Advertisement

Roles of “Wanting” and “Liking” in Motivating Behavior: Gambling, Food, and Drug Addictions

  • M. J. F. RobinsonEmail author
  • A. M. Fischer
  • A. Ahuja
  • E. N. Lesser
  • H. Maniates
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 27)

Abstract

The motivation to seek out and consume rewards has evolutionarily been driven by the urge to fulfill physiological needs. However in a modern society dominated more by plenty than scarcity, we tend to think of motivation as fueled by the search for pleasure. Here, we argue that two separate but interconnected subcortical and unconscious processes direct motivation: “wanting” and “liking.” These two psychological and neuronal processes and their related brain structures typically work together, but can become dissociated, particularly in cases of addiction. In drug addiction, for example, repeated consumption of addictive drugs sensitizes the mesolimbic dopamine system, the primary component of the “wanting” system, resulting in excessive “wanting” for drugs and their cues. This sensitizing process is long-lasting and occurs independently of the “liking” system, which typically remains unchanged or may develop a blunted pleasure response to the drug. The result is excessive drug-taking despite minimal pleasure and intense cue-triggered craving that may promote relapse long after detoxification. Here, we describe the roles of “liking” and “wanting” in general motivation and review recent evidence for a dissociation of “liking” and “wanting” in drug addiction, known as the incentive sensitization theory (Robinson and Berridge 1993). We also make the case that sensitization of the “wanting” system and the resulting dissociation of “liking” and “wanting” occurs in both gambling disorder and food addiction.

Keywords

“Wanting” “Liking” Motivation Incentive salience Sensitization Addiction Gambling Obesity Overconsumption 

References

  1. American Psychiatric Association (2013) American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5®). American Psychiatric Association, ArlingtonGoogle Scholar
  2. Anselme P (2013) Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behav Brain Res 256C:1–4. doi: 10.1016/j.bbr.2013.07.039 CrossRefGoogle Scholar
  3. Anselme P, Robinson MJF, Berridge KC (2013) Reward uncertainty enhances incentive salience attribution as sign-tracking. Behav Brain Res 238:53–61. doi: 10.1016/j.bbr.2012.10.006 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Avena NM, Hoebel BG (2003a) A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 122:17–20PubMedCrossRefGoogle Scholar
  5. Avena NM, Hoebel BG (2003b) Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacol Biochem Behav 74:635–639PubMedCrossRefGoogle Scholar
  6. Avena NM, Rada P, Hoebel BG (2008) Evidence for sugar addiction: behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci Biobehav Rev 32:20–39. doi: 10.1016/j.neubiorev.2007.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balfour DJK, Munafò MR (2015) The role of mesoaccumbens dopamine in nicotine dependence. 24:1–172. doi: 10.1007/978-3-319-13482-6_3 Google Scholar
  8. Balodis IM, Kober H, Worhunsky PD et al (2012) Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biol Psychiatry 71:749–757. doi: 10.1016/j.biopsych.2012.01.006 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barrett SP, Pihl RO, Benkelfat C et al (2008) The role of dopamine in alcohol self-administration in humans: individual differences. Europ Neuropsychopharmacol 18:439–447. doi: 10.1016/j.euroneuro.2008.01.008 CrossRefGoogle Scholar
  10. Bechara A, Martin GM, Pridgar A, van der Kooy D (1993) The parabrachial nucleus: a brain stem substrate critical for mediating the aversive motivational effects of morphine. Behav Neurosci 107:147–160PubMedCrossRefGoogle Scholar
  11. Benowitz NL (1996) Pharmacology of nicotine: addiction and therapeutics. Annu Rev Pharmacol Toxicol 36:597–613. doi: 10.1146/annurev.pa.36.040196.003121 PubMedCrossRefGoogle Scholar
  12. Berger SP, Hall S, Mickalian JD et al (1996) Haloperidol antagonism of cue-elicited cocaine craving. Lancet 347:504–508PubMedCrossRefGoogle Scholar
  13. Bernard LC, Mills M, Swenson L, Walsh RP (2005) An Evolutionary Theory of Human Motivation. Genet Soc Gen Psychol Monogr 131:129–184. doi: 10.3200/MONO.131.2.129-184 PubMedCrossRefGoogle Scholar
  14. Berridge KC (2003) Pleasures of the brain. Brain CognitGoogle Scholar
  15. Berridge KC, Ho C-Y, Richard JM, DiFeliceantonio AG (2010) The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res 1350:43–64. doi: 10.1016/j.brainres.2010.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Berridge KC, Kringelbach ML (2008) Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 199:457–480. doi: 10.1007/s00213-008-1099-6 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26:507–513PubMedCrossRefGoogle Scholar
  18. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369PubMedCrossRefGoogle Scholar
  19. Berridge KC, Robinson TE (2011) Drug Addiction as Incentive Sensitization. In: Poland J, Graham G (eds) Addict & Responsibility. MIT Press, Cambridge, pp 21–54Google Scholar
  20. Berridge KC, Robinson TE, Aldridge JW (2009) Dissecting components of reward: ‘liking’, “wanting”, and learning. Curr Opin Pharmacol 9:65–73. doi: 10.1016/j.coph.2008.12.014 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Berridge KC, Valenstein ES (1991) What psychological process mediates feeding evoked by electrical stimulation of the lateral hypothalamus? Behav Neurosci 105:3–14PubMedCrossRefGoogle Scholar
  22. Bindra D (1978) How adaptive behavior is produced: a perceptual- motivational alternative to response-reinforcement. Behav Brain Sci 1:41–91CrossRefGoogle Scholar
  23. Boakes RA, Poli M, Lockwood MJ, Goodall G (1978) A study of misbehavior: token reinforcement in the rat. J Exp Anal Behav 29:115–134PubMedPubMedCentralCrossRefGoogle Scholar
  24. Boileau I, Dagher A, Leyton M et al (2006) Modeling sensitization to stimulants in humans: an [11C]raclopride/positron emission tomography study in healthy men. Arch Gen Psychiatry 63:1386–1395. doi: 10.1001/archpsyc.63.12.1386 PubMedCrossRefGoogle Scholar
  25. Boileau I, Payer D, Chugani B, et al (2013) In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [11C]-(+)-PHNO. Mol Psychiatry 19:1305–1313. doi: 10.1038/mp.2013.163
  26. Brauer LH, De Wit H (1997) High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacol Biochem Behav 56:265–272PubMedCrossRefGoogle Scholar
  27. Brevers D, Bechara A, Hermoye L et al (2014a) Comfort for uncertainty in pathological gamblers: a fMRI study. Behav Brain Res 278C:262–270. doi: 10.1016/j.bbr.2014.09.026 Google Scholar
  28. Brevers D, Koritzky G, Bechara A, Noël X (2014b) Cognitive processes underlying impaired decision-making under uncertainty in gambling disorder. Addict Behav 39:1533–1536. doi: 10.1016/j.addbeh.2014.06.004 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brown PL, Jenkins HM (1968) Auto-shaping of the pigeon’s key-peck. J Exp Anal Behav 11:1–8. doi: 10.1901/jeab.1968.11-1 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Burger KS, Stice E (2014) Greater striatopallidal adaptive coding during cue–reward learning and food reward habituation predict future weight gain. Neuroimage 99:122–128. doi: 10.1016/j.neuroimage.2014.05.066 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cabanac M (1971) Physiological role of pleasure. Science 173:1103–1107PubMedCrossRefGoogle Scholar
  32. Cadet JL, Bisagno V, Milroy CM (2014) Neuropathology of substance use disorders. Acta Neuropathol 127:91–107. doi: 10.1007/s00401-013-1221-7 PubMedCrossRefGoogle Scholar
  33. Caggiula AR, Donny EC, Palmatier MI et al (2009) The role of nicotine in smoking: a dual-reinforcement model. Nebr Symp Motiv 55:91–109PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cannon CM, Palmiter RD (2003) Reward without dopamine. J Neurosci 23:10827–10831PubMedGoogle Scholar
  35. Cardinal RN, Howes NJ (2005) Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci 6:37. doi: 10.1186/1471-2202-6-37 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352PubMedCrossRefGoogle Scholar
  37. Casey KF, Benkelfat C, Young SN, Leyton M (2006) Lack of effect of acute dopamine precursor depletion in nicotine-dependent smokers. Europ Neuropsychopharmacol 16:512–520. doi: 10.1016/j.euroneuro.2006.02.002 CrossRefGoogle Scholar
  38. Castellanos EH, Charboneau E, Dietrich MS et al (2009) Obese adults have visual attention bias for food cue images: evidence for altered reward system function. Int J Obes (Lond) 33:1063–1073. doi: 10.1038/ijo.2009.138 CrossRefGoogle Scholar
  39. Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacol 20:10–28. doi: 10.1016/S0893-133X(98)00050-5 CrossRefGoogle Scholar
  40. Castro DC, Berridge KC (2014) Opioid Hedonic Hotspot in Nucleus Accumbens Shell: Mu, Delta, and Kappa Maps for Enhancement of Sweetness “Liking” and “Wanting”. J Neurosci 34:4239–4250. doi: 10.1523/JNEUROSCI.4458-13.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Castro DC, Cole SL, Berridge KC (2015) Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 9:1–17. doi: 10.3389/fnsys.2015.00090 CrossRefGoogle Scholar
  42. Childress AR, Ehrman RN, Wang Z et al (2008) Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3:e1506. doi: 10.1371/journal.pone.0001506 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Clark L, Lawrence AJ, Astley-Jones F, Gray N (2009) Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron 61:481–490. doi: 10.1016/j.neuron.2008.12.031 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cochin J, Kornetsky C (1964) Development and loss of tolerance to morphine in the rat after single and multiple injections. J Pharmacol Exp Ther 145:1–10PubMedGoogle Scholar
  45. Costikyan G (2013) Uncertainty in Games. MIT Press, CambridgeGoogle Scholar
  46. Cota D, Barrera JG, Seeley RJ (2006) Leptin in energy balance and reward: two faces of the same coin? Neuron 51:678–680. doi: 10.1016/j.neuron.2006.09.009 PubMedCrossRefGoogle Scholar
  47. Cruz FC, Marin MT, Leão RM, Planeta CS (2011) Stress-induced cross-sensitization to amphetamine is related to changes in the dopaminergic system. J Neural Transm 119:415–424. doi: 10.1007/s00702-011-0720-8 PubMedCrossRefGoogle Scholar
  48. Cunningham ST, Kelley AE (1992) Evidence for opiate-dopamine cross-sensitization in nucleus accumbens: studies of conditioned reward. Brain Res Bull 29:675–680PubMedCrossRefGoogle Scholar
  49. Dai X, Brendl CM, Ariely D (2010) Wanting, liking, and preference construction. Emotion 10:324–334. doi: 10.1037/a0017987 PubMedCrossRefGoogle Scholar
  50. Davis C, Carter JC (2009) Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite 53:1–8. doi: 10.1016/j.appet.2009.05.018 PubMedCrossRefGoogle Scholar
  51. Davis CA, Levitan RD, Reid C et al (2009) Dopamine for “wanting” and opioids for “liking”: a comparison of obese adults with and without binge eating. Obesity 17:1220–1225. doi: 10.1038/oby.2009.52 PubMedGoogle Scholar
  52. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278PubMedPubMedCentralCrossRefGoogle Scholar
  53. DiFeliceantonio AG, Berridge KC (2012) Which cue to “want?” Opioid stimulation of central amygdala makes goal-trackers show stronger goal-tracking, just as sign-trackers show stronger sign-tracking. Behav Brain Res 230:399–408. doi: 10.1016/j.bbr.2012.02.032 PubMedPubMedCentralCrossRefGoogle Scholar
  54. DiFeliceantonio AG, Mabrouk OS, Kennedy RT, Berridge KC (2012) Enkephalin surges in dorsal neostriatum as a signal to eat. Curr Biol 22:1918–1924. doi: 10.1016/j.cub.2012.08.014 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Dow Schüll N (2012) Addiction by Design: Machine Gambling in Las Vegas, 1st edn. Princeton University Press, PrincetonGoogle Scholar
  56. Elliott SS, Keim NL, Stern JS et al (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922PubMedGoogle Scholar
  57. Evans AH, Pavese N, Lawrence AD et al (2006) Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Ann Neurol 59:852–858. doi: 10.1002/ana.20822 PubMedCrossRefGoogle Scholar
  58. Everitt BJ, Belin D, Economidou D et al (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc, Biol Sci 363:3125–3135CrossRefGoogle Scholar
  59. Farooqi IS, Bullmore ET, Keogh J et al (2007) Leptin regulates striatal regions and human eating behavior. Science 317:1355. doi: 10.1126/science.1144599 PubMedCrossRefGoogle Scholar
  60. Farooqi IS, O’Rahilly S (2009) Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr 89:980S–984S. doi: 10.3945/ajcn.2008.26788C PubMedCrossRefGoogle Scholar
  61. Ferrario CR, Gorny G, Crombag HS et al (2005) Neural and behavioral plasticity associated with the transition from controlled to escalated cocaine use. Biol Psychiatry 58:751–759. doi: 10.1016/j.biopsych.2005.04.046 PubMedCrossRefGoogle Scholar
  62. Ferrario CR, Robinson TE (2007) Amphetamine pretreatment accelerates the subsequent escalation of cocaine self-administration behavior. Eur Neuropsychopharmacol 17:352–357. doi: 10.1016/j.euroneuro.2006.08.005 PubMedCrossRefGoogle Scholar
  63. Fiorillo CD (2011) Transient activation of midbrain dopamine neurons by reward risk. Neuroscience 197:162–171. doi: 10.1016/j.neuroscience.2011.09.037 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902. doi: 10.1126/science.1077349 PubMedCrossRefGoogle Scholar
  65. Fischman MW, Foltin RW (1992) Self-administration of cocaine by humans: a laboratory perspective. Ciba Found Symp 166:165–180PubMedGoogle Scholar
  66. Garcia J, Lasiter PS, Bermudez-Rattoni F, Deems DA (1985) A general theory of aversion learning. Ann N Y Acad Sci 443:8–21PubMedCrossRefGoogle Scholar
  67. Garcia-Keller C, Martinez SA, Esparza MA et al (2013) Cross-sensitization between cocaine and acute restraint stress is associated with sensitized dopamine but not glutamate release in the nucleus accumbens. Eur J Neurosci 37:982–995. doi: 10.1111/ejn.12121 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Gearhardt A, Roberts M, Ashe M (2013) If sugar is addictive…what does it mean for the law? J Law Med Ethics 41(Suppl 1):46–49. doi: 10.1111/jlme.12038 PubMedCrossRefGoogle Scholar
  69. Gearhardt AN, Davis C, Kuschner R, Brownell KD (2011) The addiction potential of hyperpalatable foods. CDAR 4:140–145. doi: 10.2174/1874473711104030140 CrossRefGoogle Scholar
  70. Gekht AB, Polunina AG, Briun EA, Gusev EI (2003) Neurological disturbances in heroin addicts in acute withdrawal and early post-abstinence periods. Zh Nevrol Psikhiatr Im S S Korsakova 103:9–15PubMedGoogle Scholar
  71. Genn RF, Ahn S, Phillips AG (2004) Attenuated dopamine efflux in the rat nucleus accumbens during successive negative contrast. Behav Neurosci 118:869–873. doi: 10.1037/0735-7044.118.4.869 PubMedCrossRefGoogle Scholar
  72. Goldstein RZ, Craig ADB, Bechara A et al (2009) The neurocircuitry of impaired insight in drug addiction. Trends Cognit Sci 13:372–380. doi: 10.1016/j.tics.2009.06.004 CrossRefGoogle Scholar
  73. Graham K, Vidal-Zeballos D (1998) Analyses of use of tranquilizers and sleeping pills across five surveys of the same population (1985–1991): the relationship with gender, age and use of other substances. Soc Sci Med 46:381–395PubMedCrossRefGoogle Scholar
  74. Grill HJ, Norgren R (1978) The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrate rats. Brain Res 143:281–297PubMedCrossRefGoogle Scholar
  75. Harris JL, Bargh JA, Brownell KD (2009) Priming effects of television food advertising on eating behavior. Health Psychol 28:404–413. doi: 10.1037/a0014399 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hart C, Ward A, Haney M et al (2001) Methamphetamine self-administration by humans. Psychopharmacology 157:75–81. doi: 10.1007/s002130100738 PubMedCrossRefGoogle Scholar
  77. Hearst ES, Jenkins HM (1974) Sign tracking: the stimulus-reinforcer relation and directed action. Psychonmic Soc, AustinGoogle Scholar
  78. Henry DJ, White FJ (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp 258:882–890Google Scholar
  79. Hernandez L, Hoebel BG (1988) Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiol Behav 44:599–606PubMedCrossRefGoogle Scholar
  80. Hiroi N, Brown JR, Haile CN et al (1997) FosB mutant mice: loss of chronic cocaine induction of fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects. Proc Natl Acad Sci USA 94:10397–10402. doi: 10.2307/43218?ref=no-x-route:2c8ba5cf31f36df291c5a2097b853938 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hobbs M, Remington B, Glautier S (2005) Dissociation of wanting and liking for alcohol in humans: a test of the incentive-sensitisation theory. Psychopharmacology 178:493–499. doi: 10.1007/s00213-004-2026-0 PubMedCrossRefGoogle Scholar
  82. Hollis KL (1984) The biological function of Pavlovian conditioning: the best defense is a good offense. J Exp Psychol Anim Behav Process 10:413–425PubMedCrossRefGoogle Scholar
  83. Holmes NM, Marchand AR, Coutureau E (2010) Pavlovian to instrumental transfer: a neurobehavioural perspective. Neurosci Biobehav Rev 34:1277–1295. doi: 10.1016/j.neubiorev.2010.03.007 PubMedCrossRefGoogle Scholar
  84. Horger BA, Giles MK, Schenk S (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psychopharmacology 107:271–276PubMedCrossRefGoogle Scholar
  85. Hu X-T, Koeltzow TE, Cooper DC et al (2002) Repeated ventral tegmental area amphetamine administration alters dopamine D1 receptor signaling in the nucleus accumbens. Synapse 45:159–170. doi: 10.1002/syn.10095 PubMedCrossRefGoogle Scholar
  86. Hunt WA, Barnett LW, Branch LG (1971) Relapse rates in addiction programs. J Clin Psychol 27:455–456PubMedCrossRefGoogle Scholar
  87. Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598. doi: 10.1146/annurev.neuro.29.051605.113009 PubMedCrossRefGoogle Scholar
  88. Isomura T, Suzuki J, Murai T (2014) Paradise Lost: The relationships between neurological and psychological changes in nicotine-dependent patients. Addict Res Theor 22:158–165. doi: 10.3109/16066359.2013.793312 CrossRefGoogle Scholar
  89. James W (1884) What is an Emotion? Mind 9:188–205. doi: 10.2307/2246769?ref=no-x-route:661c887760fcf4a1f23afb46f8f75b0a CrossRefGoogle Scholar
  90. Jiang T, Soussignan R, Schaal B, Royet J-P (2014) Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI. Soc Cogn Affect Neurosci. doi: 10.1093/scan/nsu086 Google Scholar
  91. Johnson RJ, Segal MS, Sautin Y et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899–906PubMedGoogle Scholar
  92. Joutsa J, Johansson J, Niemelä S et al (2012) Mesolimbic dopamine release is linked to symptom severity in pathological gambling. Neuroimage 60:1992–1999. doi: 10.1016/j.neuroimage.2012.02.006 PubMedCrossRefGoogle Scholar
  93. Kalivas PW, Duffy P (1990) Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse 5:48–58. doi: 10.1002/syn.890050104 PubMedCrossRefGoogle Scholar
  94. Kalivas PW, Duffy P (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J Neurosci off J Soc Neurosci 13:266–275Google Scholar
  95. Kelly B, Hattersley L, King L, Flood V (2008) Persuasive food marketing to children: use of cartoons and competitions in Australian commercial television advertisements. Health Promot Int 23:337–344. doi: 10.1093/heapro/dan023 PubMedCrossRefGoogle Scholar
  96. Khantzian EJ (1985) The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am J Psychiatry 142:1259–1264PubMedCrossRefGoogle Scholar
  97. Khavari KA, Peters TC, Baity PL, Wilson AS (1975) Voluntary morphine ingestion, morphine dependence, and recovery from withdrawal signs. Pharmacol Biochem Behav 3:1093–1096PubMedCrossRefGoogle Scholar
  98. Kirkham T (2008) Endocannabinoids and the neurochemistry of gluttony. J Neuroendocrinol 20:1099–1100. doi: 10.1111/j.1365-2826.2008.01762.x PubMedCrossRefGoogle Scholar
  99. Kirkham TC (2005) Endocannabinoids in the regulation of appetite and body weight. Behav Pharmacol 16:297–313PubMedCrossRefGoogle Scholar
  100. Kleber HD (2007) Pharmacologic treatments for opioid dependence: detoxification and maintenance options. Dialogues Clin Neurosci 9:455–470PubMedPubMedCentralGoogle Scholar
  101. Koob GF (1996) Drug addiction: the yin and yang of hedonic homeostasis. Neuron 16:893–896PubMedCrossRefGoogle Scholar
  102. Koob GF, Stinus L, le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav 13:135–140Google Scholar
  103. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238. doi: 10.1038/npp.2009.110 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Lamb RJ, Preston KL, Schindler CW et al (1991) The reinforcing and subjective effects of morphine in post-addicts: a dose-response study. J Pharmacol Exp Ther 259:1165–1173PubMedGoogle Scholar
  105. Lemmens SGT, Schoffelen PFM, Wouters L et al (2009) Eating what you like induces a stronger decrease of “wanting” to eat. Physiol Behav 98:318–325. doi: 10.1016/j.physbeh.2009.06.008 PubMedCrossRefGoogle Scholar
  106. Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2:e698. doi: 10.1371/journal.pone.0000698 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Leyton M (2010) The neurobiology of desire: dopamine and the regulation of mood and motivational states in humans. In: Kringelbach ML, Berridge KC (eds) Pleasures of the Brain. Oxford University Press, New York, pp 222–243Google Scholar
  108. Leyton M (2007) Conditioned and sensitized responses to stimulant drugs in humans. Prog Neuropsychopharmacol Biol Psychiatry 31:1601–1613. doi: 10.1016/j.pnpbp.2007.08.027 PubMedCrossRefGoogle Scholar
  109. Leyton M (2014) What’s deficient in reward deficiency? J Psychiatry Neurosci 39:291–293PubMedPubMedCentralCrossRefGoogle Scholar
  110. Leyton M, Boileau I, Benkelfat C et al (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27:1027–1035. doi: 10.1016/S0893-133X(02)00366-4 PubMedCrossRefGoogle Scholar
  111. Leyton M, Casey KF, Delaney JS et al (2005) Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behav Neurosci 119:1619–1627. doi: 10.1037/0735-7044.119.6.1619 PubMedCrossRefGoogle Scholar
  112. Leyton M, Vezina P (2012) On cue: striatal ups and downs in addictions. Biol Psychiatry 72:e21–e22. doi: 10.1016/j.biopsych.2012.04.036 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Leyton M, Vezina P (2014) Dopamine ups and downs in vulnerability to addictions: a neurodevelopmental model. Trends Pharmacol Sci 35:268–276. doi: 10.1016/j.tips.2014.04.002 PubMedPubMedCentralCrossRefGoogle Scholar
  114. Leyton M, Young SN, Blier P et al (2000) Acute tyrosine depletion and alcohol ingestion in healthy women. Alcohol Clin Exp Res 24:459–464PubMedCrossRefGoogle Scholar
  115. Linnet J, Møller A, Peterson E et al (2011) Dopamine release in ventral striatum during Iowa Gambling Task performance is associated with increased excitement levels in pathological gambling. Addiction 106:383–390. doi: 10.1111/j.1360-0443.2010.03126.x PubMedCrossRefGoogle Scholar
  116. Linnet J, Peterson E, Doudet DJ et al (2010) Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatr Scand 122:326–333. doi: 10.1111/j.1600-0447.2010.01591.x PubMedCrossRefGoogle Scholar
  117. Litt A, Khan U, Shiv B (2010) Lusting while loathing: parallel counterdriving of wanting and liking. Psychol Sci 21:118–125. doi: 10.1177/0956797609355633 PubMedCrossRefGoogle Scholar
  118. Mahler SV, Berridge KC (2009) Which cue to “want?” Central amygdala opioid activation enhances and focuses incentive salience on a prepotent reward cue. J Neurosci 29:6500–6513. doi: 10.1523/JNEUROSCI.3875-08.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mendelson JH, Sholar M, Mello NK et al (1998) Cocaine tolerance: behavioral, cardiovascular, and neuroendocrine function in men. Neuropsychopharmacology 18:263–271. doi: 10.1016/S0893-133X(97)00146-2 PubMedCrossRefGoogle Scholar
  120. Mick I, Myers J, Stokes PRA, et al. (2014) Endogenous opioid release in pathological gamblers after an oral amphetamine challenge: a [11C] carfentanil pet study. Eur Neuropsychopharmacol 1–4Google Scholar
  121. Miedl SF, Peters J, Büchel C (2012) Altered neural reward representations in pathological gamblers revealed by delay and probability discounting. Arch Gen Psychiatry 69:177–186. doi: 10.1001/archgenpsychiatry.2011.1552 PubMedCrossRefGoogle Scholar
  122. Munafò MR, Mannie ZN, Cowen PJ et al (2007) Effects of acute tyrosine depletion on subjective craving and selective processing of smoking-related cues in abstinent cigarette smokers. J Psychopharmacol (Oxford) 21:805–814. doi: 10.1177/0269881107077216 CrossRefGoogle Scholar
  123. Murdaugh D, Cook E (2012) fMRI reactivity to high-calorie food pictures predicts short- and long-term outcome in a weight-loss program. NeuroimageGoogle Scholar
  124. Nijs IMT, Muris P, Euser AS, Franken IHA (2010) Differences in attention to food and food intake between overweight/obese and normal-weight females under conditions of hunger and satiety. Appetite 54:243–254. doi: 10.1016/j.appet.2009.11.004 PubMedCrossRefGoogle Scholar
  125. Nilsson J, Kristiansen TS, Fosseidengen JE et al (2008) Sign- and goal-tracking in Atlantic cod (Gadus morhua). Animal Behavior 11:651–659. doi: 10.1007/s10071-008-0155-2 Google Scholar
  126. Ostafin BD, Marlatt GA, Troop-Gordon W (2010) Testing the incentive-sensitization theory with at-risk drinkers: wanting, liking, and alcohol consumption. Psychol Addict Behav 24:157–162. doi: 10.1037/a0017897 PubMedCrossRefGoogle Scholar
  127. Pandit R, de Jong JW, Vanderschuren LJMJ, Adan RAH (2011) Neurobiology of overeating and obesity: the role of melanocortins and beyond. Eur J Pharmacol 660:28–42. doi: 10.1016/j.ejphar.2011.01.034 PubMedCrossRefGoogle Scholar
  128. Paulson PE, Camp DM, Robinson TE (1991) Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103:480–492. doi: 10.1007/BF02244248 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6 edn. Elsevier, AmsterdamGoogle Scholar
  130. Peciña S (2005) Hedonic hot spot in nucleus accumbens shell: where do μ-opioids cause increased hedonic impact of sweetness? J Neurosci 25:11777–11786. doi: 10.1523/JNEUROSCI.2329-05.2005 PubMedCrossRefGoogle Scholar
  131. Peciña S, Berridge KC (2013) Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur J Neurosci. doi: 10.1111/ejn.12174 PubMedPubMedCentralGoogle Scholar
  132. Peciña S, Berridge KC, Parker LA (1997) Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol Biochem Behav 58:801–811PubMedCrossRefGoogle Scholar
  133. Peciña S, Cagniard B, Berridge KC et al (2003) Hyperdopaminergic mutant mice have higher “wanting” but not ‘liking’ for sweet rewards. J Neurosci 23:9395–9402PubMedGoogle Scholar
  134. Peciña S, Schulkin J, Berridge KC (2006) Nucleus accumbens corticotropin-releasing factor increases cue-triggered motivation for sucrose reward: paradoxical positive incentive effects in stress? BMC Biol 4:8. doi: 10.1186/1741-7007-4-8 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Pfaus JG, Damsma G, Nomikos GG et al (1990) Sexual behavior enhances central dopamine transmission in the male rat. Brain Res 530:345–348PubMedCrossRefGoogle Scholar
  136. Piazza PV, Deminiere JM, le Moal M, Simon H (1990) Stress- and pharmacologically-induced behavioral sensitization increases vulnerability to acquisition of amphetamine self-administration. Brain Res 514:22–26PubMedCrossRefGoogle Scholar
  137. Potenza MN (2008) The neurobiology of pathological gambling and drug addiction: an overview and new findings. Philos Trans Biol Sci 363:3181–3189CrossRefGoogle Scholar
  138. Purdy JE, Roberts AC, Garcia CA (1999) Sign tracking in cuttlefish (Sepia officinalis). J Comp Psychol 113:443–449PubMedCrossRefGoogle Scholar
  139. Reilly S, Schachtman TR (2009) Conditioned taste aversion: behavioral and neural processes. Oxford University Press, New YorkGoogle Scholar
  140. Robbins TW, Watson BA, Gaskin M, Ennis C (1983) Contrasting interactions of pipradrol, d-amphetamine, cocaine, cocaine analogues, apomorphine and other drugs with conditioned reinforcement. Psychopharmacology 80:113–119PubMedCrossRefGoogle Scholar
  141. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18:247–291PubMedCrossRefGoogle Scholar
  142. Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53. doi: 10.1146/annurev.psych.54.101601.145237 PubMedCrossRefGoogle Scholar
  143. Robinson TE, Berridge KC (2008) The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc, Biol Sci 363:3137–3146. doi: 10.1098/rstb.2008.0093 CrossRefGoogle Scholar
  144. Robinson TE, Jurson PA, Bennett JA, Bentgen KM (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res 462:211–222PubMedCrossRefGoogle Scholar
  145. Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 119:5–15. doi: 10.1037/0735-7044.119.1.5 PubMedCrossRefGoogle Scholar
  146. Robinson MJF, Robinson TE, Berridge KC (2013) Incentive salience and the transition to addiction. Elsevier, Amsterdam, pp 391–399Google Scholar
  147. Robinson MJF, Anselme P, Fischer AM, Berridge KC (2014a) Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behav Brain Res 266:119–130. doi: 10.1016/j.bbr.2014.03.004 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Robinson MJF, Warlow SM, Berridge KC (2014b) Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. J Neurosci 34:16567–16580. doi: 10.1523/JNEUROSCI.2013-14.2014 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Robinson MJF, Anselme P, Suchomel K, Berridge KC (2015a) Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behav Neurosci. doi: 10.1037/bne0000064 Google Scholar
  150. Robinson MJF, Burghardt PR, Patterson CM et al (2015b) Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, epub ahead of print:1–11. doi: 10.1038/npp.2015.71
  151. Robinson TE, Yager LM, Cogan ES, Saunders BT (2014c) On the motivational properties of reward cues: individual differences. Neuropharmacology 76 Pt B:450–459. doi: 10.1016/j.neuropharm.2013.05.040
  152. Rose JE, Behm FM, Westman EC, Johnson M (2000) Dissociating nicotine and nonnicotine components of cigarette smoking. Pharmacol Biochem Behav 67:71–81PubMedCrossRefGoogle Scholar
  153. Rosse RB, Fay-McCarthy M, Collins JP et al (1993) Transient compulsive foraging behavior associated with crack cocaine use. Am J Psychiatry 150:155–156PubMedCrossRefGoogle Scholar
  154. Rozin P (2000) Disgust. In: Lewis M, Haviland-Jones JM (eds) Handbook of emotions. Guilford, New York, pp 637–653Google Scholar
  155. Rømer Thomsen K, Fjorback LO, Møller A, Lou HC (2014) Applying incentive sensitization models to behavioral addiction. Neurosci Biobehav Rev 45C:343–349. doi: 10.1016/j.neubiorev.2014.07.009 CrossRefGoogle Scholar
  156. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA (2015) Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metab, Clin Exp 64:35–46. doi: 10.1016/j.metabol.2014.10.015 CrossRefGoogle Scholar
  157. Schulte EM, Avena NM, Gearhardt AN (2015) Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 10:e0117959. doi: 10.1371/journal.pone.0117959 PubMedPubMedCentralCrossRefGoogle Scholar
  158. Shin AC, Townsend RL, Patterson LM, Berthoud H-R (2011) “Liking” and “wanting” of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition. AJP: Regulatory. Integr Comp Physiol 301:R1267–R1280. doi: 10.1152/ajpregu.00314.2011 CrossRefGoogle Scholar
  159. Shuster L, Webster GW, Yu G (1975) Increased running response to morphine in morphine-pretreated mice. J Pharmacol Exp Ther 192:64–67PubMedGoogle Scholar
  160. Shuster L, Yu G, Bates A (1977) Sensitization to cocaine stimulation in mice. Psychopharmacology 52:185–190PubMedCrossRefGoogle Scholar
  161. Singer BF, Scott-Railton J, Vezina P (2012) Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behav Brain Res 226:340–344. doi: 10.1016/j.bbr.2011.09.003 PubMedPubMedCentralCrossRefGoogle Scholar
  162. Small DM, Zatorre RJ, Dagher A et al (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124:1720–1733PubMedCrossRefGoogle Scholar
  163. Smith KS, Berridge KC (2007) Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J Neurosci 27:1594–1605. doi: 10.1523/JNEUROSCI.4205-06.2007 PubMedCrossRefGoogle Scholar
  164. Smith KS, Mahler SV, Peciña S, Berridge KC (2007) Hedonic hotspots: Generating sensory pleasure in the brain. In: Kringelbach ML, Berridge KC (eds) Pleasures of the brain. Oxford University Press, Oxford, pp 1–35Google Scholar
  165. Steiner JE, Glaser D, Hawilo ME, Berridge KC (2001) Comparative expression of hedonic impact: affective reactions to taste by human infants and other primates. Neurosci Biobehav Rev 25:53–74PubMedCrossRefGoogle Scholar
  166. Stinus L, Robert C, Karasinski P, Limoge A (1998) Continuous quantitative monitoring of spontaneous opiate withdrawal: locomotor activity and sleep disorders. Pharmacol Biochem Behav 59:83–89PubMedCrossRefGoogle Scholar
  167. Stolerman IP (1985) Motivational effects of opioids: evidence on the role of endorphins in mediating reward or aversion. Pharmacol Biochem Behav 23:877–881PubMedCrossRefGoogle Scholar
  168. Swanson LW (2000) Cerebral hemisphere regulation of motivated behavior. Brain Res 886:113–164PubMedCrossRefGoogle Scholar
  169. Swanson LW (2005) Anatomy of the soul as reflected in the cerebral hemispheres: neural circuits underlying voluntary control of basic motivated behaviors. J Comp Neurol 493:122–131. doi: 10.1002/cne.20733 PubMedCrossRefGoogle Scholar
  170. Tang DW, Fellows LK, Small DM, Dagher A (2012) Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiol Behav 106:317–324. doi: 10.1016/j.physbeh.2012.03.009 PubMedCrossRefGoogle Scholar
  171. Tindell AJ, Berridge KC, Zhang J et al (2005) Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 22:2617–2634. doi: 10.1111/j.1460-9568.2005.04411.x PubMedCrossRefGoogle Scholar
  172. van Holst RJ, Veltman DJ, Büchel C et al (2012) Distorted expectancy coding in problem gambling: is the addictive in the anticipation? Biol Psychiatry 71:741–748. doi: 10.1016/j.biopsych.2011.12.030 PubMedCrossRefGoogle Scholar
  173. Vanderschuren LJ, De Vries TJ, Wardeh G et al (2001) A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats. Eur J Neurosci 14:1533–1538PubMedCrossRefGoogle Scholar
  174. Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151:99–120PubMedCrossRefGoogle Scholar
  175. Vezina P (1993) Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res 605:332–337PubMedCrossRefGoogle Scholar
  176. Vezina P (2004) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci Biobehav Rev 27:827–839. doi: 10.1016/j.neubiorev.2003.11.001 PubMedCrossRefGoogle Scholar
  177. Vezina P, Leyton M (2009) Conditioned cues and the expression of stimulant sensitization in animals and humans. Neuropharmacology 56(Suppl 1):160–168. doi: 10.1016/j.neuropharm.2008.06.070 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Volkow ND, Wang G-J, Fowler JS et al (2002) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44:175–180. doi: 10.1002/syn.10075 PubMedCrossRefGoogle Scholar
  179. Volkow ND, Wang GJ, Fowler JS et al (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833. doi: 10.1038/386830a0 PubMedCrossRefGoogle Scholar
  180. Wachtel SR, Ortengren A, de Wit H (2002) The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend 68:23–33PubMedCrossRefGoogle Scholar
  181. West R (2009) The multiple facets of cigarette addiction and what they mean for encouraging and helping smokers to stop. COPD 6:277–283. doi: 10.1080/15412550903049181 PubMedCrossRefGoogle Scholar
  182. Wikler A (1973) Dynamics of drug dependence: Implications of a conditioning theory for research and treatment. Arch Gen Psychiatry 28:611–616PubMedCrossRefGoogle Scholar
  183. Wilkinson CJ (1998) The abuse potential of zolpidem administered alone and with alcohol. Pharmacol Biochem Behav 60:193–202PubMedCrossRefGoogle Scholar
  184. Winkielman P, Berridge KC (2003) Irrational wanting and subrational liking: how rudimentary motivational and affective processes shape preferences and choices. Polit Psychol 24:657–680. doi: 10.2307/3792260?ref=no-x-route:d779aaa6e949d52d4e89ed4f70b1996e CrossRefGoogle Scholar
  185. Winkielman P, Berridge KC, Wilbarger JL (2005) Unconscious affective reactions to masked happy versus angry faces influence consumption behavior and judgments of value. Pers Soc Psychol Bull 31:121–135. doi: 10.1177/0146167204271309 PubMedCrossRefGoogle Scholar
  186. Wise RA (1982) Neuroleptics and operant behavior: The anhedonia hypothesis. Behav Brain Sci 5:39–53CrossRefGoogle Scholar
  187. Woolverton WL, Cervo L, Johanson CE (1984) Repeated methamphetamine administration on methamphetamine self-administration in rhesus monkeys. Pharmacol Biochem Behav 21:737–741. doi: 10.1016/S0091-3057(84)80012-X PubMedCrossRefGoogle Scholar
  188. Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:8122–8130PubMedGoogle Scholar
  189. Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840PubMedGoogle Scholar
  190. Yokum S, Gearhardt AN, Harris JL, et al. (2014) Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity doi: 10.1002/oby.20882
  191. Yokum S, Ng J, Stice E (2011) Attentional bias to food images associated with elevated weight and future weight gain: an fMRI study. Obesity 19:1775–1783. doi: 10.1038/oby.2011.168 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Zack M, Featherstone RE, Mathewson S, Fletcher PJ (2014) Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. Front Behav Neurosci 8:36. doi: 10.3389/fnbeh.2014.00036 PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zhang J, Berridge KC, Tindell AJ et al (2009) A neural computational model of incentive salience. PLoS Comput Biol 5:e1000437. doi: 10.1371/journal.pcbi.1000437 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • M. J. F. Robinson
    • 1
    Email author
  • A. M. Fischer
    • 1
  • A. Ahuja
    • 1
  • E. N. Lesser
    • 1
  • H. Maniates
    • 1
  1. 1.Department of PsychologyWesleyan UniversityMiddletownUSA

Personalised recommendations