Advertisement

Regulation of the Motivation to Eat

  • Stephen C. WoodsEmail author
  • Denovan P. Begg
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 27)

Abstract

Although food intake is necessary to provide energy for all bodily activities, considering food intake as a motivated behavior is complex. Rather than being a simple unconditioned reflex to energy need, eating is mediated by diverse factors. These include homeostatic signals such as those related to body fat stores, to food available and being eaten, and to circulating energy-rich compounds like glucose and fatty acids. Eating is also greatly influenced by non-homeostatic signals that convey information related to learning and experience, hedonics, stress, the social situation, opportunity, and many other factors. Recent developments identifying the intricate nature of the relationships between homeostatic and non-homeostatic influences significantly add to the complexity underlying the neural basis of the motivation to eat. The future of research in the field of food intake would seem to lie in the identification of the neural circuitry and interactions between homeostatic and non-homeostatic influences.

Keywords

Adipose tissue Adiposity signal Agouti-related protein Allostasis Amygdala Anorexia nervosa 

References

  1. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91(4):449–458PubMedCrossRefGoogle Scholar
  2. Armelagos GJ (2014) Brain evolution, the determinates of food choice, and the omnivore’s dilemma. Crit Rev Food Sci Nutr 54(10):1330–1341PubMedCrossRefGoogle Scholar
  3. Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circ 7:152Google Scholar
  5. Begg DP, Woods SC (2012) The central insulin system and energy balance. Handb Exp Pharmacol 209:111–129Google Scholar
  6. Begg DP, Woods SC (2013) The endocrinology of food intake. Nat Rev Endocrinol 9(10):584–597PubMedCrossRefGoogle Scholar
  7. Belgardt BF, Bruning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 1212:97–113PubMedCrossRefGoogle Scholar
  8. Benoit S, Schwartz M, Baskin D, Woods SC, Seeley RJ (2000) CNS melanocortin system involvement in the regulation of food intake. Horm Behav 37(4):299–305PubMedCrossRefGoogle Scholar
  9. Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22(20):9048–9052PubMedGoogle Scholar
  10. Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20(2):189–287PubMedCrossRefGoogle Scholar
  11. Berridge K (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25PubMedCrossRefGoogle Scholar
  12. Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550PubMedPubMedCentralCrossRefGoogle Scholar
  13. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369PubMedCrossRefGoogle Scholar
  14. Berthoud HR (2004) Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 81(5):781–793PubMedCrossRefGoogle Scholar
  15. Birch LL, Fisher JO (1998) Development of eating behaviors among children and adolescents. Pediatrics 101:539–549PubMedGoogle Scholar
  16. Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202PubMedCrossRefGoogle Scholar
  17. Bolles RC (1967) Theory of motivation. Harper & Row, New YorkGoogle Scholar
  18. Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29(36):11215–11225PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bouton ME (2011) Learning and the persistence of appetite: extinction and the motivation to eat and overeat. Physiol Behav 103(1):51–58PubMedCrossRefGoogle Scholar
  20. Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125PubMedCrossRefGoogle Scholar
  21. Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 100(5):419–428PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choi DL, Davis JF, Magrisso IJ, Fitzgerald ME, Lipton JW, Benoit SC (2012) Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 210:243–248PubMedPubMedCentralCrossRefGoogle Scholar
  23. Christiansen AM, Dekloet AD, Ulrich-Lai YM, Herman JP (2011) “Snacking” causes long term attenuation of HPA axis stress responses and enhancement of brain FosB/deltaFosB expression in rats. Physiol Behav 103(1):111–116PubMedPubMedCentralCrossRefGoogle Scholar
  24. Collier G, Johnson DF (2004) The paradox of satiation. Physiol Behav 82(1):149–153PubMedCrossRefGoogle Scholar
  25. Collier GH, Johnson DF, Hill WL, Kaufman LW (1986) The economics of the law of effect. J Exp Anal Behav 48:113–136CrossRefGoogle Scholar
  26. Collier GH, Johnson DF, Morgan C (1992) The magnitude-of-reinforcement function in closed and open economies. J Exp Anal Behav 57:81–89PubMedPubMedCentralCrossRefGoogle Scholar
  27. Corp ES, Woods SC, Porte D Jr, Dorsa DM, Figlewicz DP, Baskin DG (1986) Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett 70:17–22PubMedCrossRefGoogle Scholar
  28. Dallman MF (2010) Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab 21(3):159–165PubMedPubMedCentralCrossRefGoogle Scholar
  29. Davis JF, Choi DL, Benoit SC (2010) Insulin, leptin and reward. Trends Endocrinol Metab 21(2):68–74PubMedPubMedCentralCrossRefGoogle Scholar
  30. Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Benoit SC (2011) Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry 69(7):668PubMedPubMedCentralCrossRefGoogle Scholar
  31. DiNicolantonio JJ, O’Keefe JH, Lucan SC (2015) Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc 90(3):372–381PubMedCrossRefGoogle Scholar
  32. Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC (2006) Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 147(1):23–30PubMedCrossRefGoogle Scholar
  33. Duncan EA, Davita G, Woods SC (2005) Changes in the satiating effect of cholecystokinin over repeated trials. Physiol Behav 85:387–393PubMedCrossRefGoogle Scholar
  34. Elmquist JK (2001) Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav 74(4–5):703–708PubMedCrossRefGoogle Scholar
  35. Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB (2005) Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493(1):63–71PubMedCrossRefGoogle Scholar
  36. Emond M, Ladenheim EE, Schwartz GJ, Moran TH (2001) Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 72(1–2):123–128PubMedCrossRefGoogle Scholar
  37. Emond M, Schwartz GJ, Ladenheim EE, Moran TH (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549PubMedGoogle Scholar
  38. Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27(7):710–718PubMedCrossRefGoogle Scholar
  39. Ferguson NB, Keesey RE (1975) Effect of a quinine-adulterated diet upon body weight maintenance in male rats with ventromedial hypothalamic lesions. J Comp Physiol Psychol 89(5):478–488PubMedCrossRefGoogle Scholar
  40. Figlewicz DP, Benoit SC (2009) Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integ Comp Physiol 296(1):R9–R19CrossRefGoogle Scholar
  41. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964(1):107–115PubMedCrossRefGoogle Scholar
  42. Figlewicz DP, Sipols AJ (2010) Energy regulatory signals and food reward. Pharmacol Biochem Behav 97(1):15–24PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goodison T, Siegel S (1995) Learning and tolerance to the intake suppressive effect of cholecystokinin in rats. Behav Neurosci 109:62–70PubMedCrossRefGoogle Scholar
  44. Grossman SP (1986) The role of glucose, insulin and glucagon in the regulation of food intake and body weight. Neurosci Biobehav Rev 10:295–315PubMedCrossRefGoogle Scholar
  45. Guyenet SJ, Schwartz MW (2012) Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97(3):745–755PubMedPubMedCentralCrossRefGoogle Scholar
  46. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546PubMedCrossRefGoogle Scholar
  47. Harvey J, Solovyova N, Irving A (2006) Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 45(5):369–378PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hegarty SV, Sullivan AM, O’Keeffe GW (2013) Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 379(2):123–138PubMedCrossRefGoogle Scholar
  49. Hess WR (1956) Hypothalamus und thalamus: experimental-dokumente. Thieme, Stuttgart, GermanyGoogle Scholar
  50. Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78(2):149–172CrossRefGoogle Scholar
  51. Hetherington AW, Ranson SW (1942) The spontaneous activity and food intake of rats with hypothalmic lesions. Am J Physiol 136:609–617Google Scholar
  52. Hull CL (1931) Goal attraction and directing ideas conceived as habit phenomena. Psychol Rev 38(6):487–506CrossRefGoogle Scholar
  53. Keesey RE, Boyle PC (1973) Effects of quinine adulteration upon body weight of LH-lesioned and intact male rats. J Comp Physiol Psychol 84(1):38–46PubMedCrossRefGoogle Scholar
  54. Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann N Y Acad Sci 877:71–90PubMedCrossRefGoogle Scholar
  55. Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776PubMedCrossRefGoogle Scholar
  56. Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059(2):179–188PubMedCrossRefGoogle Scholar
  57. Konner AC, Hess S, Tovar S, Mesaros A, Sanchez-Lasheras C, Evers N, Bruning JC (2011) Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab 13(6):720–728PubMedCrossRefGoogle Scholar
  58. Langhans W (1996) Metabolic and glucostatic control of feeding. Proc Nutr Soc 55:497–515PubMedCrossRefGoogle Scholar
  59. Langhans W, Scharrer E (1987) Role of fatty acid oxidation in control of meal pattern. Behav Neural Biol 47:7–16PubMedCrossRefGoogle Scholar
  60. Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010a) Changes in emotional behavior produced by orexin microinjections in the paraventricular nucleus of the thalamus. Pharmacol Biochem Behav 95(1):121–128PubMedCrossRefGoogle Scholar
  61. Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010b) Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology 212(2):251–265PubMedCrossRefGoogle Scholar
  62. Lotter EC, Woods SC (1977) Injections of insulin and changes of body weight. Physiol Behav 18(2):293–297PubMedCrossRefGoogle Scholar
  63. MacKay EM, Calloway JW, Barnes RH (1940) Hyperalimentation in normal animals produced by protamine insulin. J Nutr 20:59–66Google Scholar
  64. Matson CA, Reid DF, Cannon TA, Ritter RC (2000) Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 278(4):R882–890PubMedGoogle Scholar
  65. Matson CA, Wiater MF, Kuijper JL, Weigle DS (1997) Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 18:1275–1278PubMedCrossRefGoogle Scholar
  66. Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213(1–2):17–27PubMedPubMedCentralCrossRefGoogle Scholar
  67. Miller NE, Bailey CJ, Stevenson JA (1950) Decreased “hunger” but increased food intake resulting from hypothalamic lesions. Science 112(2905):256–259PubMedCrossRefGoogle Scholar
  68. Moran TH (2004) Gut peptides in the control of food intake: 30 years of ideas. Physiol Behav 82(1):175–180PubMedCrossRefGoogle Scholar
  69. Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II, Cholecystokinin. Am J Physiol 286:G183–G188Google Scholar
  70. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295PubMedCrossRefGoogle Scholar
  71. Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15(6):367–378PubMedPubMedCentralCrossRefGoogle Scholar
  72. Morton GJ, Schwartz MW (2001) The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord 25:S56–62PubMedCrossRefGoogle Scholar
  73. Myers MG Jr, Olson DP (2012) Central nervous system control of metabolism. Nature 491(7424):357–363PubMedCrossRefGoogle Scholar
  74. Naim M, Brand JG, Kare MR, Kaufmann NA, Kratz CM (1980) Effects of unpalatable diets and food restriction on feed efficiency in growing rats. Physiol Behav 25(5):609–614PubMedCrossRefGoogle Scholar
  75. Nicolaidis S (1981) Lateral hypothalamic control of metabolic factors related to feeding. Diabetologia 20(Suppl):426–434PubMedCrossRefGoogle Scholar
  76. Niswender KD, Schwartz MW (2003) Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24:1–10PubMedCrossRefGoogle Scholar
  77. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566–572PubMedCrossRefGoogle Scholar
  78. Pardini AW, Nguyen HT, Figlewicz DP, Baskin DG, Williams DL, Kim F, Schwartz MW (2006) Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 1112(1):169–178PubMedCrossRefGoogle Scholar
  79. Petrovich GD (2013) Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 121:10–18PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ramsay DS, Woods SC (2014) Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121(2):225–247PubMedPubMedCentralCrossRefGoogle Scholar
  81. Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37(9 Pt A):1919–1931Google Scholar
  82. Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:755–760PubMedCrossRefGoogle Scholar
  83. Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34PubMedPubMedCentralCrossRefGoogle Scholar
  84. Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292(1):R37–46PubMedCrossRefGoogle Scholar
  85. Rozin P (1990) Acquisition of stable food preferences. Nutr Rev 48(2):106–113 (discussion 114–131)Google Scholar
  86. Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev Neurosci 15(11):719–731PubMedCrossRefGoogle Scholar
  87. Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E (2013) When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 64(4):702–728PubMedCrossRefGoogle Scholar
  88. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671PubMedGoogle Scholar
  89. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52:232–238PubMedCrossRefGoogle Scholar
  90. Sclafani A (1997) Learned controls of ingestive behavior. APPETITE 29:153–158PubMedGoogle Scholar
  91. Sclafani A, Lucas F, Ackroff K (1996) The importance of taste and palatability in carbohydrate-induced overeating in rats. Am J Physiol 270:R1197–R1202PubMedGoogle Scholar
  92. Seeley RJ, Woods SC (2003) Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 4(11):901–909PubMedCrossRefGoogle Scholar
  93. Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Schwartz MW (1997) Melanocortin receptors in leptin effects. NATURE 390(6658):349PubMedGoogle Scholar
  94. Skinner BF (1930) On the conditions of elicitation of certain eating reflexes. Proc Natl Acad Sci U S A 16(6):433–438PubMedPubMedCentralCrossRefGoogle Scholar
  95. Smith GP, Epstein AN (1969) Increased feeding in response to decreased glucose utilization in rat and monkey. Am J Physiol 217:1083–1087PubMedGoogle Scholar
  96. Smith GP, Gibbs J (1984) Gut peptides and postprandial satiety. Fed Proc 43(14):2889–2892PubMedGoogle Scholar
  97. Smith GP, Gibbs J (1985) The satiety effect of cholecystokinin. Recent progress and current problems. Ann N Y Acad Sci 448:417–423PubMedCrossRefGoogle Scholar
  98. Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36(9):504–512PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stellar E (1954) The physiology of motivation. Psychol Rev 61:5–22PubMedCrossRefGoogle Scholar
  100. Strubbe JH, Woods SC (2004) The timing of meals. Psychol Rev 111:128–141PubMedCrossRefGoogle Scholar
  101. Swithers SE (2013) Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab 24(9):431–441PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31(4):506–543PubMedPubMedCentralCrossRefGoogle Scholar
  103. Teff K (2000) Nutritional implications of the cephalic-phase reflexes: endocrine responses. APPETITE 34(2):206–213PubMedCrossRefGoogle Scholar
  104. Teff KL (2011) How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol Behav 103(1):44–50PubMedPubMedCentralCrossRefGoogle Scholar
  105. Teitelbaum P, Epstein AN (1962) The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev 69:74–90PubMedCrossRefGoogle Scholar
  106. Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, Herman JP (2010) Pleasurable behaviors reduce stress via brain reward pathways. Proc Natl Acad Sci 107(47):20529–20534PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ulrich-Lai YM, Ryan KK (2014) Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab 19(6):910–925PubMedPubMedCentralCrossRefGoogle Scholar
  108. Weingarten HP (1983) Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science 220:431–433PubMedCrossRefGoogle Scholar
  109. Woods SC (1991) The eating paradox: how we tolerate food. Psychol Rev 98(4):488–505PubMedCrossRefGoogle Scholar
  110. Woods SC (2002) The house economist and the eating paradox. APPETITE 38:161–165PubMedCrossRefGoogle Scholar
  111. Woods SC (2009) The control of food intake: behavioral versus molecular perspectives. Cell Metab 9(6):489–498PubMedPubMedCentralCrossRefGoogle Scholar
  112. Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–50PubMedPubMedCentralCrossRefGoogle Scholar
  113. Woods SC, Langhans W (2012) Inconsistencies in the assessment of food intake. Am J Physiol Endocrinol Metab 303(12):E1408–E1418Google Scholar
  114. Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505PubMedCrossRefGoogle Scholar
  115. Woods SC, Ramsay DS (2011) Food intake, metabolism and homeostasis. Physiol Behav 104(1):4–7PubMedPubMedCentralCrossRefGoogle Scholar
  116. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383PubMedCrossRefGoogle Scholar
  117. Zahniser NR, Goens MB, Hanaway PJ, Vinych JV (1984) Characterization and regulation of insulin receptors in rat brain. J Neurochem 42(5):1354–1362PubMedCrossRefGoogle Scholar
  118. Zheng H, Berthoud HR (2007) Eating for pleasure or calories. Curr Opin Pharmacol 7(6):607–612PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiUSA
  2. 2.School of PsychologyUniversity of New South WalesSydneyAustralia

Personalised recommendations