.2015.07.032 CrossRefPubMedGoogle Scholar
  131. Zhou R, Bai Y, Yang R, Zhu Y, Chi X, Li L, Chen L, Sokabe M, Chen L (2011) Abnormal synaptic plasticity in basolateral amygdala may account for hyperactivity and attention-deficit in male rat exposed perinatally to low-dose bisphenol-A. Neuropharmacology. 60(5):789–798. doi: 10.1016/j.neuropharm.2011.01.031 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of GothenburgGothenburgSweden
  2. 2.Network for Empowerment and Well-BeingUniversity of GothenburgGothenburgSweden
  3. 3.Blekinge Center of CompetenceBlekinge County CouncilKarlskronaSweden
  4. 4.Centre for Ethics, Law and Mental Health (CELAM)University of GothenburgGothenburgSweden

Personalised recommendations