Advertisement

Mesolimbic Dopamine and the Regulation of Motivated Behavior

  • John D. Salamone
  • Marta Pardo
  • Samantha E. Yohn
  • Laura López-Cruz
  • Noemí SanMiguel
  • Mercè Correa
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 27)

Abstract

It has been known for some time that nucleus accumbens dopamine (DA) is involved in aspects of motivation , but theoretical approaches to understanding the functions of DA have continued to evolve based upon emerging data and novel concepts. Although it has become traditional to label DA neurons as “reward” neurons, the actual findings are more complicated than that, because they indicate that DA neurons can respond to a variety of motivationally significant stimuli. Moreover, it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. Studies that involve nucleus accumbens DA antagonism or depletion indicate that accumbens DA does not mediate primary food motivation or appetite. Nevertheless, DA is involved in appetitive and aversive motivational processes including behavioral activation , exertion of effort, sustained task engagement, and Pavlovian-to-instrumental transfer. Interference with accumbens DA transmission affects instrumental behavior in a manner that interacts with the response requirements of the task and also shifts effort-related choice behavior, biasing animals toward low-effort alternatives. Dysfunctions of mesolimbic DA may contribute to motivational symptoms seen in various psychopathologies, including depression , schizophrenia, parkinsonism, and other disorders.

Keywords

Dopamine Accumbens Behavioral activation Motivation Reward Depression Fatigue Anergia 

Notes

Acknowledgements

This work was supported by a grant to J.S. from the National Institute of Mental Health (MH094966), and to Mercè Correa from U.J.I. P1.1A2013-01.

Disclosure/Conflict of Interest

J. Salamone has received grants from Merck-Serrono, Pfizer, Roche, Shire, and Prexa.

References

  1. Aberman JE, Ward SJ, Salamone JD (1998) Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive ratio performance. Pharmacol Biochem Behav 61:341–348PubMedCrossRefGoogle Scholar
  2. Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make animals more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–552PubMedCrossRefGoogle Scholar
  3. Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Touriño C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):0829–10835CrossRefGoogle Scholar
  4. Anstrom KK, Woodward DJ (2005) Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:1832–1840PubMedCrossRefGoogle Scholar
  5. Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12PubMedPubMedCentralCrossRefGoogle Scholar
  6. Argyropoulos SV, Nutt DJ (2013) Anhedonia revisited: is there a role for dopamine-targeting drugs for depression? J Psychopharmacol 27(10):869–877PubMedCrossRefGoogle Scholar
  7. Bardgett ME, Depenbrock M, Downs N, Points M, Green L (2009) Dopamine modulates effort-based decision making in rats. Behav Neurosci 123(2):242–251PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bassareo V, Di Chiara G (1999a) Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11:4389–4397PubMedCrossRefGoogle Scholar
  9. Bassareo V, Di Chiara G (1999b) Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89:637–641Google Scholar
  10. Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus shell versus core and prefrontal cortex. J Neurosci 22:4709–4719Google Scholar
  11. Bakshi VP, Kelley AE (1991) Dopaminergic regulation of feeding behavior: I. Differential effects of haloperidol microinjection in three striatal subregions. Psychobiology 19:223–232Google Scholar
  12. Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology 191:439–459PubMedCrossRefGoogle Scholar
  13. Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177Google Scholar
  14. Bayer HM, Glimcher PW (2002) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47:129–141CrossRefGoogle Scholar
  15. Beeler JA, Frazier CR, Zhuang X (2012) Putting desire on a budget: dopamine and energy expenditure, reconciling reward and resources. Front Integr Neurosci 6:49Google Scholar
  16. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ (2009) Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res 199:89–102PubMedCrossRefGoogle Scholar
  17. Bella R, Pennisi G, Cantone M, Palermo F, Pennisi M, Lanza G, Zappia M, Paolucci S (2010) Clinical presentation and outcome of geriatric depression in subcortical ischemic vascular disease. Gerontology 56(3):298–302PubMedCrossRefGoogle Scholar
  18. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369Google Scholar
  19. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26(9):507–513PubMedCrossRefGoogle Scholar
  20. Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191(3):391–431PubMedCrossRefGoogle Scholar
  21. Berridge KC, Kringelbach ML (2015) Pleasure systems in the brain. Neuron 86(3):646–664PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bourin M, Chenu F, Ripoll N, David DJ (2005) A proposal of decision tree to screen putative antidepressants using forced swim and tail suspension tests. Behav Brain Res 164(2):266–269Google Scholar
  23. Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci USA 106:4894–4899Google Scholar
  24. Budygin EA, Park J, Bass CE, Grinevich VP, Bonin KD, Wightman RM (2012) Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 201:331–337PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacology 31:1362–1370PubMedCrossRefGoogle Scholar
  26. Caligiuri MP, Gentili V, Eberson S, Kelsoe J, Rapaport M, Gillin JC (2003) A quantitative neuromotor predictor of antidepressant non-response in patients with major depression. J Affect Disord 77:135–141PubMedCrossRefGoogle Scholar
  27. Chen JJ, Ondo WG, Dashtipour K, Swope DM (2012) Tetrabenazine for the treatment of hyperkinetic movement disorders: a review of the literature. Clin Ther 34(7):1487–1504PubMedCrossRefGoogle Scholar
  28. Chong TT, Bonnelle V, Manohar S, Veromann KR, Muhammed K, Tofaris GK, Hu M, Husain M (2015) Dopamine enhances willingness to exert effort for reward in Parkinson’s disease. Cortex 69:40–46PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cofer CN, Appley MH (1964) Motivation: theory and research. Wiley, New YorkGoogle Scholar
  30. Cooper JA, Tucker VL, Papakostas GI (2014) Resolution of sleepiness and fatigue: a comparison of bupropion and selective serotonin reuptake inhibitors in subjects with major depressive disorder achieving remission at doses approved in the European Union. J Psychopharmacol 28:118–124PubMedCrossRefGoogle Scholar
  31. Corbit LH, Muir JL, Balleine BW (2001) The role of the nucleus accumbens in instrumental conditioning: evidence of a functional dissociation between accumbens core and shell. J Neurosci 21(9):3251–3260PubMedGoogle Scholar
  32. Corbit LH, Janak PH (2010) Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur J Neurosci 31(7):1312–1321PubMedPubMedCentralCrossRefGoogle Scholar
  33. Corbit LH, Janak PH, Balleine BW (2007) General and outcome-specific forms of Pavlovian-instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur J Neurosci 26(11):3141–3149PubMedCrossRefGoogle Scholar
  34. Corbit LH, Balleine BW (2011) The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J Neurosci 31(33):11786–11794PubMedPubMedCentralCrossRefGoogle Scholar
  35. Corbit LH, Leung BK, Balleine BW (2013) The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions. J Neurosci 3(45):17682–17690CrossRefGoogle Scholar
  36. Correa M, Pardo M, Lopez-Cruz L, Doñate T, Carbó-Gas M, Monferrer L, Salamone JD (2012) Impact of dopamine D2 receptor antagonism on the activational effects produced by conditioned stimuli and on the preference for primary reinforcers based on their effort requirements. Society for Neuroscience 923.06/EEE82. https://www.researchgate.net/publication/280304157_Correa_et_al._2012_SFN_abstract
  37. Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187PubMedCrossRefGoogle Scholar
  38. Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal (DA) depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46:943–951PubMedCrossRefGoogle Scholar
  39. Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens (DA) depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74:189–197PubMedCrossRefGoogle Scholar
  40. Cousins MS, Trevitt J, Atherton A, Salamone JD (1999) Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience 91:925–934PubMedCrossRefGoogle Scholar
  41. Croxson PL, Walton ME, O’Reilly JX, Behrens TE, Rushworth MF (2009) Effort-based cost-benefit valuation and the human brain. J Neurosci 29(14):4531–4541PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cryan JF, O’Leary OF, Jin SH, Friedland JC, Ouyang M, Hirsch BR, Page ME, Dalvi A, Thomas SA, Lucki I (2004) Norepinephrine-deficient mice lack responses to antidepressant drugs, including selective serotonin reuptake inhibitors. Proc Natl Acad Sci USA 101(21):8186–8191PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cuthbert BN, Insel TR (2013) Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC Med 11(126)Google Scholar
  44. Dalley JW, Laane K, Theobald DE, Armstrong HC, Corlett PR, Chudasama Y et al (2005) Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens. Proc Natl Acad Sci 102:6189–6194PubMedPubMedCentralCrossRefGoogle Scholar
  45. Damiano CR, Aloi J, Treadway M, Bodfish JW, Dichter GS (2012) Adults with autism spectrum disorders exhibit decreased sensitivity to reward parameters when making effort-based decisions. J Neurodev Disord 4(1):13PubMedPubMedCentralCrossRefGoogle Scholar
  46. Demyttenaere K, De Fruyt J, Stahl SM (2005) The many faces of fatigue in major depressive disorder. Int J Neuropsychopharmacol 8:93–105PubMedCrossRefGoogle Scholar
  47. Drew MR, Simpson EH, Kellendonk C, Herzberg WG, Lipatova O, Fairhurst S, Kandel ER, Malapani C, Balsam PD (2007) Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing. J Neurosci 27(29):7731–7739PubMedCrossRefGoogle Scholar
  48. Duffy E (1963) Activation and behavior. Wiley, New YorkGoogle Scholar
  49. Dunnett SB, Iversen SD (1982) Regulatory impairments following selective 6-OHDA lesions of the neostriatum. Behav Brain Res 4:195–202Google Scholar
  50. Everitt BJ, Robbins TW (2005a) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489PubMedCrossRefGoogle Scholar
  51. Everitt BJ, Robbins TW (2005b) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489PubMedCrossRefGoogle Scholar
  52. Fabre LF, Brodie HK, Garver D, Zung WW (1983) A multicenter evaluation of bupropion versus placebo in hospitalized depressed patients. J Clin Psychiatry 44:88–94PubMedGoogle Scholar
  53. Farrar AM, Pereira M, Velasco F, Hockemeyer J, Muller CE, Salamone JD (2007) Adenosine A(2A) receptor antagonism reverses the effects of (DA) receptor antagonism on instrumental output and effort-related choice in the rat: implications for studies of psychomotor slowing. Psychopharmacology 191:579–586PubMedCrossRefGoogle Scholar
  54. Farrar AM, Font L, Pereira M, Mingote SM, Bunce JG, Chrobak JJ, Salamone JD (2008) Forebrain circuitry involved in effort-related choice: injections of the GABAA agonist muscimol into ventral pallidum alters response allocation in food-seeking behavior. Neuroscience 152:321–330PubMedPubMedCentralCrossRefGoogle Scholar
  55. Farrar AM, Segovia KN, Randall PA, Nunes EJ, Collins LE, Stopper CM, Port RG, Hockemeyer J, Müller CE, Correa M, Salamone JD (2010) Nucleus accumbens and effort-related functions: behavioral and neural markers of the interactions between adenosine A2A and (DA) D2 receptors. Neuroscience 166:1056–1067PubMedCrossRefGoogle Scholar
  56. Fava M, Ball S, Nelson JC, Sparks J, Konechnik T, Classi P, Dube S, Thase ME (2014) Clinical relevance of fatigue as a residual symptom in major depressive disorder. Depress Anxiety 31(3):250–257PubMedCrossRefGoogle Scholar
  57. Ferré S, Quiroz C, Woods AS, Cunha R, Popoli P, Ciruela F, Lluis C, Franco R, Azdad K, Schiffmann SN (2008) An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. Curr Pharm Des 14(15):1468–1474PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fervaha G, Foussias G, Agid O, Remington G (2013) Neural substrates underlying effort computation in schizophrenia. Neurosci Biobehav Rev 37:2649–2665PubMedCrossRefGoogle Scholar
  59. Floresco SB (2015) The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol 66:25–252PubMedCrossRefGoogle Scholar
  60. Floresco SB, Ghods-Sharifi S (2007) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex 17(2):251–260PubMedCrossRefGoogle Scholar
  61. Floresco SB, Tse MT, Ghods-Sharifi S (2008) Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33(8):1966–1979PubMedCrossRefGoogle Scholar
  62. Frank S (2009) Tetrabenazine as anti-chorea therapy in Huntington disease: an open-label continuation study. Huntington Study Group/TETRA-HD Investigators. BMC Neurol 9:62PubMedPubMedCentralCrossRefGoogle Scholar
  63. Frank S (2010) Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington’s disease. Neuropsychiatr Dis Treat 5(6):657–665CrossRefGoogle Scholar
  64. Font L, Mingote S, Farrar AM, Pereira M, Worden L, Stopper C, Port RG, Salamone JD (2008) Intra-accumbens injections of the adenosine A2A agonist CGS 21680 affect effort-related choice behavior in rats. Psychopharmacology 199:515–526PubMedPubMedCentralCrossRefGoogle Scholar
  65. Ghods-Sharifi S, Floresco SB (2010) Differential effects on effort discounting induced by inactivations of the nucleus accumbens core or shell. Behav Neurosci 124(2):179–191PubMedCrossRefGoogle Scholar
  66. Gold JM, Strauss GP, Waltz JA, Robinson BM, Brown JK, Frank MJ (2013) Negative symptoms of schizophrenia are associated with abnormal effort-cost computations. Biol Psychiatry 74(2):130–136PubMedPubMedCentralCrossRefGoogle Scholar
  67. Gold JM, Waltz JA, Frank MJ (2015) Effort cost computation in schizophrenia: a commentary on the recent literature. Biol Psychiatry [Epub ahead of print]. doi: 10.1016/j.biopsych.2015.05.005
  68. Green MF, Horan WP (2015) Effort-based decision making in schizophrenia: evaluation of paradigms to measure motivational deficits. Schizophr Bull [Epub ahead of print]. pii: sbv084Google Scholar
  69. Green MF, Horan WP, Barch DM, Gold JM (2015) Effort-based decision making: a novel approach for assessing motivation in schizophrenia. Schizophr Bull [Epub ahead of print]. pii: sbv071Google Scholar
  70. Guay DR (2010) Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinectic movement disorders. Am J Geriatr Pharmacother 8(4):331–373PubMedCrossRefGoogle Scholar
  71. Gullion CM, Rush AJ (1998) Toward a generalizable model of symptoms in major depressive disorder. Biol Psychiatry 44(10):959–972PubMedCrossRefGoogle Scholar
  72. Hanff TC, Furst SJ, Minor TR (2010) Biochemical and anatomical substrates of depression and sickness behavior. Isr J Psychiatry Relat Sci 47(1):64–71PubMedGoogle Scholar
  73. Hartmann MN, Hager OM, Reimann AV, Chumbley JR, Kirschner M, Seifritz E, Tobler PN, Kaiser S (2015) Apathy but not diminished expression in schizophrenia is associated with discounting of monetary rewards by physical effort. Schizophr Bull 41(2):503–512PubMedPubMedCentralCrossRefGoogle Scholar
  74. Hauber W, Sommer S (2009) Prefrontostriatal circuitry regulates effort-related decision making. Cereb Cortex 19(10):2240–2247PubMedCrossRefGoogle Scholar
  75. Hernandez G, Breton YA, Conover K, Shizgal P (2010) At what stage of neural processing does cocaine act to boost pursuit of rewards? PLoS ONE 5:e15081PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S (2009) Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 330(1):294–303PubMedCrossRefGoogle Scholar
  77. Hosking JG, Floresco SB, Winstanley CA (2015) Dopamine antagonism decreases willingness to expend physical, but not cognitive, effort: a comparison of two rodent cost/benefit decision-making tasks. Neuropsychopharmacology 40(4):1005–1015PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hudson AL, Lalies MD, Silverstone P (2012) Venlafaxine enhances the effect of bupropion on extracellular dopamine in rat frontal cortex. Can J Physiol Pharmacol 90(6):803–809PubMedCrossRefGoogle Scholar
  79. Ilango A, Kesner AJ, Broker CJ, Wang DV, Ikemoto S (2014) Phasic excitation of ventral tegmental dopamine neurons potentiates the initiation of conditioned approach behavior: parametric and reinforcement-schedule analyses. Front Behav Neurosci 8:155PubMedPubMedCentralGoogle Scholar
  80. Ishiwari K, Weber SM, Mingote S, Correa M, Salamone JD (2004) Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res 151:83–91PubMedCrossRefGoogle Scholar
  81. Kent TA, Preskorn SH, Glotzbach RK, Irwin GH (1986) Amitriptyline normalizes tetrabenazine-induced changes in cerebral microcirculation. Biol Psychiatry 21:483–491PubMedCrossRefGoogle Scholar
  82. Kitamura Y, Yagi T, Kitagawa K, Shinomiya K, Kawasaki H, Asanuma M, Gomita Y (2010) Effects of bupropion of the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats. Naunyn Schmiedebergs Arch Pharmacol 382(2):151–158PubMedCrossRefGoogle Scholar
  83. Knab AM, Bowen RS, Hamilton AT, Gulledge AA, Lightfoot JT (2009) Altered dopaminergic profiles: implications for the regulation of voluntary physical activity. Behav Brain Res 204(1):147–152PubMedPubMedCentralCrossRefGoogle Scholar
  84. Koch M, Schmid A, Schnitzler HU (2000) Role of nucleus accumbens (DA) D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology 152:67–73Google Scholar
  85. Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92:917–927PubMedCrossRefGoogle Scholar
  86. Kurniawan IT, Seymour B, Talmi D, Yoshida W, Chater N, Dolan RJ (2010) Choosing to make an effort: the role of striatum in signaling physical effort of a chosen action. J Neurophysiol 104(1):313–321PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–359PubMedCrossRefGoogle Scholar
  88. Learned-Coughlin SM, Bergström M, Savitcheva I, Ascher J, Schmith VD, Långstrom B (2003) In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 54:800–805PubMedCrossRefGoogle Scholar
  89. Lex A, Hauber W (2008) Dopamine D1 and D2 receptors in the nucleus accumbens core and shell mediate Pavlovian-instrumental transfer. Learn Mem 15:483–491PubMedPubMedCentralCrossRefGoogle Scholar
  90. Lex B, Hauber W (2010) The role of nucleus accumbens dopamine in outcome encoding in instrumental and Pavlovian conditioning. Neurobiol Learn Mem 93:283–290PubMedCrossRefGoogle Scholar
  91. Mai B, Sommer S, Hauber W (2012) Motivational states influence effort-based decision making in rats: the role of dopamine in the nucleus accumbens. Cogn Affect Behav Neurosci 12:74–84PubMedCrossRefGoogle Scholar
  92. Marchant NJ, Whitaker LR, Bossert JM, Harvey BK, Hope BT, Kaganovsky K, Adhikary S, Prisinzano TE, Vardy E, Roth BL, Shaham Y (2015) Behavioral and physiological effects of a novel kappa-opioid receptor-based DREADD in rats. Neuropsychopharmacology [Epub ahead of print]. doi: 10.1038/npp.2015.149
  93. Marinelli M, McCutcheon JE (2014) Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 282:176–197CrossRefGoogle Scholar
  94. Markou A, Salamone JD, Bussey TJ, Mar AC, Brunner D, Gilmour G, Balsam P (2013) Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia. Neurosci Biobehav Rev 37(9):2149–2165PubMedCrossRefGoogle Scholar
  95. McCullough LD, Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res 592:29–36PubMedCrossRefGoogle Scholar
  96. McCullough LD, Cousins MS, Salamone JD (1993a) The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: a neurochemical and behavioral study. Pharmacol Biochem Behav 46:581–586PubMedCrossRefGoogle Scholar
  97. McCullough LD, Sokolowski JD, Salamone JD (1993b) A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52:919–925PubMedCrossRefGoogle Scholar
  98. McGinty VB, Lardeux S, Taha SA, Kim JJ, Nicola SM (2013) Invigoration of reward seeking by cue and proximity encoding in the nucleus accumbens. Neuron 78:910–922PubMedPubMedCentralCrossRefGoogle Scholar
  99. Milea D, Guelfucci F, Bent-Ennakhil N, Toumi M, Auray JP (2010) Antidepressant monotherapy: a claims database analysis of treatment changes and treatment duration. Clin Ther 32(12):2057–2072PubMedCrossRefGoogle Scholar
  100. Mingote S, Font L, Farrar AM, Vontell R, Worden LT, Stopper CM, Port RG, Sink KS, Bunce JG, Chrobak JJ, Salamone JD (2008) Nucleus accumbens adenosine A2A receptors regulate exertion of effort by acting on the ventral striatopallidal pathway. J Neurosci 28:9037–9046PubMedPubMedCentralCrossRefGoogle Scholar
  101. Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21(6):1749–1757CrossRefGoogle Scholar
  102. Mogenson G, Jones D, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97PubMedCrossRefGoogle Scholar
  103. Mott AM, Nunes EJ, Collins LE, Port RG, Sink KS, Hockemeyer J, Muller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effects of the (DA) antagonist haloperidol on effort-related decision making in a T-maze cost/benefit procedure. Psychopharmacology 204:103–112PubMedPubMedCentralCrossRefGoogle Scholar
  104. Nicola SM (2010) The flexible approach hypothesis: unification of effort and cue-responding hypotheses for the role of nucleus accumbens dopamine in the activation of reward-seeking behavior. J Neurosci 30(49):16585–16600PubMedPubMedCentralCrossRefGoogle Scholar
  105. Niv Y (2009) Reinforcement learning in the brain. J Math Psychol 53:139–154Google Scholar
  106. Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382PubMedCrossRefGoogle Scholar
  107. Nunes EJ, Randall PA, Santerre JL, Given AB, Sager TN, Correa M, Salamone JD (2010) Differential effects of selective adenosine antagonists on the effort-related impairments induced by (DA) D1 and D2 antagonism. Neuroscience 170:268–280PubMedPubMedCentralCrossRefGoogle Scholar
  108. Nunes EJ, Randall PA, Podurgiel S, Correa M, Salamone JD (2013a) Nucleus accumbens neurotransmission and effort-related choice behavior in food motivation: Effects of drugs acting on dopamine, adenosine, and muscarinic acetylcholine receptors. Neurosci Biobehav Rev 37:2015–2025PubMedCrossRefGoogle Scholar
  109. Nunes EJ, Randall PA, Hart EE, Freeland C, Yohn SE, Baqi Y, Müller CE, López-Cruz L, Correa M, Salamone JD (2013b) Effort-related motivational effects of the VMAT-2 inhibitor tetrabenazine: implications for animal models of the motivational symptoms of depression. J Neurosci 33(49):19120–19130PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nunes EJ, Randall PA, Estrada A, Epling B, Hart E, Lee CE, Baqi Y, Müller CE, Correa M, Salamone JD (2014) Effort-related motivational effects of the pro-inflammatory cytokine interleukin 1-beta: studies with the concurrent fixed ratio 5/ chow feeding choice task. Psychopharmacology 231:727–736PubMedPubMedCentralCrossRefGoogle Scholar
  111. Ostlund SB, Wassum KM, Murphy NP, Balleine BW, Maidment NT (2011) Extracellular dopamine levels in striatal subregions track shifts in motivation and response cost during instrumental conditioning. J Neurosci 31:200–207PubMedPubMedCentralCrossRefGoogle Scholar
  112. Pae CU, Lim HK, Han C, Patkar AA, Steffens DC, Masand PS, Lee C (2007) Fatigue as a core symptom in major depressive disorder: overview and the role of bupropion. Expert Rev Neurother 7(10):1251–1263PubMedCrossRefGoogle Scholar
  113. Papakostas GI, Nutt DJ, Hallett LA, Tucker VL, Krishen A, Fava M (2006) Resolution of sleepiness and fatigue in major depressive disorder: a comparison of bupropion and the selective serotonin reuptake inhibitors. Biol Psychiatry 60(12):1350–1355PubMedCrossRefGoogle Scholar
  114. Pardo M, Lopez-Cruz L, Valverde O, Ledent C, Baqi Y, Muller CE, Salamone JD, Correa M (2012) Adensoine A2A receptor antagonism and genetic deletion attenuate the effects of dopamine D2 antagonism on effort-related decision making in mice. Neuropharmacology 62(5–6):2068–2077PubMedCrossRefGoogle Scholar
  115. Pardo M, López-Cruz L, Miguel NS, Salamone JD, Correa M (2015) Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D1, D2, and D3 receptor antagonists. Psychopharmacology 232(13):2377–239PubMedCrossRefGoogle Scholar
  116. Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, Rudarakanchana N, Halkerston KM, Robbins TW, Everitt BJ (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137:149–163PubMedCrossRefGoogle Scholar
  117. Peciña S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402PubMedGoogle Scholar
  118. Pettibone DJ, Totaro JA, Pflueger AB (1984) Tetrabenazine-induced depletion of brain monoamines: characterization and interaction with selected antidepressants. Eur J Pharmacol 102:425–430PubMedCrossRefGoogle Scholar
  119. Preskorn SH, Kent TA, Glotzbach RK, Irwin GH, Solnick JV (1984) Cerebromicrocirculatory defects in animal model of depression. Psychopharmacology 84:196–199PubMedCrossRefGoogle Scholar
  120. Rampello L, Nicoletti G, Raffaele R (1991) Dopaminergic hypothesis for retarded depression: a symptom profile for predicting therapeutical responses. Acta Psychiatry Scand 84(6):552–554CrossRefGoogle Scholar
  121. Randall PA, Pardo M, Nunes EJ, López Cruz L, Vemuri VK, Makriyannis A, Baqi Y, Müller CE, Correa M, Salamone JD (2012) Dopaminergic modulation of effort-related choice behavior as assessed by a progressive ratio chow task: pharmacological studies and role of individual differences. PLoS ONE 7(10):e47934PubMedPubMedCentralCrossRefGoogle Scholar
  122. Randall PA, Lee CA, Podurgiel SJ, Hart E, Yohn SE, Jones M, Rowland M, López-Cruz L, Correa M, Salamone JD (2015) Bupropion increases selection of high effort activity in rats tested on a progressive ratio/chow feeding choice procedure: implications for treatment of effort-related motivational symptoms. Int J Neuropsychopharmacol 18(2). doi: 10.1093/ijnp/pyu017
  123. Rick JH, Horvitz JC, Balsam PD (2006) Dopamine receptor blockade and extinction differentially affect behavioral variability. Behav Neurosci 120:488–492PubMedCrossRefGoogle Scholar
  124. Roeper J (2013) Dissecting the diversity of midbrain dopamine neurons. Trends Neurosci 36(6):336–342PubMedCrossRefGoogle Scholar
  125. Robbins TW, Koob GF (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285:409–412PubMedCrossRefGoogle Scholar
  126. Robbins TW, Everitt BJ (2007) A role for mesencephalic dopamine in activation: commentary on Berridge (2006). Psychopharmacology 191:433–437PubMedCrossRefGoogle Scholar
  127. Roitman MF, Stuber GD, Phillips PEM, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271PubMedCrossRefGoogle Scholar
  128. Root DH, Melendez RI, Zaborszky L, Napier TC (2015) The ventral pallidum: subregion-specific functional anatomy and roles in motivated behaviors. Prog Neurobiol 130:29–70PubMedCrossRefGoogle Scholar
  129. Rosin DL, Robeva A, Woodard RL, Guyenet PG, Linden J (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401:163–186PubMedCrossRefGoogle Scholar
  130. Saddoris MP, Sugam JA, Stuber GD, Witten IB, Deisseroth K, Carelli RM (2015) Mesolimbic dopamine dynamically tracks, and is causally linked to, discrete aspects of value-based decision making. Biol Psychiatry 77(10):903–911PubMedCrossRefGoogle Scholar
  131. Salamone JD (1987) The actions of neuroleptic drugs on appetitive instrumental behaviors. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum Press, New York, pp 575–608CrossRefGoogle Scholar
  132. Salamone JD (1988) Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule induced act-ivity, feeding and foraging in rats. Psychobiology 16:96–206Google Scholar
  133. Salamone JD (1991) Behavioral pharmacology of dopamine systems: A new synthesis. In: Willner P, Scheel Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Cambridge University Press: Cambridge, England, pp 598–613Google Scholar
  134. Salamone JD (1992) Complex motor and sensorimotor functions of accumbens and striatal dopamine: involvement in instrumental behavior processes. Psychopharmacology 107:160–174PubMedCrossRefGoogle Scholar
  135. Salamone JD (1994) Involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61:117–133PubMedCrossRefGoogle Scholar
  136. Salamone JD (1996) The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J Neurosci Meth 64:137–149CrossRefGoogle Scholar
  137. Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137(1–2):3–25PubMedCrossRefGoogle Scholar
  138. Salamone JD, Correa M (2009) Dopamine/adenosine interactions involved in effort-related aspects of food motivation. Appetite 53(3):422–425Google Scholar
  139. Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76(3):470–485PubMedPubMedCentralCrossRefGoogle Scholar
  140. Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens (DA) depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology 104:515–521PubMedCrossRefGoogle Scholar
  141. Salamone JD, Cousins MS, Bucher S (1994a) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens (DA) depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229PubMedCrossRefGoogle Scholar
  142. Salamone JD, Cousins MS, McCullough LD, Carriero DL, Berkowitz RJ (1994b) Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Pharmacol Biochem Behav 49:25–31PubMedCrossRefGoogle Scholar
  143. Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens DA: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359PubMedCrossRefGoogle Scholar
  144. Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–870PubMedCrossRefGoogle Scholar
  145. Salamone JD, Arizzi MN, Sandoval MD, Cervone KM, Aberman JE (2002) (DA) antagonists alter response allocation but do not suppress appetite for food in rats: contrast between the effects of SKF 83566, raclopride, and fenfluramine on a concurrent choice task. Psychopharmacology 160:371–380PubMedCrossRefGoogle Scholar
  146. Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus Accumbens (DA) and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications for understanding anergia and psychomotor slowing in depression. Curr Psychiatry Rev 2:267–280CrossRefGoogle Scholar
  147. Salamone JD, Correa M, Farrar A, Mingote SM (2007) Effort-related functions of nucleus accumbens (DA) and associated forebrain circuits. Psychopharmacology 191:461–482PubMedCrossRefGoogle Scholar
  148. Salamone JD, Correa M, Nunes EJ, Randall PA, Pardo M (2012) The behavioral pharmacology of effort-related choice behavior: dopamine, adenosine and beyond. J Exp Anal Behav 97:125–146Google Scholar
  149. Salamone JD, Farrar AM, Font L, Patel V, Schlar DE, Nunes EJ, Collins LE, Sager TN (2009) Differential actions of adenosine A1 and A2A antagonists on the effort-related effects of (DA) D2 antagonism. Behav Brain Res 201:216–222PubMedPubMedCentralCrossRefGoogle Scholar
  150. Salamone JD, Koychev I, Correa M, McGuire P (2014) Neurobiological basis of motivational deficits in psychopathology. Eur Neuropsychopharmacol [Epub ahead of print]Google Scholar
  151. Salamone JD, Zigmond MJ, Stricker EM (1990) Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience 39:17–24PubMedCrossRefGoogle Scholar
  152. Salamone JD, Mahan K, Rogers S (1993) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610PubMedCrossRefGoogle Scholar
  153. Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41PubMedCrossRefGoogle Scholar
  154. Salamone JD (1991) Behavioral pharmacology of dopamine systems: a new synthesis. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Cambridge University Press; Cambridge, England, vol 1, pp 599–613Google Scholar
  155. Santerre JL, Nunes EJ, Randall PA, Baqi Y, Müller CE, Salamone JD (2012) Behavioral studies with the novel adenosine A2A antagonist MSX-4: reversal of the effects of (DA) D2 antagonism. Pharamcol Biochem Behav 102(4):477–487CrossRefGoogle Scholar
  156. Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24PubMedPubMedCentralCrossRefGoogle Scholar
  157. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13:900–913PubMedGoogle Scholar
  158. Schultz W, Dayan P, Montague RR (1997) A neural substrate of prediction and reward. Science 275:1593–1599PubMedCrossRefGoogle Scholar
  159. Sederholm F, Johnson AE, Brodin U, Södersten P (2002) Dopamine D(2) receptors and ingestive behavior: brainstem mediates inhibition of intraoral intake and accumbens mediates aversive taste behavior in male rats. Psychopharmacology 160:161–169PubMedCrossRefGoogle Scholar
  160. Segovia KN, Correa M, Salamone JD (2011) Slow phasic changes in nucleus accumbens dopamine release during fixed ratio acquisition: a microdialysis study. Neuroscience 196:178–188PubMedCrossRefGoogle Scholar
  161. Segovia KN, Correa M, Lennington JB, Conover JC, Salamone JD (2012) Changes in nucleus accumbens and neostriatal c-Fos and DARPP-32 immunoreactivity during different stages of food-reinforced instrumental training. Eur J Neurosci 35:1354–1367PubMedPubMedCentralCrossRefGoogle Scholar
  162. Shafiei N, Gray M, Viau V, Floresco SB (2012) Acute stress induces selective alterations in cost/benefit decision-making. Neuropsychopharmacology 37(10):2194–2209PubMedPubMedCentralCrossRefGoogle Scholar
  163. Smith KS, Berridge KC, Aldridge JW (2011) Disentangling pleasure from incentive salience and learning signals in brain reward circuitry. Proc Natl Acad Sci USA 108:E255–E264PubMedPubMedCentralCrossRefGoogle Scholar
  164. Simpson EH, Kellendonk C, Ward RD, Richards V, Lipatova O, Fairhurst S, Kandel ER, Balsam PD (2011) Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia. Biol Psychiatry 69(10):928–935Google Scholar
  165. Simpson EH, Waltz JA, Kellendonk C, Balsam PD (2012) Schizophrenia in translation: dissecting motivation in schizophrenia and rodents. Schizophr Bull 38(6):1111–1117PubMedPubMedCentralCrossRefGoogle Scholar
  166. Sink KS, Vemuri VK, Olszewska T, Makriyannis A, Salamone JD (2008) Cannabinoid CB1 antagonists and dopamine antagonists produce different effects on a task involving response allocation and effort-related choice in food-seeking behavior. Psychopharmacology 196:565–574PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sokolowski JD, Conlan AN, Salamone JD (1998) A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience 86:1001–1009Google Scholar
  168. Sommer S, Danysz W, Russ H, Valastro B, Flik G, Hauber W (2014) The dopamine reuptake inhibitor MRZ-9547 increases progressive ratio responding in rats. Int J Neuropsychopharmacol 17(12):2045–2056PubMedCrossRefGoogle Scholar
  169. Soskin DP, Holt DJ, Sacco GR, Fava M (2013) Incentive salience: novel treatment strategies for major depression. CNS Spectr 1:1–8Google Scholar
  170. Stahl SM (2002) The psychopharmacology of energy and fatigue. J Clin Psychiatry 63(1):7–8PubMedCrossRefGoogle Scholar
  171. Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16(7):966–973PubMedPubMedCentralCrossRefGoogle Scholar
  172. Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS ONE 9(4):e94771PubMedPubMedCentralCrossRefGoogle Scholar
  173. Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396PubMedCrossRefGoogle Scholar
  174. Szczpka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, Palmiter RD (2001) Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron 30:819–828CrossRefGoogle Scholar
  175. Tanra AJ, Kagaya A, Okamoto Y, Muraoka M, Motohashi N, Yamawaki S (1995) TJS-010, a new prescription of oriental medicine, antagonizes tetrabenazine-induced suppression of spontaneous locomotor activity in rats. Prog Neuropsychopharmacol Biol Psychiatry 19(5):963–971PubMedCrossRefGoogle Scholar
  176. Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149PubMedCrossRefGoogle Scholar
  177. Treadway MT, Buckholtz JW, Schwartzman AN, Lambert WE, Zald DH (2009) Worth the ‘EEfRT’? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS ONE 4(8):e6598PubMedPubMedCentralCrossRefGoogle Scholar
  178. Treadway MT, Zald DH (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev 35:537–555PubMedPubMedCentralCrossRefGoogle Scholar
  179. Treadway MT, Bossaller NA, Shelton RC, Zald DH (2012) Effort-based decision making in major depressive disorder: a translational model of motivational anhedonia. J Abnorm Psychol 121(3):553–558PubMedPubMedCentralCrossRefGoogle Scholar
  180. Trifilieff P, Feng B, Urizar E, Winiger V, Ward RD, Taylor KM, Martinez D, Moore H, Balsam PD, Simpson EH, Javitch JA (2013) Increasing dopamine D2 receptor expression in the adult nucleus accumbens enhances motivation. Mol Psychiatry 18:1025–1033PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tylee A, Gastpar M, Lepine JP, Mendlewicz J (1999) DEPRES II (Depression Research in European Society II): a patient survey of the symptoms, disability and current management of depression in the community. Int Clin Psychopharmacol 14:139–151PubMedGoogle Scholar
  182. Ungerstedt U (1971) Aphagia and adipsia after 6 hydroxydopamine induced degeneration of the nigro striatal dopamine system. Acta Physiol Scand 82:95–122CrossRefGoogle Scholar
  183. Venugopalan VV, Casey KF, O’Hara C, O’Loughlin J, Benkelfat C, Fellows LK, Leyton M (2011) Acute phenylalanine/tyrosine depletion reduces motivation to smoke cigarettes across stages of addiction. Neuropsychopharmacology 36:2469–2476PubMedPubMedCentralCrossRefGoogle Scholar
  184. Wallace M, Singer G, Finlay J, Gibson S (1983) The effect of 6-OHDA lesions of the nucleus accumbens septum on schedule-induced drinking, wheelrunning and corticosterone levels in the rat. Pharmacol Biochem Behav 18(1):129–136Google Scholar
  185. Walton ME, Bannerman DM, Alterescu K, Rushworth MFS (2003) Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 23:6475–6479PubMedGoogle Scholar
  186. Wang H, Chen X, Li Y, Tang TS, Bezprozvanny I (2010) Tetrabenazine is neuroprotective in Huntington’s disease mice. Mol Neurodegener 5:18PubMedPubMedCentralCrossRefGoogle Scholar
  187. Ward RD, Simpson EH, Richards VL, Deo G, Taylor K, Glendinning JI, Kandel ER, Balsam PD (2012) Dissociation of hedonic reaction to reward and incentive motivation in an animal model of the negative symptoms of schizophrenia. Neuropsychopharmacology 37(7):1699–1707PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wardle MC, Treadway MT, Mayo LM, Zald DH, de Wit H (2011) Amping up effort: effects of d-amphetamine on human effort-based decision-making. J Neurosci 31(46):16597–16602PubMedPubMedCentralCrossRefGoogle Scholar
  189. Winograd-Gurvich C, Fitzgerald PB, Georgiou-Karistianis N, Bradshaw JL, White OB (2006) Negative symptoms: A review of schizophrenia, melancholic depression and Parkinson’s disease. Brain Res Bull 70:312–321PubMedCrossRefGoogle Scholar
  190. Wise RA (2008) Dopamine and reward: the anhedonia hypothesis—30 years on. Neurotox Res 14:169–183PubMedPubMedCentralCrossRefGoogle Scholar
  191. Worden LT, Shahriari M, Farrar AM, Sink KS, Hockemeyer J, Muller CE, Salamone JD (2009) The adenosine A2A antagonist MSX-3 reverses the effort-related effects of (DA) blockade: differential interaction with D1 and D2 family antagonists. Psychopharmacology 203:489–499PubMedPubMedCentralCrossRefGoogle Scholar
  192. Wyvell CL, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20(21):8122–8130PubMedGoogle Scholar
  193. Yamada K, Kobayashi M, Mori A, Jenner P, Kanda T (2013) Antidepressant-like activity of the adenosine A(2A) receptor antagonist, istradefylline (KW-6002), in the forced swim test and the tail suspension test in rodents. Pharmacol Biochem Behav 114–115:23–30PubMedCrossRefGoogle Scholar
  194. Yamada K, Kobayashi M, Shiozaki S, Ohta T, Mori A, Jenner P, Kanda T (2014) Antidepressant activity of the adenosine A(2A) receptor antagonist, istradefylline (KW-6002) on learned helplessness in rats. Psychopharmacology 231(14):2839–2849PubMedCrossRefGoogle Scholar
  195. Yang XH, Huang J, Zhu CY, Wang YF, Cheung EF, Chan RC, Xie GR (2014) Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res 220(3):874–882PubMedCrossRefGoogle Scholar
  196. Yin HH, Knowlton BJ, Balleine BW (2005) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J Neurosci 22:505–512PubMedCrossRefGoogle Scholar
  197. Yin HH, Ostlund SB, Balleine BW (2008) Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur J Neurosci 28:1437–1448PubMedPubMedCentralCrossRefGoogle Scholar
  198. Yohn SE, Thompson C, Randall PA, Lee CA, Müller CE, Baqi Y, Correa M, Salamone JD (2015a) The VMAT-2 inhibitor tetrabenazine alters effort-related decision making as measured by the T-maze barrier choice task: reversal with the adenosine A2A antagonist MSX-3 and the catecholamine uptake blocker bupropion. Psychopharmacology 232(7):1313–1323PubMedCrossRefGoogle Scholar
  199. Yohn SE, Santerre JL, Nunes EJ, Kozak R, Podurgiel SJ, Correa M, Salamone JD (2015b) The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists. Pharmacol Biochem Behav 135:217–226PubMedCrossRefGoogle Scholar
  200. Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, Salamone JD (2015c) Not all antidepressants are created equal: differential effects of monoamine uptake inhibitors on effort-related choice behavior. Neuropsychopharmacology [Epub ahead of print]. doi: 10.1038/npp.2015.188
  201. Young AM (2004) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Methods 138:57–63PubMedCrossRefGoogle Scholar
  202. Zigmond MJ, Stricker EM (1972) Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science 177:1211–1214Google Scholar
  203. Zweifel LS, Parker JG, Lobb CJ, Rainwater A, Wall VZ, Fadok JP, Darvas M, Kim MJ, Mizumori SJY, Paladini CA, Phillips PEM, Palmiter RD (2009) Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc Natl Acad Sci USA 106:7281–7288PubMedPubMedCentralCrossRefGoogle Scholar
  204. Zweifel LS, Fadok JP, Argilli E, Garelick MG, Dickerson TMK, Allen J, Mizumori SJY, Bonci A, Palmiter RD (2011) Dopamine neuronal activity imbalance evoked generalized anxiety following aversive experience. Nat Neurosci 14:620–626PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • John D. Salamone
    • 1
  • Marta Pardo
    • 2
  • Samantha E. Yohn
    • 1
  • Laura López-Cruz
    • 2
  • Noemí SanMiguel
    • 2
  • Mercè Correa
    • 1
    • 2
  1. 1.Department of PsychologyUniversity of ConnecticutStorrsUSA
  2. 2.Àrea de PsicobiologiaUniversitat Jaume ICastellóSpain

Personalised recommendations