Advertisement

Neuroinflammation in Parkinson’s Disease Animal Models: A Cell Stress Response or a Step in Neurodegeneration?

  • Carolina Cebrián
  • John D. Loike
  • David SulzerEmail author
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 22)

Abstract

The motor symptoms of Parkinson’s disease are due to the progressive degeneration of dopaminergic neurons in the substantia nigra. Multiple neuroinflammatory processes are exacerbated in Parkinson’s disease, including glial-mediated reactions, increased expression of proinflammatory substances, and lymphocytic infiltration, particularly in the substantia nigra. Neuroinflammation is also implicated in the neurodegeneration and consequent behavioral symptoms of many Parkinson’s disease animal models, although it is not clear whether these features emulate pathogenic steps in the genuine disorder or if some inflammatory features provide protective stress responses. Here, we compare and summarize findings on neuroinflammatory responses and effects on behavior in a wide range of toxin-based, inflammatory and genetic Parkinson’s disease animal models.

Keywords

Parkinson’s disease Neuroinflammation Neurodegeneration Animal models Microglia Proinflammatory cytokines Lymphocytes 

References

  1. Abeliovich A, Schmitz Y, Fariñas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252PubMedGoogle Scholar
  2. Akiyama H, McGeer PL (1989) Microglial response to 6-hydroxydopamine-induced substantia nigra lesions. Brain Res 489(2):247–253PubMedGoogle Scholar
  3. Alberio T, Lopiano L and Fasano M (2012) Cellular models to investigate biochemical pathways in Parkinson’s disease. FEBS J279. doi:10.1111/j.1742-4658.2012.08516.x Google Scholar
  4. Ambrosi G, Armentero MT, Levandis G et al (2010) Effects of early and delayed treatment with an mGluR5 antagonist on motor impairment, nigrostriatal damage and neuroinflammation in a rodent model of Parkinson’s disease. Brain Res Bull 82(1–2):29–38PubMedGoogle Scholar
  5. Armentero MT, Levandis G, Nappi G et al (2006) Peripheral inflammation and neuroprotection: systemic pretreatment with complete Freund’s adjuvant reduces 6-hydroxydopamine toxicity in a rodent model of Parkinson’s disease. Neurobiol Dis 24(3):492–505PubMedGoogle Scholar
  6. Baldereschi M, Inzitari M, Vanni P et al (2008) Pesticide exposure might be a strong risk factor for Parkinson’s disease. Ann Neurol 63(1):128PubMedGoogle Scholar
  7. Barcia C, Ros CM, Annese V et al (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142PubMedCentralPubMedGoogle Scholar
  8. Barkholt P, Sanchez-Guajardo V, Kirik D et al (2012) Long-term polarization of microglia upon α-synuclein overexpression in nonhuman primates. Neuroscience 208:85–96PubMedGoogle Scholar
  9. Barnum CJ, Tansey MG (2010) Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res 184:113–132PubMedGoogle Scholar
  10. Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306PubMedGoogle Scholar
  11. Bichler Z, Lim HC, Zeng L, Tan EK (2013) Non-motor and motor features in LRRK2 transgenic mice. PLoS One 8(7):e70249PubMedCentralPubMedGoogle Scholar
  12. Biskup S, Moore DJ, Celsi F et al (2006) Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 60(5):557–569PubMedGoogle Scholar
  13. Blandini F (2013) Neural and immune mechanisms in the pathogenesis of Parkinson’s disease. Funct Neurol 28(1):5PubMedCentralPubMedGoogle Scholar
  14. Bobyn J, Mangano EN, Gandhi A et al (2012) Viral-toxin interactions and Parkinson’s disease: poly I: C priming enhanced the neurodegenerative effects of paraquat. J Neuroinflammation 9:86PubMedCentralPubMedGoogle Scholar
  15. Bové J, Perier C (2012) Neurotoxin-based models of Parkinson’s disease. Neuroscience 211:51–76PubMedGoogle Scholar
  16. Braak H, Del Tredici K (2010) Pathophysiology of sporadic Parkinson’s disease. Fortschr Neurol Psychiatr 78(Suppl 1):2–4Google Scholar
  17. Brochard V, Combadière B, Prigent A et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119(1):182–192PubMedCentralPubMedGoogle Scholar
  18. Bronstein DM, Perez-Otano I, Sun V et al (1995) Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures. Brain Res 704(1):112–116PubMedGoogle Scholar
  19. Bungeroth M, Appenzeller S, Regulin A, Völker W et al (2014) Differential aggregation properties of alpha-synuclein isoforms. Neurobiol Aging S0197–4580(14):00201–00202Google Scholar
  20. Carvey PM, Chang Q, Lipton JW et al (2003) Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci 8:826–837Google Scholar
  21. Casarejos MJ, Menéndez J, Solano RM et al (2006) Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97(4):934–946PubMedGoogle Scholar
  22. Castaño A, Herrera AJ, Cano J et al (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70(4):1584–1592PubMedGoogle Scholar
  23. Castaño A, Herrera AJ, Cano J et al (2002) The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-alpha, IL-1beta and IFN-gamma. J Neurochem 81(1):150–157PubMedGoogle Scholar
  24. Cebrián C, Zucca FA, Mauri P et al (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 16(5):3633Google Scholar
  25. Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22–27PubMedCentralPubMedGoogle Scholar
  26. Choi DY, Liu M, Hunter RL et al (2009) Striatal neuroinflammation promotes Parkinsonism in rats. PLoS One 4(5):e5482PubMedCentralPubMedGoogle Scholar
  27. Chung YC, Kim SR, Jin BK (2010) Paroxetine prevents loss of nigrostriatal dopaminergic neurons by inhibiting brain inflammation and oxidative stress in an experimental model of Parkinson’s disease. J Immunol 185(2):1230–1237PubMedGoogle Scholar
  28. Cicchetti F, Brownell AL, Williams K et al (2002) Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 15(6):991–998PubMedGoogle Scholar
  29. Cicchetti F, Drouin-Ouellet J, Gross RE (2009) Environmental toxins and Parkinson’s disease: what have we learned from pesticide-induced animal models? Trends Pharmacol Sci 30(9):475–483PubMedGoogle Scholar
  30. Cicchetti F, Lapointe N, Roberge-Tremblay A et al (2005) Systemic exposure to paraquat and maneb models early Parkinson’s disease in young adult rats. Neurobiol Dis 20(2):360–371PubMedGoogle Scholar
  31. Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166PubMedGoogle Scholar
  32. Collins LM, Toulouse A, Connor TJ et al (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62(7):2154–2168PubMedGoogle Scholar
  33. Conway KA, Harper JD, Lansbury PT Jr (2000a) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563PubMedGoogle Scholar
  34. Conway KA, Lee SJ, Rochet JC et al (2000b) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97(2):571–576PubMedCentralPubMedGoogle Scholar
  35. Correia Guedes L, Ferreira JJ, Rosa MM et al (2010) Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: a systematic review. Parkinsonism Relat Disord 16(4):237–242PubMedGoogle Scholar
  36. Corti O, Brice A (2013) Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson’s disease. Curr Opin Neurobiol 23:100–108PubMedGoogle Scholar
  37. Couch Y, Alvarez-Erviti L, Sibson NR et al (2011) The acute inflammatory response to intranigral α-synuclein differs significantly from intranigral lipopolysaccharide and is exacerbated by peripheral inflammation. J Neuroinflammation 8:166PubMedCentralPubMedGoogle Scholar
  38. Cuervo AM, Stefanis L, Fredenburg R et al (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295PubMedGoogle Scholar
  39. Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I et al (1996) Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 5(2):137–143PubMedGoogle Scholar
  40. Daher JP, Volpicelli-Daley LA1, Blackburn JP et al (2014) Abrogation of α-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci USA (in press)Google Scholar
  41. Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52(1):1–6PubMedGoogle Scholar
  42. Danoy P, Pryce K, Hadler J et al (2010) Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet 6(12):e1001195PubMedCentralPubMedGoogle Scholar
  43. Dauer W, Kholodilov N, Vila M et al (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99(22):14524–14529PubMedCentralPubMedGoogle Scholar
  44. Davis GC, Williams AC, Markey SP et al (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1(3):249–254PubMedGoogle Scholar
  45. Dawson TM, Ko HS, Dawson VL (2010) Genetic animal models of Parkinson’s disease. Neuron 66(5):646–661PubMedCentralPubMedGoogle Scholar
  46. de Meira Santos Lima M, Braga Reksidler A, Marques Zanata S et al (2006) Different parkinsonism models produce a time-dependent induction of COX-2 in the substantia nigra of rats. Brain Res 1101(1):117–125PubMedGoogle Scholar
  47. De Pablos RM, Herrera AJ, Villarán RF et al (2005) Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB J 19(3):407–409PubMedGoogle Scholar
  48. Del Tredici K, Braak H (2012) Lewy pathology and neurodegeneration in premotor Parkinson’s disease. Mov Disord 27(5):597–607PubMedGoogle Scholar
  49. Deleidi M, Hallett PJ, Koprich JB et al (2010) The Toll-like receptor-3 agonist polyinosinic:polycytidylic acid triggers nigrostriatal dopaminergic degeneration. J Neurosci 30(48):16091–16101PubMedCentralPubMedGoogle Scholar
  50. Deng H, Yuan L (2014) Genetic variants and animal models in SNCA and Parkinson disease. Ageing Res Rev. 2014 Apr 21. pii: S1568–1637(14):00048–8Google Scholar
  51. Desai VG, Feuers RJ, Hart RW et al (1996) MPP(+)-induced neurotoxicity in mouse is age-dependent: evidenced by the selective inhibition of complexes of electron transport. Brain Res 715(1–2):1–8PubMedGoogle Scholar
  52. Drolet RE, Sanders JM, Kern JT (2011) Leucine-rich repeat kinase 2 (LRRK2) cellular biology: a review of recent advances in identifying physiological substrates and cellular functions. J Neurogenet 25(4):140–151PubMedGoogle Scholar
  53. Dusonchet J, Kochubey O, Stafa K et al (2011) A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci 31(3):907–912PubMedGoogle Scholar
  54. Dutta G, Zhang P, Liu B (2008) The lipopolysaccharide Parkinson’s disease animal model: mechanistic studies and drug discovery. Fundam Clin Pharmacol 22(5):453–464PubMedCentralPubMedGoogle Scholar
  55. Dzamko N, Inesta-Vaquera F, Zhang J et al (2012) The IkappaB kinase family phosphorylates the Parkinson’s disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling. PLoS One 7(6):e39132PubMedCentralPubMedGoogle Scholar
  56. Emmer KL, Waxman EA, Covy JP et al (2011) E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent, detrimental motor impairment. J Biol Chem 286(40):35104–35118PubMedCentralPubMedGoogle Scholar
  57. Engelhardt B, Coisne C (2011) Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle. Fluids Barriers CNS 8(1):4PubMedCentralPubMedGoogle Scholar
  58. Eslamboli A, Romero-Ramos M, Burger C, Bjorklund T et al (2007) Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain 130(Pt 3):799–815PubMedGoogle Scholar
  59. Esposito E, Impellizzeri D, Mazzon E et al (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS One 7(8):e41880PubMedCentralPubMedGoogle Scholar
  60. Fang F, Wirdefeldt K, Jacks A et al (2012) CNS infections, sepsis and risk of Parkinson’s disease. Int J Epidemiol 41(4):1042–1049PubMedCentralPubMedGoogle Scholar
  61. Fleming SM, Salcedo J, Fernagut PO et al (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24(42):9434–9440PubMedGoogle Scholar
  62. Foix C, Nicolesco J (1925) Anatomie cérébrale. Les noyaux gris centraux et la región Mésencéphalo-sous-optique., Suivi d’un apéndice sur l’anatomie pathologique de la maladie de Parkinson. Masson et Cie, eds (Paris), 508–538Google Scholar
  63. Fortin DL, Nemani VM, Voglmaier SM et al (2005) Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci 25(47):10913–10921PubMedGoogle Scholar
  64. Franzén B, Duvefelt K, Jonsson C, Engelhardt B et al (2003) Gene and protein expression profiling of human cerebral endothelial cells activated with tumor necrosis factor-alpha. Brain Res Mol Brain Res 115(2):130–146PubMedGoogle Scholar
  65. Frank-Cannon TC, Alto LT, McAlpine FE et al (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 16(4):47Google Scholar
  66. Frank-Cannon TC, Tran T, Ruhn KA et al (2008) Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J Neurosci 28(43):10825–10834PubMedCentralPubMedGoogle Scholar
  67. Fulceri F, Biagioni F, Lenzi P et al (2006) Nigrostriatal damage with 6-OHDA: validation of routinely applied procedures. Ann N Y Acad Sci 1074:344–348PubMedGoogle Scholar
  68. Gao JJ, Diesl V, Wittmann T et al (2002a) Regulation of gene expression in mouse macrophages stimulated with bacterial CpG-DNA and lipopolysaccharide. J Leukoc Biol 72(6):1234–1245PubMedGoogle Scholar
  69. Gao HM, Hong JS, Zhang W et al (2002b) Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22(3):782–790PubMedGoogle Scholar
  70. Gao HM, Kotzbauer PT, Uryu K et al (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698PubMedCentralPubMedGoogle Scholar
  71. Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23(15):6181–6187PubMedGoogle Scholar
  72. Gao HM, Zhang F, Zhou H et al (2011) Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 119(6):807–814PubMedCentralPubMedGoogle Scholar
  73. Gardet A, Benita Y, Li C et al (2010) LRRK2 is involved in the IFN-gamma response and host response to pathogens. J Immunol 185(9):5577–5585PubMedCentralPubMedGoogle Scholar
  74. Gayle DA, Ling Z, Tong C et al (2002) Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res 133(1):27–35PubMedGoogle Scholar
  75. Geng Y, Fang M, Wang J et al (2011) Triptolide down-regulates COX-2 expression and PGE2 release by suppressing the activity of NF-κB and MAP kinases in lipopolysaccharide-treated PC12 cells. Phytother Res 26(3):337–343PubMedGoogle Scholar
  76. George S, van den Buuse M, San Mok S, Masters CL et al (2008) Alpha-synuclein transgenic mice exhibit reduced anxiety-like behaviour. Exp Neurol 210(2):788–792PubMedGoogle Scholar
  77. Ghosh A, Kanthasamy A, Joseph J et al (2012) Anti-inflammatory and neuroprotective effects of an orally active apocynin derivative in pre-clinical models of Parkinson’s disease. J Neuroinflammation 9:241PubMedCentralPubMedGoogle Scholar
  78. Giasson BI, Duda JE, Quinn SM et al (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34(4):521–533PubMedGoogle Scholar
  79. Gillardon F, Schmid R, Draheim H (2012) Parkinson’s disease-linked leucine-rich repeat kinase 2(R1441G) mutation increases proinflammatory cytokine release from activated primary microglial cells and resultant neurotoxicity. Neuroscience 208:41–48PubMedGoogle Scholar
  80. Gispert S, Ricciardi F, Kurz A et al (2009) Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PloS ONE 4:e5777PubMedCentralPubMedGoogle Scholar
  81. Glinka Y, Gassen M, Youdim MB (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl 50:55–66PubMedGoogle Scholar
  82. Goes AT, Souza LC, Filho CB et al (2014) Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 256C:61–71Google Scholar
  83. Goldberg MS, Fleming SM, Palacino JJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635PubMedGoogle Scholar
  84. Gombash SE, Manfredsson FP, Kemp CJ et al (2013) Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system. PLoS One 8(11):e81426PubMedCentralPubMedGoogle Scholar
  85. Gomez-Isla T, Irizarry MC, Mariash A, Cheung B et al (2003) Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 24(2):245–258PubMedGoogle Scholar
  86. Gomide V, Bibancos T, Chadi G (2005) Dopamine cell morphology and glial cell hypertrophy and process branching in the nigrostriatal system after striatal 6-OHDA analyzed by specific sterological tools. Int J Neurosci 115(4):557–582PubMedGoogle Scholar
  87. González H, Contreras F, Prado C, Elgueta D et al (2013) Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson’s disease. J Immunol 190(10):5048–5056PubMedGoogle Scholar
  88. Graham DR, Sidhu A (2010) Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxiety-like behavior. J Neurosci Res 88(8):1777–1783PubMedCentralPubMedGoogle Scholar
  89. Greggio E, Jain S, Kingsbury A et al (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23(2):329–341PubMedGoogle Scholar
  90. Grünblatt E, Mandel S, Maor G et al (2001) Gene expression analysis in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson’s disease using cDNA microarray: effect of R-apomorphine. J Neurochem 78(1):1–12PubMedGoogle Scholar
  91. Guo JL, Covell DJ, Daniels JP et al (2013) Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 154(1):103–117PubMedGoogle Scholar
  92. Gupta A, Kumar A, Kulkarni SK (2011) Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigates MPTP-induced neurotoxicity in mice. Prog Neuropsychopharmacol Biol Psychiatry 35(4):974–981PubMedGoogle Scholar
  93. Gupta SP, Patel S, Yadav S et al (2010) Involvement of nitric oxide in maneb- and paraquat-induced Parkinson’s disease phenotype in mouse: is there any link with lipid peroxidation? Neurochem Res 35(8):1206–1213PubMedGoogle Scholar
  94. Hancock DB, Martin ER, Mayhew GM et al (2008) Pesticide exposure and risk of Parkinson’s disease: a family-based case-control study. BMC Neurol 8:6. doi: 10.1186/1471-2377-8-6 PubMedCentralPubMedGoogle Scholar
  95. Harkavyi A, Abuirmeileh A, Lever R et al (2008) Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson’s disease. J Neuroinflammation 5:19PubMedCentralPubMedGoogle Scholar
  96. Harms AS, Barnum CJ, Ruhn KA et al (2011) Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol Ther 19(1):46–52PubMedCentralPubMedGoogle Scholar
  97. Harms AS, Cao S, Rowse AL et al (2013) MHCII is required for α-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci 33(23):9592–9600PubMedCentralPubMedGoogle Scholar
  98. Hattori N, Kitada T, Matsumine H et al (1998) Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: evidence for variable homozygous deletions in the Parkin gene in affected individuals. Ann Neurol 44(6):935–941PubMedGoogle Scholar
  99. He Y, Appel S, Le W (2001) Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res 909(1–2):187–193PubMedGoogle Scholar
  100. Healy DG, Falchi M, O’Sullivan SS et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590PubMedCentralPubMedGoogle Scholar
  101. Hennis MR, Marvin MA, Taylor CM, Goldberg MS (2014) Surprising behavioral and neurochemical enhancements in mice with combined mutations linked to Parkinson’s disease. Neurobiol Dis 62:113–123PubMedCentralPubMedGoogle Scholar
  102. Henry J, Smeyne RJ, Jang H et al (2010) Parkinsonism and neurological manifestations of influenza throughout the 20th and 21st centuries. Parkinsonism Relat Disord 16(9):566–571PubMedGoogle Scholar
  103. Hernández-Romero MC, Argüelles S, Villarán RF et al (2008) Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. J Neurochem 105(2):445–459PubMedGoogle Scholar
  104. Herva ME, Zibaee S, Fraser G, Barker RA et al (2014) Anti-amyloid compounds inhibit alpha-synuclein aggregation induced by Protein Misfolding Cyclic Amplification (PMCA). J Biol Chem (in press)Google Scholar
  105. Hinkle KM, Yue M, Behrouz B et al (2012) LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol Neurodegener 7:25PubMedCentralPubMedGoogle Scholar
  106. Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8(4):382–397PubMedGoogle Scholar
  107. Hoban DB, Connaughton E, Connaughton C et al (2013) Further characterisation of the LPS model of Parkinson’s disease: a comparison of intra-nigral and intra-striatal lipopolysaccharide administration on motor function, microgliosis and nigrostriatal neurodegeneration in the rat. Brain Behav Immun 27(1):91–100PubMedGoogle Scholar
  108. Hoepken HH, Gispert S, Morales B et al (2007) Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 25:401–411PubMedGoogle Scholar
  109. Hunter RL, Cheng B, Choi DY et al (2009) Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res 87(8):1913–1921PubMedCentralPubMedGoogle Scholar
  110. Iravani MM, Leung CC, Sadeghian M et al (2005) The acute and the long-term effects of nigral lipopolysaccharide administration on dopaminergic dysfunction and glial cell activation. Eur J Neurosci 22(2):317–330PubMedGoogle Scholar
  111. Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291PubMedGoogle Scholar
  112. Izumi Y, Ezumi M, Takada-Takatori Y, Akaike A et al (2014) Endogenous dopamine is involved in the herbicide paraquat-induced dopaminergic cell death. Toxicol Sci (in press)Google Scholar
  113. Janezic S, Threlfell S, Dodson PD, Dowie MJ et al (2013) Deficits in dopaminergic transmission precede neuron loss and dysfunction in a new Parkinson model. Proc Natl Acad Sci USA 110(42):E4016–E4025PubMedCentralPubMedGoogle Scholar
  114. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368–376PubMedGoogle Scholar
  115. Johnston LC, Su X, Maguire-Zeiss K et al (2008) Human interleukin-10 gene transfer is protective in a rat model of Parkinson’s disease. Mol Ther 16(8):1392–1399PubMedCentralPubMedGoogle Scholar
  116. Jung BD, Shin EJ, Nguyen XK et al (2010) Potentiation of methamphetamine neurotoxicity by intrastriatal lipopolysaccharide administration. Neurochem Int 56(2):229–244PubMedGoogle Scholar
  117. Kahle PJ, Waak J, Gasser T (2009) DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med 47(10):1354–1361PubMedGoogle Scholar
  118. Kamel F, Tanner C, Umbach D et al (2007) Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am J Epidemiol 165(4):364–374PubMedGoogle Scholar
  119. Kasten M, Klein C (2013) The many faces of alpha-synuclein mutations. Mov Disord 28(6):697–701PubMedGoogle Scholar
  120. Kim B, Yang MS, Choi D et al (2012) Impaired inflammatory responses in murine Lrrk2-knockdown brain microglia. PLoS One 7(4):e34693PubMedCentralPubMedGoogle Scholar
  121. Kirik D, Annett LE, Burger C et al (2003) Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson’s disease. Proc Natl Acad Sci USA 100(5):2884–2889PubMedCentralPubMedGoogle Scholar
  122. Kirik D, Rosenblad C, Burger C et al (2002) Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22(7):2780–2791PubMedGoogle Scholar
  123. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedGoogle Scholar
  124. Kitada T, Pisani A, Porter DR et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci 104:11441–11446PubMedCentralPubMedGoogle Scholar
  125. Klementiev B, Li S, Korshunova I et al (2014) Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist. J Neuroinflammation 11:27PubMedCentralPubMedGoogle Scholar
  126. Klintworth H, Garden G, Xia Z (2009) Rotenone and paraquat do not directly activate microglia or induce inflammatory cytokine release. Neurosci Lett 462(1):1–5PubMedCentralPubMedGoogle Scholar
  127. Ko HS, von Coelln R, Sriram SR et al (2005) Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, pp38/JTV-1, leads to catecholaminergic cell death. J Neurosci 25:7968–7978PubMedGoogle Scholar
  128. Kopin IJ (1987) MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson’s disease. Environ Health Perspect 75:45–51PubMedCentralPubMedGoogle Scholar
  129. Koprich JB, Reske-Nielsen C, Mithal P et al (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflammation 5:8PubMedCentralPubMedGoogle Scholar
  130. Kortekaas R, Leenders KL, van Oostrom JC et al (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57(2):176–179PubMedGoogle Scholar
  131. Krüger R, Kuhn W, Müller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Ann Neurol 18(2):106–108Google Scholar
  132. Kunikowska G, Jenner P (2001) 6-Hydroxydopamine-lesioning of the nigrostriatal pathway in rats alters basal ganglia mRNA for copper, zinc- and manganese-superoxide dismutase, but not glutathione peroxidase. Brain Res 922(1):51–64PubMedGoogle Scholar
  133. Kurkowska-Jastrzebska I, Wrońska A, Kohutnicka M et al (1999) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156(1):50–61PubMedGoogle Scholar
  134. L’Episcopo F, Tirolo C, Caniglia S et al (2010) Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neuroinflammation. 7:83PubMedCentralPubMedGoogle Scholar
  135. L’Episcopo F, Tirolo C, Testa N et al (2011) Switching the microglial harmful phenotype promotes lifelong restoration of subtantia nigra dopaminergic neurons from inflammatory neurodegeneration in aged mice. Rejuvenation Res 14(4):411–424PubMedGoogle Scholar
  136. Langston JW, Forno LS, Tetrud J et al (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46(4):598–605PubMedGoogle Scholar
  137. Larsen KE, Schmitz Y, Troyer MD et al (2006) Alpha-synuclein overexpression in PC12 and chromaffin cells impairs catecholamine release by interfering with a late step in exocytosis. J Neurosci 26(46):11915–11922PubMedGoogle Scholar
  138. Lee HJ, Chung KC (2012) PINK1 positively regulates IL-1β-mediated signaling through Tollip and IRAK1 modulation. J Neuroinflammation 9:271PubMedCentralPubMedGoogle Scholar
  139. Lee HJ, Jang SH, Kim H et al (2012a) PINK1 stimulates interleukin-1β-mediated inflammatory signaling via the positive regulation of TRAF6 and TAK1. Cell Mol Life Sci 69(19):3301–3315PubMedGoogle Scholar
  140. Lee BD, Shin JH, VanKampen J et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998–1000PubMedCentralPubMedGoogle Scholar
  141. Lee MK, Stirling W, Xu Y et al (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 –> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci U S A. 99(13):8968–8973PubMedCentralPubMedGoogle Scholar
  142. Lee JK, Tran T, Tansey MG (2009) Neuroinflammation in Parkinson’s disease. J Neuroimmune Pharmacol 4(4):419–429PubMedCentralPubMedGoogle Scholar
  143. Lee KW, Zhao X, Im JY et al (2012b) Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One 7(1):e29935PubMedCentralPubMedGoogle Scholar
  144. Li Z, Arnaud L, Rockwell P et al (2004) A single amino acid substitution in a proteasome subunit triggers aggregation of ubiquitinated proteins in stressed neuronal cells. J Neurochem 90(1):19–28PubMedGoogle Scholar
  145. Li M, Dai FR, Du XP et al (2012) Neuroprotection by silencing Inos expression in a 6-OHDA model of Parkinson’s disease. J Mol Neurosci 48(1):225–233PubMedGoogle Scholar
  146. Li X, Moore DJ, Xiong Y et al (2010a) Reevaluation of phosphorylation sites in the Parkinson disease-associated leucine-rich repeat kinase 2. J Biol Chem 285(38):29569–29576PubMedCentralPubMedGoogle Scholar
  147. Li X, Patel JC, Wang J et al (2010b) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci 30(5):1788–1797PubMedCentralPubMedGoogle Scholar
  148. Lin X, Parisiadou L, Sgobio C et al (2012) Conditional expression of Parkinson’s disease-related mutant α-synuclein in the midbrain dopaminergic neurons causes progressive neurodegeneration and degradation of transcription factor nuclear receptor related 1. J Neurosci 32(27):9248–9264PubMedCentralPubMedGoogle Scholar
  149. Ling ZD, Chang Q, Lipton JW et al (2004) Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 124(3):619–628PubMedGoogle Scholar
  150. Liou HH, Chen RC, Tsai YF (1996) Effects of paraquat on the substantia nigra of the Wistar rats: neurochemical, histological, and behavioral studies. Toxicol Appl Pharmacol 137(1):34–41PubMedGoogle Scholar
  151. Liu M, Bing G (2011) Lipopolysaccharide animal models for Parkinson’s disease. Parkinsons Dis 2011:327089PubMedCentralPubMedGoogle Scholar
  152. Liu J, Guo YM, Hirokawa M et al (2012 ) A synthetic double-stranded RNA, poly I:C, induces a rapid apoptosis of human CD34(+) cells. Exp Hematol 40(4):330–341PubMedGoogle Scholar
  153. Liu J, Wang MW, Gu P et al (2010) Microglial activation and age-related dopaminergic neurodegeneration in MPTP-treated SAMP8 mice. Brain Res 1345:213–220PubMedGoogle Scholar
  154. Lücking CB, Dürr A, Bonifati V et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567PubMedGoogle Scholar
  155. Luk KC, Kehm V, Carroll J et al (2012a) Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953PubMedCentralPubMedGoogle Scholar
  156. Luk KC, Kehm VM, Zhang B et al (2012b) Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J Exp Med 209(5):975–986PubMedCentralPubMedGoogle Scholar
  157. Machado A, Herrera AJ, Venero JL et al (2011) Inflammatory animal model for Parkinson’s disease: the intranigral injection of LPS induced the inflammatory process along with the selective degeneration of nigrostriatal dopaminergic neurons. ISRN Neurol 2011:476158PubMedCentralPubMedGoogle Scholar
  158. Maekawa T, Mori S, Sasaki Y et al (2012) The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities. Mol Neurodegener 7:15PubMedCentralPubMedGoogle Scholar
  159. Mangano EN, Litteljohn D, So R et al (2012) Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways. Neurobiol Aging 33(7):1411–1426PubMedGoogle Scholar
  160. Manning-Bog AB, McCormack AL, Li J et al (2002) The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: paraquat and alpha-synuclein. J Biol Chem 277(3):1641–1644PubMedGoogle Scholar
  161. Marinova-Mutafchieva L, Sadeghian M, Broom L et al (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6-hydroxydopamine model of Parkinson’s disease. J Neurochem 110(3):966–975PubMedGoogle Scholar
  162. Martin LJ, Pan Y, Price AC et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26(1):41–50PubMedGoogle Scholar
  163. Masliah E, Rockenstein E, Veinbergs I et al (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287(5456):1265–1269PubMedGoogle Scholar
  164. Masuda-Suzukake M, Nonaka T, Hosokawa M, Oikawa T et al (2013) Prion-like spreading of pathological α-synuclein in brain. Brain 136(Pt 4):1128–1138PubMedCentralPubMedGoogle Scholar
  165. Matsui H, Gavinio R, Asano T et al (2013) PINK1 and Parkin complementarily protect dopaminergic neurons in vertebrates. Hum Mol Genet 22(12):2423–2434PubMedGoogle Scholar
  166. Mazzio EA, Reams RR, Soliman KF (2004) The role of oxidative stress, impaired glycolysis and mitochondrial respiratory redox failure in the cytotoxic effects of 6-hydroxydopamine in vitro. Brain Res 1–2:24–29Google Scholar
  167. McClain JA, Phillips LL, Fillmore HL et al (2009) Increased MMP-3 and CTGF expression during lipopolysaccharide-induced dopaminergic neurodegeneration. Neurosci Lett 460(1):27–31PubMedGoogle Scholar
  168. McCoy MK, Martinez TN, Ruhn KA et al (2006) Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson’s disease. J Neurosci 26(37):9365–9375PubMedCentralPubMedGoogle Scholar
  169. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45PubMedCentralPubMedGoogle Scholar
  170. McGeer PL, Itagaki S, Boyes BE et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291PubMedGoogle Scholar
  171. McGeer PL, McGeer EG (1998) Glial cell reactions in neurodegenerative diseases: pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12(Suppl 2):S1–S6PubMedGoogle Scholar
  172. McGeer PL, Schwab C, Parent A et al (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 54(5):599–604PubMedGoogle Scholar
  173. Mena MA, García de Yébenes J (2008) Glial cells as players in parkinsonism: the “good,” the “bad,” and the “mysterious” glia. Neuroscientist 14(6):544–560PubMedGoogle Scholar
  174. Miake H, Mizusawa H, Iwatsubo T, Hasegawa M (2002) Biochemical characterization of the core structure of alpha-synuclein filaments. J Biol Chem 277(21):19213–19219PubMedGoogle Scholar
  175. Miklya I, Goltl P, Hafenscher F et al (2014) The role of parkin in Parkinson’s disease. Neuropsychopharmacol Hung 16(2):67–76PubMedGoogle Scholar
  176. Miller RM, Kiser GL, Kaysser-Kranich T et al (2007) Wild-type and mutant alpha-synuclein induce a multi-component gene expression profile consistent with shared pathophysiology in different transgenic mouse models of PD. Exp Neurol 204(1):421–432PubMedGoogle Scholar
  177. Mitra S, Chakrabarti N, Bhattacharyya A (2011) Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment. J Neuroinflammation 8:163PubMedCentralPubMedGoogle Scholar
  178. Moehle MS, Webber PJ, Tse T et al (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611PubMedCentralPubMedGoogle Scholar
  179. Mogi M, Togari A, Tanaka K et al (2000) Increase in level of tumor necrosis factor-alpha in 6-hydroxydopamine-lesioned striatum in rats is suppressed by immunosuppressant FK506. Neurosci Lett 289(3):165–168PubMedGoogle Scholar
  180. Mosharov EV, Staal RG, Bové J et al (2006) Alpha-synuclein overexpression increases cytosolic catecholamine concentration. J Neurosci 26(36):9304–9311PubMedGoogle Scholar
  181. Mount MP, Lira A, Grimes D et al (2007) Involvement of interferon-gamma in microglial-mediated loss of dopaminergic neurons. J Neurosci 27(12):3328–3337PubMedGoogle Scholar
  182. Mulcahy P, O’Doherty A, Paucard A, O’Brien T et al (2013) The behavioural and neuropathological impact of intranigral AAV-α-synuclein is exacerbated by systemic infusion of the Parkinson’s disease-associated pesticide, rotenone, in rats. Behav Brain Res 15(243):6–15Google Scholar
  183. Na SJ, DiLella AG, Lis EV et al (2010) Molecular profiling of a 6-hydroxydopamine model of Parkinson’s disease. Neurochem Res 35(5):761–772PubMedGoogle Scholar
  184. Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29(2):99–111PubMedGoogle Scholar
  185. Nemani VM, Lu W, Berge V et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79PubMedCentralPubMedGoogle Scholar
  186. Nguyen TA, Frank-Cannon T, Martinez TN et al (2013) Analysis of inflammation-related nigral degeneration and locomotor function in DJ-1(-/-) mice. J Neuroinflammation 10:50PubMedCentralPubMedGoogle Scholar
  187. Oestreicher E, Sengstock GJ, Riederer P et al (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660(1):8–18PubMedGoogle Scholar
  188. Ohnuki T, Nakamura A, Okuyama S et al (2010) Gene expression profiling in progressively MPTP-lesioned macaques reveals molecular pathways associated with sporadic Parkinson’s disease. Brain Res 1346:26–42PubMedGoogle Scholar
  189. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924PubMedGoogle Scholar
  190. Orenstein SJ, Kuo SH, Tasset I et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406PubMedCentralPubMedGoogle Scholar
  191. Pabon MM, Bachstetter AD, Hudson CE et al (2011) CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J Neuroinflammation 8:9PubMedCentralPubMedGoogle Scholar
  192. Paisán-Ruíz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600PubMedGoogle Scholar
  193. Park B, Yang J, Yun N et al (2010) Proteomic analysis of expression and protein interactions in a 6-hydroxydopamine-induced rat brain lesion model. Neurochem Int 57(1):16–32PubMedGoogle Scholar
  194. Paterna JC, Leng A, Weber E et al (2007) DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 15:698–704PubMedGoogle Scholar
  195. Perez FA, Curtis WR, Palmiter RD (2005) Parkin-deficient mice are not more sensitive to 6-hydroxydopamine or methamphetamine neurotoxicity. BMC Neurosci 6:71PubMedCentralPubMedGoogle Scholar
  196. Perumal AS, Gopal VB, Tordzro WK et al (1992) Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 29(5):699–701PubMedGoogle Scholar
  197. Pierre SR, Lemmens MA, Figueiredo-Pereira ME (2009) Subchronic infusion of the product of inflammation prostaglandin J2 models sporadic Parkinson’s disease in mice. J Neuroinflammation 6:18PubMedCentralPubMedGoogle Scholar
  198. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMedGoogle Scholar
  199. Poon HF, Frasier M, Shreve N et al (2005) Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice–a model of familial Parkinson’s disease. Neurobiol Dis 18(3):492–498PubMedGoogle Scholar
  200. Potashkin JA, Blume SR, Runkle NK (2011) Limitations of animal models of Parkinson’s disease. Parkinsons Dis 2011:658083PubMedCentralGoogle Scholar
  201. Pott Godoy MC, Tarelli R, Ferrari CC et al (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131(Pt 7):1880–1894PubMedGoogle Scholar
  202. Purisai MG, McCormack AL, Cumine S et al (2007) Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol Dis 25(2):392–400PubMedCentralPubMedGoogle Scholar
  203. Pycock CJ (1980) Turning behaviour in animals. Neuroscience 5(3):461–514PubMedGoogle Scholar
  204. Qin L, Liu Y, Wang T et al (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279(2):1415–1421Google Scholar
  205. Qin L, Wu X, Block ML et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462PubMedCentralPubMedGoogle Scholar
  206. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145PubMedGoogle Scholar
  207. Ransom BR, Kunis DM, Irwin I et al (1987) Astrocytes convert the parkinsonism inducing neurotoxin, MPTP, to its active metabolite, MPP+. Neurosci Lett 75(3):323–328PubMedGoogle Scholar
  208. Reynolds AD, Stone DK, Hutter JA, Benner EJ et al (2010) Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 184(5):2261–2271PubMedCentralPubMedGoogle Scholar
  209. Rezai-Zadeh K, Gate D, Town T (2009) CNS infiltration of peripheral immune cells: D-Day for neurodegenerative disease? J Neuroimmune Pharmacol 4(4):462–475PubMedCentralPubMedGoogle Scholar
  210. Riachi NJ, LaManna JC, Harik SI (1989) Entry of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into the rat brain. J Pharmacol Exp Ther 249(3):744–748PubMedGoogle Scholar
  211. Rochet JC, Outeiro TF, Conway KA et al (2004) Interactions among alpha-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci 23(1–2):23–34PubMedGoogle Scholar
  212. Rockenstein E, Mallory M, Hashimoto M et al (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68(5):568–578PubMedGoogle Scholar
  213. Rockenstein E, Nuber S, Overk CR, Ubhi K et al (2014) Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain (in press)Google Scholar
  214. Ross OA, Braithwaite AT, Skipper LM et al (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63(6):743–750PubMedGoogle Scholar
  215. Roy A, Ghosh A, Jana A et al (2012) Sodium phenylbutyrate controls neuroinflammatory and antioxidant activities and protects dopaminergic neurons in mouse models of Parkinson’s disease. PLoS One 7(6):e38113PubMedCentralPubMedGoogle Scholar
  216. Sadeghian M, Marinova-Mutafchieva L, Broom L et al (2012) Full and partial peroxisome proliferation-activated receptor-γ agonists, but not δ agonist, rescue of dopaminergic neurons in the 6-OHDA parkinsonian model is associated with inhibition of microglial activation and MMP expression. J Neuroimmunol 246(1–2):69–77PubMedGoogle Scholar
  217. Salama M, Arias-Carrión O (2011) Natural toxins implicated in the development of Parkinson’s disease. Ther Adv Neurol Disord 4(6):361–373PubMedCentralPubMedGoogle Scholar
  218. Sanchez-Guajardo V, Annibali A, Jensen PH et al (2013a) α-Synuclein vaccination prevents the accumulation of parkinson disease-like pathologic inclusions in striatum in association with regulatory t cell recruitment in a rat model. J Neuropathol Exp Neurol 72(7):624–645PubMedGoogle Scholar
  219. Sanchez-Guajardo V, Barnum CJ, Tansey MG et al (2013b) Neuroimmunological processes in Parkinson’s disease and their relation to α-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 5(2):113–139PubMedGoogle Scholar
  220. Sanchez-Guajardo V, Febbraro F, Kirik D et al (2010) Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One 5(1):e8784PubMedCentralPubMedGoogle Scholar
  221. Sánchez-Pernaute R, Ferree A, Cooper O et al (2004) Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson’s disease. J Neuroinflammation 1(1):6PubMedCentralPubMedGoogle Scholar
  222. Schober A (2004) Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215–224PubMedGoogle Scholar
  223. Sekiyama K, Sugama S, Fujita M et al (2012) Neuroinflammation in Parkinson’s disease and related disorders: a lesson from genetically manipulated mouse models of α-synucleinopathies. Parkinsons Dis. doi: 10.1155/2012/271732 PubMedCentralPubMedGoogle Scholar
  224. Selvakumar GP, Janakiraman U, Essa MM, Thenmozhi AJ et al (2014) Escin attenuates behavioral impairments, oxidative stress and inflammation in a chronic MPTP/probenecid mouse model of Parkinson׳s disease. Brain Res S0006–8993(14):00358Google Scholar
  225. Shaikh SB, Nicholson LF (2009) Effects of chronic low dose rotenone treatment on human microglial cells. Mol Neurodegener 4:55PubMedCentralPubMedGoogle Scholar
  226. Sherer TB, Betarbet R, Kim JH et al (2003a) Selective microglial activation in the rat rotenone model of Parkinson’s disease. Neurosci Lett 341(2):87–90PubMedGoogle Scholar
  227. Sherer TB, Betarbet R, Testa CM et al (2003b) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23(34):10756–10764PubMedGoogle Scholar
  228. Sherer TB, Kim JH, Betarbet R et al (2003c) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179(1):9–16PubMedGoogle Scholar
  229. Shimizu K, Ohtaki K, Matsubara K et al (2001) Carrier-mediated processes in blood–brain barrier penetration and neural uptake of paraquat. Brain Res 906(1–2):135–142PubMedGoogle Scholar
  230. Shimoji M, Pagan F, Healton EB et al (2009) CXCR4 and CXCL12 expression is increased in the nigro-striatal system of Parkinson’s disease. Neurotox Res 16(3):318–328PubMedGoogle Scholar
  231. Shin JH, Ko HS, Kang H et al (2011) PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144:689–702PubMedCentralPubMedGoogle Scholar
  232. Sindhu KM, Saravanan KS, Mohanakumar KP (2005) Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res 1–2:25–34Google Scholar
  233. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMedGoogle Scholar
  234. Solano RM, Casarejos MJ, Menéndez-Cuervo J et al (2008) Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28(3):598–611PubMedGoogle Scholar
  235. Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840PubMedGoogle Scholar
  236. Sriram K, Matheson JM, Benkovic SA et al (2002) Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 16(11):1474–1476PubMedGoogle Scholar
  237. Staal RG, Hananiya A, Sulzer D (2008) PKC theta activity maintains normal quantal size in chromaffin cells. J Neurochem 105(5):1635–1641PubMedGoogle Scholar
  238. Su X, Maguire-Zeiss KA, Giuliano R et al (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701PubMedCentralPubMedGoogle Scholar
  239. Sulzer D, Surmeier DJ (2013) Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord 28(1):41–50PubMedCentralPubMedGoogle Scholar
  240. Swanson CR, Joers V, Bondarenko V et al (2011) The PPAR-γ agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. J Neuroinflammation 8:91PubMedCentralPubMedGoogle Scholar
  241. Tanaka S, Ishii A, Ohtaki H et al (2013) Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation 10(1):143PubMedCentralPubMedGoogle Scholar
  242. Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37(3):510–518PubMedCentralPubMedGoogle Scholar
  243. Taylor JM, Main BS, Crack PJ (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 62(5):803–819PubMedGoogle Scholar
  244. Theodore S, Cao S, McLean PJ et al (2008) Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol 67(12):1149–1158PubMedCentralPubMedGoogle Scholar
  245. Thomas B, von Coelln R, Mandir AS et al (2007) MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. Neurobiol Dis 26:312–322PubMedCentralPubMedGoogle Scholar
  246. Thornton E, Vink R (2012) Treatment with a substance P receptor antagonist is neuroprotective in the intrastriatal 6-hydroxydopamine model of early Parkinson’s disease. PLoS One 7(4):e34138PubMedCentralPubMedGoogle Scholar
  247. Tobón-Velasco JC, Limón-Pacheco JH, Orozco-Ibarra M, Macías-Silva M et al (2013) 6-OHDA-induced apoptosis and mitochondrial dysfunction are mediated by early modulation of intracellular signals and interaction of Nrf2 and NF-κB factors. Toxicology 8(304):109–119Google Scholar
  248. Tofaris GK, Garcia Reitböck P, Humby T et al (2006) Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for Lewy body disorders. J Neurosci v26(15):3942–50Google Scholar
  249. Tomás-Camardiel M, Venero JL, de Pablos RM et al (2004) In vivo expression of aquaporin-4 by reactive microglia. J Neurochem 91(4):891–899PubMedGoogle Scholar
  250. Tran TA, Nguyen AD, Chang J et al (2011) Lipopolysaccharide and tumor necrosis factor regulate Parkin expression via nuclear factor-kappa B. PLoS One 6(8):e23660PubMedCentralPubMedGoogle Scholar
  251. Tufekci KU, Genc S, Genc K (2011) The endotoxin-induced neuroinflammation model of Parkinson’s disease. Parkinsons Dis 2011:487450PubMedCentralPubMedGoogle Scholar
  252. Tufekci KU, Meuwissen R, Genc S et al (2012) Inflammation in Parkinson’s disease. Adv Protein Chem Struct Biol. doi: 10.1016/B978-0-12-398314-5.00004-0 PubMedGoogle Scholar
  253. Ulusoy A, Decressac M, Kirik D et al (2010) Viral vector-mediated overexpression of α-synuclein as a progressive model of Parkinson’s disease. Prog Brain Res 184:89–111PubMedGoogle Scholar
  254. Unger EL, Eve DJ, Perez XA et al (2006) Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis. 21(2):431–443PubMedGoogle Scholar
  255. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160PubMedGoogle Scholar
  256. Vázquez-Claverie M, Garrido-Gil P, San Sebastián W et al (2009) Acute and chronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administrations elicit similar microglial activation in the substantia nigra of monkeys. J Neuropathol Exp Neurol 68(9):977–984PubMedGoogle Scholar
  257. Volpicelli-Daley LA, Luk KC, Patel TP et al (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71PubMedCentralPubMedGoogle Scholar
  258. von Coelln R, Kügler S, Bähr M, Weller M et al (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J Neurochem 77(1):263–273Google Scholar
  259. Von Coelln R, Thomas B, Savitt JM et al (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci 101:10744–10749Google Scholar
  260. Wachter B, Schürger S, Rolinger J et al (2010) Effect of 6-hydroxydopamine (6-OHDA) on proliferation of glial cells in the rat cortex and striatum: evidence for de-differentiation of resident astrocytes. Cell Tissue Res. 342(2):147–160PubMedGoogle Scholar
  261. Wang AL, Liou YM, Pawlak CR et al (2010) Involvement of NMDA receptors in both MPTP-induced neuroinflammation and deficits in episodic-like memory in Wistar rats. Behav Brain Res 208(1):38–46PubMedGoogle Scholar
  262. Wang Q, Shin EJ, Nguyen XK et al (2012) Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J Neuroinflammation 9:124PubMedCentralPubMedGoogle Scholar
  263. Wang XJ, Zhang S, Yan ZQ et al (2011) Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radic Biol Med 50(9):1094–1106PubMedGoogle Scholar
  264. Watson MB, Richter F, Lee SK et al (2012) Regionally-specific microglial activation in young mice over-expressing human wildtype alpha-synuclein. Exp Neurol 237(2):318–334PubMedCentralPubMedGoogle Scholar
  265. Wilms H, Rosenstiel P, Romero-Ramos M et al (2009) Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol 22(4):897–909PubMedGoogle Scholar
  266. Wu SY, Wang TF, Yu L et al (2011) Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav Immun 25(1):135–146PubMedGoogle Scholar
  267. Yadav S, Gupta SP, Srivastava G et al (2012) Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Neurochem Res 37(4):875–884PubMedGoogle Scholar
  268. Yasuda Y, Shimoda T, Uno K et al (2008) The effects of MPTP on the activation of microglia/astrocytes and cytokine/chemokine levels in different mice strains. J Neuroimmunol 204(1–2):43–51PubMedGoogle Scholar
  269. Yu Z, Xu X, Xiang Z et al (2010) Nitrated alpha-synuclein induces the loss of dopaminergic neurons in the substantia nigra of rats. PLoS One 5(4):e9956PubMedCentralPubMedGoogle Scholar
  270. Zarranz JJ, Alegre J, Gómez-Esteban JC et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173PubMedGoogle Scholar
  271. Zhang ZJ, Cheang LC, Wang MW et al (2011a) Ethanolic extract of fructus Alpinia oxyphylla protects against 6-hydroxydopamine-induced damage of PC12 cells in vitro and dopaminergic neurons in zebrafish. Cell Mol Neurobiol 32(1):27–40PubMedGoogle Scholar
  272. Zhang S, Wang XJ, Tian LP et al (2011b) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 8:154PubMedCentralPubMedGoogle Scholar
  273. Zhang W, Phillips K, Wielgus et al (2011c) Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res 19:63–72PubMedCentralPubMedGoogle Scholar
  274. Zhang Z, Zhang K, Du X et al (2012) Neuroprotection of desferrioxamine in lipopolysaccharide-induced nigrostriatal dopamine neuron degeneration. Mol Med Rep 5(2):562–566PubMedGoogle Scholar
  275. Zhou H, Falkenburger BH, Schulz JB et al (2007a) Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci 3:242–250PubMedCentralPubMedGoogle Scholar
  276. Zhou F, Wu JY, Sun XL et al (2007b) Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation. Neuropsychopharmacology 32(12):2570–2580PubMedGoogle Scholar
  277. Zhou H, Huang C, Tong J et al (2011) Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake. Int J Biol Sci 7(6):753–761PubMedCentralPubMedGoogle Scholar
  278. Zhou F, Yao HH, Wu JY et al (2008) Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12(5A):1559–1570PubMedCentralPubMedGoogle Scholar
  279. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Carolina Cebrián
    • 1
  • John D. Loike
    • 2
  • David Sulzer
    • 1
    • 3
    Email author
  1. 1.Department of NeurologyColumbia University Medical CenterNew YorkUSA
  2. 2.Department of Physiology and Cellular BiophysicsColumbia University Medical CenterNew YorkUSA
  3. 3.Departments of Psychiatry and PharmacologyColumbia University Medical CenterNew YorkUSA

Personalised recommendations