The Role of Serotonin, Vasopressin, and Serotonin/Vasopressin Interactions in Aggressive Behavior

  • Thomas R. Morrison
  • Richard H. MelloniJr.
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 17)


Aggression control has been investigated across species and is centrally mediated within various brain regions by several neural systems that interact at different levels. The debate over the degree to which any one system or region affects aggressive responding, or any behavior for that matter, in some senses is arbitrary considering the plastic and adaptive properties of the central nervous system. Nevertheless, from the reductionist point of view, the compartmentalization of evolutionarily maladaptive behaviors to specific regions and systems of the brain is necessary for the advancement of clinical treatments (e.g., pharmaceutical) and novel therapeutic methods (e.g., deep brain stimulation). The general purpose of this chapter is to examine the confluence of two such systems, and how their functional interaction affects aggressive behavior. Specifically, the influence of the serotonin (5HT) and arginine vasopressin (AVP) neural systems on the control of aggressive behavior will be examined individually and together to provide a context by which the understanding of aggression modulation can be expanded from seemingly parallel neuromodulatory mechanisms, to a single and highly interactive system of aggression control.


AAS Steroids Serotonin 5HT Vasopressin Aggression 


  1. Adamec RE (1990) Role of the amygdala and medial hypothalamus in spontaneous feline aggression and defense. Aggressive Behav 16(3–4):207–222Google Scholar
  2. Adams CF, Liley NR, Gorzalka BB (1996) PCPA increases aggression in male firemouth cichlids. Pharmacology 53(5):328–330PubMedGoogle Scholar
  3. Adams DB ((1976)) The relation of scent-marking, olfactory investigation, and specific postures in the isolation-induced fighting of rats. Behaviour 56(3–4–3):286–297Google Scholar
  4. Aghajanian GK, Wang RY (1978) Physiology and pharmacology of central serotonergic neurons. In: Lipton MA, DiMascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 171–183Google Scholar
  5. Albers HE, Bamshad M (1998) Role of vasopressin and oxytocin in the control of social behavior in Syrian hamsters (Mesocricetus auratus). In: Urban IJA, Burbach JPH, De Wied D (eds) Progress in brain research: advances in brain vasopressin, vol 119. Elsevier, New York, pp 395–408Google Scholar
  6. Albers HE, Dean A, Karom MC, Smith D, Huhman KL (2006) Role of V1a vasopressin receptors in the control of aggression in Syrian hamsters. Brain Res 1073(16):425–430PubMedGoogle Scholar
  7. Altemus M, Cizza G, Gold PW (1992) Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Res 593(2):311–313PubMedGoogle Scholar
  8. Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28(1):199–207PubMedGoogle Scholar
  9. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306(5697):879–881PubMedGoogle Scholar
  10. Antoni FA (1993) Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front Neuroendocrinol 14(2):76–122PubMedGoogle Scholar
  11. Arnt J, Hyttel J (1989) Facilitation of 8-OHDPAT-induced forepaw treading of rats by the 5-HT2 agonist DOI. Eur J Pharmacol 161(1):45–51PubMedGoogle Scholar
  12. Auerbach SB, Minzenberg MJ, Wilkinson LO (1989) Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 499(2):281–290PubMedGoogle Scholar
  13. Azmitia EC, Segal M (1978) An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179(3):641–667PubMedGoogle Scholar
  14. Azmitia EC, Whitaker-Azmitia PM (1995) Anatomy, cell biology, and plasticity of the serotonergic system. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress: an official publication of the American College of Neuropsychopharmacology, 1st edn. Raven Press, New York, pp 443–449Google Scholar
  15. Banjaw MY, Miczek K, Schmidt WJ (2006) Repeated Catha edulis oral administration enhances the baseline aggressive behavior in isolated rats. J Neural Transm 113(5):543–556PubMedGoogle Scholar
  16. Barberis C, Mouillac B, Durroux T (1998) Structural bases of vasopressin/oxytocin receptor function. J Endocrinol 156(2):223–229PubMedGoogle Scholar
  17. Barreto-Medeiros JM, Feitoza EG, Magalhaes K, Cabral-Filho JE, Manhaes-De-Castro FM, De-Castro CM, Manhaes-De-Castro R (2004) Malnutrition during brain growth spurt alters the effect of fluoxetine on aggressive behavior in adult rats. Nutr Neurosci 7(1):49–52PubMedGoogle Scholar
  18. Baumann MH, Partilla JS, Lehner KR, Thorndike EB, Hoffman AF, Holy M, Rothman RB et al (2013) Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal constituent of psychoactive “bath salts” products. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 38(4):552–562Google Scholar
  19. Bell R, Donaldson C, Gracey D (1995) Differential effects of CGS 12066B and CP-94,253 on murine social and agonistic behaviour. Pharmacol Biochem Behav 52(1):7–16PubMedGoogle Scholar
  20. Berlinger RW, Levinsky NG, Davidson DG, Eden M (1958) Dilution and concentration of the urine and the action of antidiuretic hormone. Am J Med 24(5):730–744Google Scholar
  21. Berman ME, McCloskey MS, Fanning JR, Schumacher JA, Coccaro EF (2009) Serotonin augmentation reduces response to attack in aggressive individuals. Psychol Sci 20(6):714–720PubMedCentralPubMedGoogle Scholar
  22. Bester-Meredith JK, Young LJ, Marler CA (1999) Species differences in paternal behavior and aggression in peromyscus and their associations with vasopressin immunoreactivity and receptors. Horm Behav 36(1):25–38PubMedGoogle Scholar
  23. Bexis S, Docherty JR (2006) Effects of MDMA, MDA and MDEA on blood pressure, heart rate, locomotor activity and body temperature in the rat involve alpha-adrenoceptors. Br J Pharmacol 147(8):926–934PubMedCentralPubMedGoogle Scholar
  24. Bielsky IF, Hu S-B, Szegda KL, Westphal H, Young LJ (2004) Profound impairment in social recognition and reduction in anxiety-like behavior in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29(3):483–493PubMedGoogle Scholar
  25. Birnbaumer M (2000) Vasopressin receptors. Trends Endocrinol Metab 11(10):406–410PubMedGoogle Scholar
  26. Bjork JM, Dougherty DM, Moeller FG, Swann AC (2000) Differential behavioral effects of plasma tryptophan depletion and loading in aggressive and nonaggressive men. Neuropsychopharmacology 22(4):357–369PubMedGoogle Scholar
  27. Blader JC (2006) Pharmacotherapy and postdischarge outcomes of child inpatients admitted for aggressive behavior. J Clin Psychopharmacol 26(4):419–425PubMedCentralPubMedGoogle Scholar
  28. Blanchard DC, Blanchard RJ (1999) Cocaine potentiates defensive behaviors related to fear and anxiety. Neurosci Biobehav Rev 23(7):981–991PubMedGoogle Scholar
  29. Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005) AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters. Pharmacol Biochem Behav 80(1):189–194PubMedGoogle Scholar
  30. Blier P, De Montigny C (1994) Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15(7):220–226PubMedGoogle Scholar
  31. Bluthé RM, Gheusi G, Dantzer R (1993) Gonadal steroids influence the involvement of arginine vasopressin in social recognition in mice. Psychoneuroendocrinology 18(4):323–335PubMedGoogle Scholar
  32. Bond AJ (2005) Antidepressant treatments and human aggression. Eur J Pharmacol 526(1–3):218–225PubMedGoogle Scholar
  33. Bouwknecht JA, Hijzen TH, Van Der Gugten J, Maes RA, Hen R, Olivier B (2001) Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol Psychiatry 49(7):557–568PubMedGoogle Scholar
  34. Brown GL, Goodwin FK, Ballenger JC, Goyer PF, Major LF (1979) Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Res 1(2):131–139PubMedGoogle Scholar
  35. Budisavljevic MN, Stewart L, Sahn SA, Ploth DW (2003) Hyponatremia associated with 3,4-methylenedioxymethylamphetamine (“ecstasy”) abuse. Am J Med Sci 326(2):89–93PubMedGoogle Scholar
  36. Caffé AR, Van Leeuwen FW, Luiten PG (1987) Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus. J Comp Neurol 261(2):237–252PubMedGoogle Scholar
  37. Caldwell HK, Albers HE (2004) Effect of photoperiod on vasopressin-induced aggression in Syrian hamsters. Horm Behav 46(4):444–449PubMedGoogle Scholar
  38. Caldwell HK, Young WS (2009) Persistence of reduced aggression in vasopressin 1b receptor knockout mice on a more “wild” background. Physiol Behav 97(1):131–134PubMedCentralPubMedGoogle Scholar
  39. Campbell M, Adams PB, Small AM, Kafantaris V, Silva RR, Shell J, Perry R et al (1995) Lithium in hospitalized aggressive children with conduct disorder: a double-blind and placebo-controlled study. J Am Acad Child Adolesc Psychiatry 34(4):445–453PubMedGoogle Scholar
  40. Campbell M, Small AM, Green WH, Jennings SJ, Perry R, Bennett WG, Anderson L (1984) Behavioral efficacy of haloperidol and lithium carbonate. a comparison in hospitalized aggressive children with conduct disorder. Arch Gen Psychiatry 41(7):650–656PubMedGoogle Scholar
  41. Campbell P, Ophir AG, Phelps SM (2009) Central vasopressin and oxytocin receptor distributions in two species of singing mice. J Comp Neurol 516(4):321–333PubMedGoogle Scholar
  42. Carrillo M, Ricci LA, Schwartzer JJ, Melloni RH (2010) Immunohistochemical characterization of 5-HT(3A) receptors in the Syrian hamster forebrain. Brain Res 1329:67–81PubMedGoogle Scholar
  43. Carter DA, Murphy D (1989) Independent regulation of neuropeptide mRNA level and poly(A) tail length. J Biol Chem 264(12):6601–6603PubMedGoogle Scholar
  44. Castro de Souza E, Rocha E Silva M (1977) The release of vasopressin by nicotine: further studies on its site of action. J physiol 265(2):297–311PubMedCentralPubMedGoogle Scholar
  45. Centenaro LA, Vieira K, Zimmermann N, Miczek KA, Lucion AB, de Almeida RMM (2008) Social instigation and aggressive behavior in mice: role of 5-HT1A and 5-HT1B receptors in the prefrontal cortex. Psychopharmacology 201(2):237–248PubMedGoogle Scholar
  46. Chamberlain B, Ervin FR, Pihl RO, Young SN (1987) The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. Pharmacol Biochem Behav 28(4):503–510PubMedGoogle Scholar
  47. Cherek DR (1981) Effects of smoking different doses of nicotine on human aggressive behavior. Psychopharmacology 75(4):339–345PubMedGoogle Scholar
  48. Cherek DR, Steinberg JL, Kelly TH, Robinson D (1987) Effects of d-amphetamine on aggressive responding of normal male subjects. NIDA Res Monogr 21(3):257–265Google Scholar
  49. Clarke PB (1987) Nicotine and smoking: a perspective from animal studies. Psychopharmacology 92(2):135–143PubMedGoogle Scholar
  50. Cleare AJ, Bond AJ (1995) The effect of tryptophan depletion and enhancement on subjective and behavioural aggression in normal male subjects. Psychopharmacology 118(1):72–81PubMedGoogle Scholar
  51. Clotfelter ED, O’Hare EP, McNitt MM, Carpenter RE, Summers CH (2007) Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens. Pharmacol Biochem Behav 87(2):222–231PubMedGoogle Scholar
  52. Coccaro EF, Kavoussi RJ (1997) Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Arch Gen Psychiatry 54(12):1081–1088PubMedGoogle Scholar
  53. Coccaro EF, Kavoussi RJ, Hauger RL, Cooper TB, Ferris CF (1998) Cerebrospinal fluid vasopressin levels: correlates with aggression and serotonin function in personality-disordered subjects. Arch Gen Psychiatry 55(8):708–714PubMedGoogle Scholar
  54. Coccaro EF, Lee R, Liu T, Mathé AA (2012) Cerebrospinal fluid neuropeptide Y-like immunoreactivity correlates with impulsive aggression in human subjects. Biol Psychiatry 72(12):997–1003. doi: 10.1016/j.biopsych.2012.07.029 PubMedGoogle Scholar
  55. Coccaro EF, Siever LJ, Klar HM, Maurer G, Cochrane K, Cooper TB, Mohs RC et al (1989) Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior. Arch Gen Psychiatry 46(7):587–599PubMedGoogle Scholar
  56. Cologer-Clifford A, Simon NG, Lu SF, Smoluk SA (1997) Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype. Pharmacol Biochem Behav 58(2):425–430PubMedGoogle Scholar
  57. Cooper MA, Karom M, Huhman KL, Albers HE (2005) Repeated agonistic encounters in hamsters modulate AVP V1a receptor binding. Horm Behav 48(5):545–551PubMedGoogle Scholar
  58. Crabbe JC, Phillips TJ, Feller DJ, Hen R, Wenger CD, Lessov CN, Schafer GL (1996) Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Nat Genet 14(1):98–101PubMedGoogle Scholar
  59. Cunningham MG, Connor CM, Zhang K, Benes FM (2005) Diminished serotonergic innervation of adult medial prefrontal cortex after 6-OHDA lesions in the newborn rat. Brain Res Dev Brain Res 157(2):124–131PubMedGoogle Scholar
  60. Darmani NA, Hadfield MG, Carter WH, Martin BR (1990) Acute and chronic effects of cocaine on isolation-induced aggression in mice. Psychopharmacology 42(2):317–321Google Scholar
  61. Datla KP, Bhattacharya SK (1990) Effect of selective monoamine oxidase A and B inhibitors on footshock induced aggression in paired rats. Indian J Exp Biol 28(8):742–745PubMedGoogle Scholar
  62. Datla KP, Mitra SK, Bhattacharya SK (1991) Serotonergic modulation of footshock induced aggression in paired rats. Indian J Exp Biol 29(7):631–635PubMedGoogle Scholar
  63. de Almeida RMM, Rosa MM, Santos DM, Saft DM, Benini Q, Miczek KA (2006) 5-HT(1B) receptors, ventral orbitofrontal cortex, and aggressive behavior in mice. Psychopharmacology 185(4):441–450PubMedGoogle Scholar
  64. de Almeida RM, Lucion AB (1997) 8-OH-DPAT in the median raphe, dorsal periaqueductal gray and corticomedial amygdala nucleus decreases, but in the medial septal area it can increase maternal aggressive behavior in rats. Psychopharmacology 134(4):392–400PubMedGoogle Scholar
  65. de Almeida RM, Nikulina EM, Faccidomo S, Fish EW, Miczek KA (2001) Zolmitriptan—a 5-HT1B/D agonist, alcohol, and aggression in mice. Psychopharmacology 157(2):131–141PubMedGoogle Scholar
  66. de Almeida RMM, Miczek KA (2002) Aggression escalated by social instigation or by discontinuation of reinforcement (“frustration”) in mice: inhibition by anpirtoline: a 5-HT1B receptor agonist. Neuropsychopharmacology 27(2):171–181PubMedGoogle Scholar
  67. De Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139PubMedGoogle Scholar
  68. De Boer SF, Lesourd M, Mocaer E, Koolhaas JM (1999) Selective antiaggressive effects of alnespirone in resident-intruder test are mediated via 5-hydroxytryptamine1A receptors: a comparative pharmacological study with 8-hydroxy-2-dipropylaminotetralin, ipsapirone, buspirone, eltoprazine, and WAY-100635. J Pharmacol Exp Ther 288(3):1125–1133PubMedGoogle Scholar
  69. De Montigny C, Chaput Y, Blier P (1990) Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers. J Clin Psychiatry 5(12 Supplement B):4–8Google Scholar
  70. De Vries GJ, Buijs RM (1983) The origin of the vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res 273(2):307–317PubMedGoogle Scholar
  71. De Vries GJ, Buijs RM, Sluiter AA (1984) Gonadal hormone actions on the morphology of the vasopressinergic innervation of the adult rat brain. Brain Res 298(1):141–145PubMedGoogle Scholar
  72. De Vries GJ, Buijs RM, Swaab DF (1981) Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain—presence of a sex difference in the lateral septum. Brain Res 218(1–2):67–78PubMedGoogle Scholar
  73. De Vries GJ, Buijs RM, Van Leeuwen FW, Caffé AR, Swaab DF (1985) The vasopressinergic innervation of the brain in normal and castrated rats. J Comp Neurol 233(2):236–254Google Scholar
  74. Deckel AW (1996) Behavioral changes in Anolis carolinensis following injection with fluoxetine. Behav Brain Res 78(2):175–182PubMedGoogle Scholar
  75. DeLeon KR, Grimes JM, Connor DF, Melloni RH (2002a) Adolescent cocaine exposure and offensive aggression: involvement of serotonin neural signaling and innervation in male Syrian hamsters. Behav Brain Res 133(2):211–220PubMedGoogle Scholar
  76. DeLeon KR, Grimes JM, Melloni RH (2002b) Repeated anabolic–androgenic steroid treatment during adolescence increases vasopressin V(1A) receptor binding in Syrian hamsters: correlation with offensive aggression. Horm Behav 42(2):182–191PubMedGoogle Scholar
  77. Deller T, Leranth C, Frotscher M (1994) Reciprocal connections of lateral septal neurons and neurons in the lateral hypothalamus in the rat: a combined phaseolus vulgaris-leucoagglutinin and Fluoro-Gold immunocytochemical study. Neurosci Lett 168(1–2):119–122PubMedGoogle Scholar
  78. Delville Y, De Vries GJ, Ferris CF (2000) Neural connections of the anterior hypothalamus and agonistic behavior in golden hamsters. Brain Behav Evol 55(2):53–76PubMedGoogle Scholar
  79. Delville Y, Mansour KM, Ferris CF (1996) Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiol Behav 60(1):25–29PubMedGoogle Scholar
  80. DeNapoli JS, Dodman NH, Shuster L, Rand WM, Gross KL (2000) Effect of dietary protein content and tryptophan supplementation on dominance aggression, territorial aggression, and hyperactivity in dogs. J Am Vet Med Assoc 164(10):1042–1043Google Scholar
  81. Dolan M, Anderson IM, Deakin JF (2001) Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders. Br J Psychiatry 178(4):352–359PubMedGoogle Scholar
  82. Dorrego MF, Canevaro L, Kuzis G, Sabe L, Starkstein SE (2002) A randomized, double-blind, crossover study of methylphenidate and lithium in adults with attention-deficit/hyperactivity disorder: preliminary findings. J Neuropsychiatry Clin Neurosci 14(3):289–295PubMedGoogle Scholar
  83. Dorsa DM, Petracca FM, Baskin DG, Cornett LE (1984) Localization and characterization of vasopressin-binding sites in the amygdala of the rat brain. J Neurosci 4(7):1764–1770PubMedGoogle Scholar
  84. Dremencov E, Gur E, Lerer B, Newman ME (2002) Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 26(6):729–739Google Scholar
  85. Drincic A, Robertson GL (1999) Treatment of diabetes insipidus. In: Mickle AW (ed) Hormone replacement therapy: contemporary endocrinology, 1st edn. Humana, New Jersey, pp 21–38Google Scholar
  86. Duan X, Ju G (1998) The organization of chemically characterized afferents to the perivascular neuronal groups of the hypothalamic magnocellular neurosecretory system in the rat. Brain Res Bull 46(5):409–415PubMedGoogle Scholar
  87. Dubois-Dauphin M, Pevet P, Tribollet E, Dreifuss JJ (1990) Vasopressin in the brain of the golden hamster: the distribution of vasopressin binding sites and of immunoreactivity to the vasopressin-related glycopeptide. J Comp Neurol 300(4):535–548PubMedGoogle Scholar
  88. Dubois-Dauphin M, Tribollet E, Dreifuss JJ (1989) Distribution of neurohypophysial peptides in the guinea pig brain. I. An immunocytochemical study of the vasopressin-related glycopeptide. Brain Res 496(1–2):45–65PubMedGoogle Scholar
  89. Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29(7):1321–1330PubMedGoogle Scholar
  90. El Mansari M, Sánchez C, Chouvet G, Renaud B, Haddjeri N (2005) Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: an in vivo electrophysiological study in rat brain. Neuropsychopharmacology 30(7):1269–1277PubMedGoogle Scholar
  91. Engelmann M, Landgraf R (1994) Microdialysis administration of vasopressin into the septum improves social recognition in Brattleboro rats. Physiol Behav 55(1):145–149PubMedGoogle Scholar
  92. Engelmann M, Wotjak CT, Neumann I, Ludwig M, Landgraf R (1996) Behavioral consequences of intracerebral vasopressin and oxytocin: focus on learning and memory. Neurosci Biobehav Rev 20(3):341–358PubMedGoogle Scholar
  93. Faccidomo S, Bannai M, Miczek KA (2008) Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology 33(12):2888–2899PubMedGoogle Scholar
  94. Fairbanks LA, Melega WP, Jorgensen MJ, Kaplan JR, McGuire MT (2001) Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology 24(4):370–378PubMedGoogle Scholar
  95. Fass JA, Fass AD, Garcia AS (2012) Synthetic cathinones (bath salts): legal status and patterns of abuse. Ann Pharmacother 46(3):436–441. doi: 10.1345/aph.1Q628 PubMedGoogle Scholar
  96. Fenton RA, Brønd L, Nielsen S, Praetorius J (2007) Cellular and subcellular distribution of the type-2 vasopressin receptor in the kidney. Am J Physiol Ren Physiol 293(3):748–760Google Scholar
  97. Ferris CF (1996) Serotonin diminishes aggression by suppressing the activity of the vasopressin system. Ann N Y Acad Sci 794:98–103PubMedGoogle Scholar
  98. Ferris CF, Axelson JF, Martin AM, Roberge LF (1989) Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience 29(3):675–683PubMedGoogle Scholar
  99. Ferris CF, Axelson JF, Shinto LH, Albers HE (1987) Scent marking and the maintenance of dominant/subordinate status in male golden hamsters. Physiol Behav 40(5):661–664PubMedGoogle Scholar
  100. Ferris CF, Irvin RW, Potegal M, Axelson JF (1990) Kainic acid lesion of vasopressinergic neurons in the hypothalamus disrupts flank marking behavior in golden hamsters. J Neuroendocrinol 2(2):123–129PubMedGoogle Scholar
  101. Ferris CF, Lu S-F, Messenger T, Guillon CD, Heindel N, Miller M, Koppel G et al (2006) Orally active vasopressin V1a receptor antagonist, SRX251, selectively blocks aggressive behavior. Pharmacol Biochem Behav 83(2):169–174PubMedGoogle Scholar
  102. Ferris CF, Pollock J, Albers HE, Leeman SE (1985) Inhibition of flank-marking behavior in golden hamsters by microinjection of a vasopressin antagonist into the hypothalamus. Neurosci Lett 55(2):239–243PubMedGoogle Scholar
  103. Ferris CF, Stolberg T, Delville Y (1999) Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behav Neurosci 113(4):804–815PubMedGoogle Scholar
  104. Ferris CF, Melloni RH, Koppel G, Perry KW, Fuller RW, Delville Y (1997) Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. J Neurosci 17(11):4331–4340PubMedGoogle Scholar
  105. Ferris CF, Potegal M (1988) Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiol Behav 44(2):235–239PubMedGoogle Scholar
  106. Festing MF (1972) Hamsters. In: University Federation for Animal Welfare (ed) The UFAW handbook on the care and management of laboratory animals, 4th edn. Williams and Wilkins, Baltimore, pp 242–256 Google Scholar
  107. Fish EW, Faccidomo S, Miczek KA (1999) Aggression heightened by alcohol or social instigation in mice: reduction by the 5-HT(1B) receptor agonist CP-94,253. Psychopharmacology 146(4):391–399PubMedGoogle Scholar
  108. Fraga IC, Fregoneze JB, Carvalho FLQ, Dantas KB, Azevedo CS, Pinho CB, De Castro E, Silva E (2005) Acute fluoxetine administration differentially affects brain C-Fos expression in fasted and refed rats. Neuroscience 134(1):327–334PubMedGoogle Scholar
  109. Franzini A, Messina G, Cordella R, Marras C, Broggi G (2010) Deep brain stimulation of the posteromedial hypothalamus: indications, long-term results, and neurophysiological considerations. Neurosurg Focus 29(2):E13PubMedGoogle Scholar
  110. Gainer H (1998) Cell-specific gene expression in oxytocin and vasopressin magnocellular neurons. Adv Exp Med Biol 449:15–27PubMedGoogle Scholar
  111. Gerona R, Wu A (2012) Bath salts. Clin Lab Med 32(3):415–427PubMedGoogle Scholar
  112. Gerstberger R, Fahrenholz F (1989) Autoradiographic localization of V1 vasopressin binding sites in rat brain and kidney. Eur J Pharmacol 167(1):105–116PubMedGoogle Scholar
  113. Giammanco S, Ernandes M, Lopez De Onate R, Paderni MA (1990) Short term diet of precooked corn meal almost lacking in tryptophan and interspecific rat-mouse aggressive behaviour. Archives Internationales de Physiologie et de Biochimie 98(1):23–26PubMedGoogle Scholar
  114. Giri PR, Dave JR, Tabakoff B, Hoffman PL (1990) Arginine vasopressin induces the expression of c-fos in the mouse septum and hippocampus. Brain Res Mol Brain Res 7(2):131–137PubMedGoogle Scholar
  115. Gobrogge KL, Liu Y, Young LJ, Wang Z (2009) Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. Proc Nat Acad Sci USA 106(45):19144–19149PubMedCentralPubMedGoogle Scholar
  116. Gough B, Ali SF, Slikker W, Holson RR (1991) Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on monoamines in rat caudate. Pharmacol Biochem Behav 39(3):619–623PubMedGoogle Scholar
  117. Griebel G, Beeske S, Stahl S (2012) The vasopressin Vlb receptor antagonist SSR149415 in the treatment of major depressive and generalized anxiety disorders: results from 4 randomized, double-blind, placebo-controlled studies. J Clin Psychiatry 73(11):1403–1411PubMedGoogle Scholar
  118. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, Maffrand J-P et al (2002) Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149415, suggest an innovative approach for the treatment of stress-related disorders. Proc Nat Acad Sci USA 99(9):6370–6375PubMedCentralPubMedGoogle Scholar
  119. Griebel G, Simiand J, Stemmelin J, Serradeil-Le GC, Steinberg R (2003) The vasopressin V1b receptor as a therapeutic target in stress-related disorders. Curr Drug Targets CNS Neurol Disord 2(3):191–200Google Scholar
  120. Grimes JM, Melloni RH (2002) Serotonin modulates offensive attack in adolescent anabolic steroid-treated hamsters. Pharmacol Biochem Behav 73(3):713–721PubMedGoogle Scholar
  121. Grimes JM, Melloni RH (2005) Serotonin-1B receptor activity and expression modulate the aggression-stimulating effects of adolescent anabolic steroid exposure in hamsters. Behav Neurosci 119(5):1184–1194PubMedGoogle Scholar
  122. Grimes JM, Melloni RH (2006) Prolonged alterations in the serotonin neural system following the cessation of adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behav Neurosci 120(6):1242–1251PubMedGoogle Scholar
  123. Grimes JM, Ricci LA, Melloni RH (2006) Plasticity in anterior hypothalamic vasopressin correlates with aggression during anabolic-androgenic steroid withdrawal in hamsters. Behav Neurosci 120(1):115–124PubMedGoogle Scholar
  124. Grimes JM, Ricci LA, Melloni RH (2007) Alterations in anterior hypothalamic vasopressin, but not serotonin, correlate with the temporal onset of aggressive behavior during adolescent anabolic-androgenic steroid exposure in hamsters (Mesocricetus auratus). Behav Neurosci 121(5):941–948PubMedGoogle Scholar
  125. Guo JD, Rainnie DG (2010) Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis. Neuroscience 165(4):1390–1401PubMedCentralPubMedGoogle Scholar
  126. Harrison RJ, Connor DF, Nowak C, Nash K, Melloni RH (2000) Chronic anabolic-androgenic steroid treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology 25(4):317–338PubMedGoogle Scholar
  127. Henry JA, Fallon JK, Kicman AT, Hutt AJ, Cowan DA, Forsling M (1998) Low-dose MDMA (“ecstasy”) induces vasopressin secretion. Lancet 351(9118):1784PubMedGoogle Scholar
  128. Hermans EJ, Ramsey NF, Van Honk J (2008) Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biol Psychiatry 63(3):263–270PubMedGoogle Scholar
  129. Hernando F, Schoots O, Lolait SJ, Burbach JP (2001) Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology 142(4):1659–1668PubMedGoogle Scholar
  130. Ho HP, Olsson M, Westberg L, Melke J, Eriksson E (2001) The serotonin reuptake inhibitor fluoxetine reduces sex steroid-related aggression in female rats: an animal model of premenstrual irritability? Neuropsychopharmacology 24(5):502–510PubMedGoogle Scholar
  131. Holden R, Jackson MA (1996) Near-fatal hyponatraemic coma due to vasopressin over-secretion after “ecstasy” (3,4-MDMA). Lancet 347(9007):1052PubMedGoogle Scholar
  132. Holmes CL, Walley KR, Chittock DR, Lehman T, Russell JA (2001) The effects of vasopressin on hemodynamics and renal function in severe septic shock: a case series. Intensive Care Med 27(8):1416–1421PubMedGoogle Scholar
  133. Homberg JR, Schiepers OJG, Schoffelmeer ANM, Cuppen E, Vanderschuren LJMJ (2007) Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats. Psychopharmacology 195(2):175–182PubMedCentralPubMedGoogle Scholar
  134. Hoorneman EM, Buijs RM (1982) Vasopressin fiber pathways in the rat brain following suprachiasmatic nucleus lesioning. Brain Res 243(2):235–241PubMedGoogle Scholar
  135. Horn AS (1990) Dopamine uptake: a review of progress in the last decade. Prog Neurobiol 34(5):387–400PubMedGoogle Scholar
  136. Huang YY, Grailhe R, Arango V, Hen R, Mann JJ (1999) Relationship of psychopathology to the human serotonin1B genotype and receptor binding kinetics in postmortem brain tissue. Neuropsychopharmacology 21(2):238–246PubMedGoogle Scholar
  137. Ibi D, Takuma K, Koike H, Mizoguchi H, Tsuritani K, Kuwahara Y, Kamei H et al (2008) Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J Neurochem 105(3):921–932PubMedGoogle Scholar
  138. Invernizzi R, Belli S, Samanin R (1992) Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res 584(1–2):322–324PubMedGoogle Scholar
  139. Invernizzi R, Bramante M, Samanin R (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 260(2–3):243–246PubMedGoogle Scholar
  140. Invernizzi R, Bramante M, Samanin R (1996) Role of 5-HT1A receptors in the effects of acute and chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol Biochem Behav 54(1):143–147PubMedGoogle Scholar
  141. Iovino M, Steardo L (1985) Effect of substances influencing brain serotonergic transmission on plasma vasopressin levels in the rat. Eur J Pharmacol 113(1):99–103PubMedGoogle Scholar
  142. Irvin RW, Szot P, Dorsa DM, Potegal M, Ferris CF (1990) Vasopressin in the septal area of the golden hamster controls scent marking and grooming. Physiol Behav 48(5):693–699PubMedGoogle Scholar
  143. Jackson D, Burns R, Trksak G, Simeone B, DeLeon KR, Connor DF, Harrison RJ et al (2005) Anterior hypothalamic vasopressin modulates the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters. Neuroscience 133(3):635–646PubMedGoogle Scholar
  144. Jarrell H, Hoffman JB, Kaplan JR, Berga S, Kinkead B, Wilson ME (2008) Polymorphisms in the serotonin reuptake transporter gene modify the consequences of social status on metabolic health in female rhesus monkeys. Physiol Behav 93(4–5):807–819PubMedCentralPubMedGoogle Scholar
  145. Johnson MP, Conarty PF, Nichols DE (1991) [3H]monoamine releasing and uptake inhibition properties of 3,4-methylenedioxymethamphetamine and p-chloroamphetamine analogues. Eur J Pharmacol 200(1):9–16PubMedGoogle Scholar
  146. Joppa MA, Rowe RK, Meisel RL (1997) Effects of serotonin 1A or 1B receptor agonists on social aggression in male and female Syrian hamsters. Pharmacol Biochem Behav 58(2):349–353PubMedGoogle Scholar
  147. Kania BF, Gralak MA, Wielgosz M (2012) Four-week fluoxetine (SSRI) exposure diminishes aggressive behaviour of male Siamese fighting fish (Betta splendens). J Behav Brain Sci 2(2):185–190Google Scholar
  148. Keele NB (2001) Phenytoin inhibits isolation-induced aggression specifically in rats with low serotonin. NeuroReport 12(6):1107–1112PubMedGoogle Scholar
  149. Kessel B (1994) Hyponatraemia after ingestion of ecstasy. BMJ (Clinical research ed.) 308(6925):414Google Scholar
  150. Kirilly E, Benko A, Ferrington L, Ando RD, Kelly PAT, Bagdy G (2006) Acute and long-term effects of a single dose of MDMA on aggression in dark Agouti rats. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacol CINP 9(1):63–76Google Scholar
  151. Klein SL, Hairston JE, DeVries AC, Nelson RJ (1997) Social-environment and steroid-hormones affect species and sex-differences in immune function among voles. Horm Behav 32:30–39PubMedGoogle Scholar
  152. Knyshevski I, Connor DF, Harrison RJ, Ricci LA, Melloni RH (2005a) Persistent activation of select forebrain regions in aggressive, adolescent cocaine-treated hamsters. Behav Brain Res 159(2):277–286PubMedGoogle Scholar
  153. Knyshevski I, Ricci LA, McCann TE, Melloni RH (2005b) Serotonin type-1A receptors modulate adolescent, cocaine-induced offensive aggression in hamsters. Physiol Behav 85(2):167–176PubMedGoogle Scholar
  154. Koolhaas JM, Everts H, De Ruiter AJ, De Boer SF, Bohus B (1998) Coping with stress in rats and mice: differential peptidergic modulation of the amygdala-lateral septum complex. Prog Brain Res 119:437–448PubMedGoogle Scholar
  155. Koolhaas JM, Moor E, Hiemstra Y, Bohus B (1991) The testosterone-dependent vasopressinergic neurons in the medial amygdala and lateral septum: involvement in social behaviour of male rats. In: Jard S (ed) Vasopressin. John Libbey, Paris, pp 213–219Google Scholar
  156. Koolhaas JM, Van den Brink THC, Roozendaal B, Boorsma F (1990) Medial amygdala and aggressive behavior: interaction between testosterone and vasopressin. Aggressive Behav 16(3–4):223–229Google Scholar
  157. Kostowski W, Valzelli L, Kozak W, Bernasconi S (1984) Activity of desipramine, fluoxetine and nomifensine on spontaneous and p-CPA-induced muricidal aggression. Pharmacol Res Commun 16(3):265–271PubMedGoogle Scholar
  158. Kruesi MJ, Rapoport JL, Hamburger S, Hibbs E, Potter WZ, Lenane M, Brown GL (1990) Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Arch Gen Psychiatry 47(5):419–426PubMedGoogle Scholar
  159. Kulikov AV, Osipova DV, Naumenko VS, Popova NK (2005) Association between Tph2 gene polymorphism, brain tryptophan hydroxylase activity and aggressiveness in mouse strains. Genes Brain Behav 4(8):482–485PubMedGoogle Scholar
  160. Kuroda Y, Watanabe Y, McEwen BS (1994) Tianeptine decreases both serotonin transporter mRNA and binding sites in rat brain. Eur J Pharmacol 268(1):R3–R5PubMedGoogle Scholar
  161. Lappalainen J, Long JC, Eggert M, Ozaki N, Robin RW, Brown GL, Goldman D (1998) Linkage of antisocial alcoholism to the serotonin 5-HT1B receptor gene in 2 populations. Arch Gen Psychiatry 55(11):989 Google Scholar
  162. Leonardi ET, Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacol 10(4):231–238Google Scholar
  163. Lesch KP, Merschdorf U (2000) Impulsivity, aggression, and serotonin: a molecular psychobiological perspective. Behav Sci law 18(5):581–604PubMedGoogle Scholar
  164. Lewis DA (1990) The organization of chemically-identified neural systems in monkey prefrontal cortex: afferent systems. Prog Neuropsychopharmacol Biol Psychiatry 14(3):371–377PubMedGoogle Scholar
  165. Linnoila M, Virkkunen M, Scheinin M, Nuutila A, Rimon R, Goodwin FK (1983) Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Sci 33(26):2609–2614PubMedGoogle Scholar
  166. Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young WS, Mezey E et al (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Nat Acad Sci USA 92(15):6783–6787PubMedCentralPubMedGoogle Scholar
  167. Lynn SE, Egar JM, Walker BG, Sperry TS, Ramenofsky M (2007) Fish on Prozac: a simple, noninvasive physiology laboratory investigating the mechanisms of aggressive behavior in Betta splendens. Adv Physiol Educ 31(4):358–363PubMedGoogle Scholar
  168. Maciag D, Simpson KL, Coppinger D, Lu Y, Wang Y, Lin RCS, Paul IA (2006) Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31(1):47–57PubMedCentralPubMedGoogle Scholar
  169. Mahoney PD, Koh ET, Irvin RW, Ferris CF (1990) Computer-aided mapping of vasopressin neurons in the hypothalamus of the male golden Hamster: evidence of magnocellular neurons that do not project to the neurohypophysis. J Neuroendocrinol 2(2):113–122PubMedGoogle Scholar
  170. Maj J, Mogilnicka E, Klimek V, Kordecka-Magiera A (1981) Chronic treatment with antidepressants: protentiation of clonidine-induced aggression in mice via noradrenergic mechanism. J Neural Transm (Vienna, Austria: 1996) 52(3):189–197Google Scholar
  171. Malay MB, Ashton RC, Landry DW, Townsend RN (1999) Low-dose vasopressin in the treatment of vasodilatory septic shock. J Trauma 47(4):699–705PubMedGoogle Scholar
  172. Malone RP, Delaney MA, Luebbert JF, Cater J, Campbell M (2000) A double-blind placebo-controlled study of lithium in hospitalized aggressive children and adolescents with conduct disorder. Arch Gen Psychiatry 57(7):649–654PubMedGoogle Scholar
  173. Mason WT, Ho YW, Hatton GI (1984) Axon collaterals of supraoptic neurones: anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience 11(1):169–182PubMedGoogle Scholar
  174. Matto V, Skrebuhhova T, Allikmets L (1998) The effect of antidepressants on rat aggressive behavior in the electric footshock and apomorphine-induced aggressiveness paradigms. Methods Find Exp Clin Pharmacol 20(4):329–337PubMedGoogle Scholar
  175. Maxwell DL, Polkey MI, Henry JA (1993) Hyponatraemia and catatonic stupor after taking “ecstasy”. BMJ (Clinical research ed) 307(6916):1399Google Scholar
  176. Melloni RH, Connor DF, Hang PT, Harrison RJ, Ferris CF (1997) Anabolic-androgenic steroid exposure during adolescence and aggressive behavior in golden hamsters. Physiol Behav 61(3):359–364PubMedGoogle Scholar
  177. Melloni RH, Ricci LA (2010) Adolescent exposure to anabolic/androgenic steroids and the neurobiology of offensive aggression: a hypothalamic neural model based on findings in pubertal Syrian hamsters. Horm Behav 58(1):177–191PubMedGoogle Scholar
  178. Micev V, Lynch DM (1974) Effect of lithium on disturbed severely mentally retarded patients. Br J Psychiatry 125(584):110–111PubMedGoogle Scholar
  179. Miczek KA, de Almeida RM (2001) Oral drug self-administration in the home cage of mice: alcohol-heightened aggression and inhibition by the 5-HT1B agonist anpirtoline. Psychopharmacology 157(4):421–429PubMedGoogle Scholar
  180. Miczek KA, Tidey JW (1989) Amphetamines: aggressive and social behavior. NIDA Res Monogr 94:68–100PubMedGoogle Scholar
  181. Miczek KA, Hussain S, Faccidomo S (1998) Alcohol-heightened aggression in mice: attenuation by 5-HT 1A receptor agonists. Psychopharmacology 139(1–2):160–168PubMedGoogle Scholar
  182. Militante JD, Lombardini JB (2002) Treatment of hypertension with oral taurine: experimental and clinical studies. Amino Acids 23(4):381–393PubMedGoogle Scholar
  183. Miller LL, Whitsett JM, Vandenbergh JG, Colby DR (1977) Physical and behavioral aspects of sexual maturation in male golden hamsters. J Comp Physiol Psychol 91(2):245–259PubMedGoogle Scholar
  184. Mitchell PJ, Fletcher A, Redfern PH (1991) Is antidepressant efficacy revealed by drug-induced changes in rat behaviour exhibited during social interaction? Neurosci Biobehav Rev 15(4):539–544PubMedGoogle Scholar
  185. Mocaer E, Rettori MC, Kamoun A (1988) Pharmacological antidepressive effects and tianeptine-induced 5-HT uptake increase. Clin Neuropharmacol 11(Suppl 2):S32–S42PubMedGoogle Scholar
  186. Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17(9):3157–3167PubMedGoogle Scholar
  187. Mos J, Olivier B, Poth M, Van Oorschot R, Van Aken H (1993) The effects of dorsal raphe administration of eltoprazine, TFMPP and 8-OH-DPAT on resident intruder aggression in the rat. Eur J Pharmacol 238(2–3):411–415PubMedGoogle Scholar
  188. Muehlenkamp F, Lucion A, Vogel WH (1995) Effects of selective serotonergic agonists on aggressive behavior in rats. Pharmacol Biochem Behav 50(4):671–674PubMedGoogle Scholar
  189. Munro AD (1986) Effects of melatonin, serotonin, and naloxone on aggression in isolated cichlid fish (Aequidens pulcher). J Pineal Res 3(3):257–262PubMedGoogle Scholar
  190. Navarro JF, Maldonado E (1999) Behavioral profile of 3,4-methylenedioxy-methamphetamine (MDMA) in agonistic encounters between male mice. Prog Neuropsychopharmacol Biol Psychiatry 23(2):327–334PubMedGoogle Scholar
  191. Nencini P (1988) The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines. Pharmacol Biochem Behav 30(3):755–764PubMedGoogle Scholar
  192. Nephew BC, Febo M (2010) Effect of cocaine sensitization prior to pregnancy on maternal care and aggression in the rat. Psychopharmacology 209(1):127–135PubMedGoogle Scholar
  193. New AS, Trestman RF, Mitropoulou V, Goodman M, Koenigsberg HH, Silverman J, Siever LJ (2004) Low prolactin response to fenfluramine in impulsive aggression. J Psychiatr Res 38(3):223–230PubMedGoogle Scholar
  194. Nielsen S, Frøkiaer J, Marples D, Kwon T-H, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82(1):205–244PubMedGoogle Scholar
  195. Olivier B, Mos J, Van Oorschot R, Hen R (1995) Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28(Suppl 2):80–90PubMedGoogle Scholar
  196. Olivier B (2004) Serotonin and aggression. Ann N Y Acad Sci 1036:382–392. doi: 10.1196/annals.1330.022 PubMedGoogle Scholar
  197. Olivier B, Van Oorschot R (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526(1–3):207–217PubMedGoogle Scholar
  198. Ostrowski NL, Lolait SJ, Bradley DJ, O’Carroll AM, Brownstein MJ, Young WS (1992) Distribution of V1a and V2 vasopressin receptor messenger ribonucleic acids in rat liver, kidney, pituitary and brain. Endocrinology 131(1):533–535PubMedGoogle Scholar
  199. Ostrowski NL, Lolait SJ, Young WS (1994) Cellular localization of vasopressin V1a receptor messenger ribonucleic acid in adult male rat brain, pineal, and brain vasculature. Endocrinology 135(4):1511–1528PubMedGoogle Scholar
  200. Patel BM, Chittock DR, Russell JA, Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96(3):576–582PubMedGoogle Scholar
  201. Pergola PE, Sved AF, Voogt JL, Alper RH (1993) Effect of serotonin on vasopressin release: a comparison to corticosterone, prolactin and renin. Neuroendocrinology 57(3):550–558PubMedGoogle Scholar
  202. Perreault H, Semsar K, Godwin J (2003) Fluoxetine treatment decreases territorial aggression in a coral reef fish. Physiol Behav 79(4–5):719–724PubMedGoogle Scholar
  203. Perry KW, Fuller RW (1993) Extracellular 5-hydroxytryptamine concentration in rat hypothalamus after administration of fluoxetine plus L-5-hydroxytryptophan. J Pharm Pharmacol 45(8):759–761PubMedGoogle Scholar
  204. Phillips PA, Rolls BJ, Ledingham JG, Forsling ML, Morton JJ (1985) Osmotic thirst and vasopressin release in humans: a double-blind crossover study. Am J Physiol 248(6 Pt 2):R645–R650PubMedGoogle Scholar
  205. Pinna G, Liskevych U, Doueiri MS, Costa E, Guidotti A (2003a) Antidepressants in doses that increase neurosteroid biosynthesis but fail to inhibit 5-HT reuptake reduce expression of aggression in socially isolated (SI) mice. Program No. 664.2. In 2003 Neuroscience Meeting Planner.Google Scholar
  206. Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186(3):362–372PubMedGoogle Scholar
  207. Pinna G, Costa E, Guidotti A (2009) SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol 9(1):24–30PubMedCentralPubMedGoogle Scholar
  208. Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003b) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Nat Acad Sci USA 100(4):2035–2040PubMedCentralPubMedGoogle Scholar
  209. Pitkow LJ, Sharer CA, Ren X, Insel TR, Terwilliger EF, Young LJ (2001) Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J Neurosci 21(18):7392–7396PubMedGoogle Scholar
  210. Popa D, Léna C, Alexandre C, Adrien J (2008) Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28(14):3546–3554PubMedGoogle Scholar
  211. Popova NK, Naumenko VS, Plyusnina IZ (2007) Involvement of brain serotonin 5-HT1A receptors in genetic predisposition to aggressive behavior. Neurosci Behav Physiol 37(6):631–635PubMedGoogle Scholar
  212. Potegal M, Ferris CF (1989) Intraspecific aggression in male hamsters is inhibited by intrahypothalamic vasopressin-receptor antagonist. Aggressive Behav 15(4):311–320Google Scholar
  213. Puciłowski O, Płaźnik A, Kostowski W (1985) Aggressive behavior inhibition by serotonin and quipazine injected into the amygdala in the rat. Behav Neural Biol 43(1):58–68PubMedGoogle Scholar
  214. Qu Y, Chang L, Klaff J, Seemann R, Rapoport SI (2003) Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 28(7):1219–1226PubMedGoogle Scholar
  215. Quattrone A, Tedeschi G, Aguglia U, Scopacasa F, Direnzo GF, Annunziato L (1983) Prolactin secretion in man: a useful tool to evaluate the activity of drugs on central 5-hydroxytryptaminergic neurones. Studies with fenfluramine. Br J Clin Pharmacol 16(5):471–475PubMedCentralPubMedGoogle Scholar
  216. Raleigh MJ, Brammer GL, Yuwiler A, Flannery JW, McGuire MT, Geller E (1980) Serotonergic influences on the social behavior of vervet monkeys (Cercopithecus aethiops sabaeus). Exp Neurol 68(2):322–334PubMedGoogle Scholar
  217. Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, Buhot MC et al (1996) 5-HT1B receptor knock out—behavioral consequences. Behav Brain Res 73(1–2):305–312PubMedGoogle Scholar
  218. Reist C, Nakamura K, Sagart E, Sokolski KN, Fujimoto KA (2003) Impulsive aggressive behavior: open-label treatment with citalopram. J Clin Psychiatry 59(1):676–680Google Scholar
  219. Ribeiro EB, Bettiker RL, Bogdanov M, Wurtman RJ (1993) Effects of systemic nicotine on serotonin release in rat brain. Brain Res 621(2):311–318PubMedGoogle Scholar
  220. Ricci LA, Grimes JM, Melloni RH (2004) Serotonin type 3 receptors modulate the aggression-stimulating effects of adolescent cocaine exposure in Syrian hamsters (Mesocricetus auratus). Behav Neurosci 118(5):1097–1110PubMedGoogle Scholar
  221. Ricci LA, Knyshevski I, Melloni RH (2005) Serotonin type 3 receptors stimulate offensive aggression in Syrian hamsters. Behav Brain Res 156(1):19–29PubMedGoogle Scholar
  222. Ricci LA, Melloni RH (2012) Repeated fluoxetine administration during adolescence stimulates aggressive behavior and alters serotonin and vasopressin neural development in hamsters. Behav Neurosci 126(5):640–653PubMedGoogle Scholar
  223. Ricci LA, Rasakham K, Grimes JM, Melloni RH (2006) Serotonin-1A receptor activity and expression modulate adolescent anabolic/androgenic steroid-induced aggression in hamsters. Pharmacol Biochem Behav 85(1):1–11PubMedGoogle Scholar
  224. Rilke O, Will K, Jähkel M, Oehler J (2001) Behavioral and neurochemical effects of anpirtoline and citalopram in isolated and group housed mice. Prog Neuropsychopharmacol Biol Psychiatry 25(5):1125–1144PubMedGoogle Scholar
  225. Rittig S, Robertson GL, Siggaard C, Kovács L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin-neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58(1):107–117PubMedCentralPubMedGoogle Scholar
  226. Roliński Z, Herbut M (1981) The role of the serotonergic system in foot shock-induced behavior in mice. Psychopharmacology 73(3):246–251PubMedGoogle Scholar
  227. Rood BD, De Vries GJ (2011) Vasopressin innervation of the mouse (Mus musculus) brain and spinal cord. J Comp Neurol 519(12):2434–2474PubMedCentralPubMedGoogle Scholar
  228. Rosa M, Franzini A, Giannicola G, Messina G, Altamura AC, Priori A (2012) Hypothalamic oscillations in human pathological aggressiveness. Biol Psychiatry 72(12):e33–e35PubMedGoogle Scholar
  229. Roth BL, Choudhary MS, Khan N, Uluer AZ (1997) High-affinity agonist binding is not sufficient for agonist efficacy at 5-hydroxytryptamine2A receptors: evidence in favor of a modified ternary complex model. J Pharmacol Exp Ther 280(2):576–583PubMedGoogle Scholar
  230. Roy A, Adinoff B, Linnoila M (1988) Acting out hostility in normal volunteers: negative correlation with levels of 5HIAA in cerebrospinal fluid. Psychiatry Res 24(2):187–194PubMedGoogle Scholar
  231. Sabol KE, Richards JB, Seiden LS (1992) Fluoxetine attenuates the DL-fenfluramine-induced increase in extracellular serotonin as measured by in vivo dialysis. Brain Res 585(1–2):421–424PubMedGoogle Scholar
  232. Saito M, Sugimoto T, Tahara A, Kawashima H (1995) Molecular cloning and characterization of rat V1b vasopressin receptor: evidence for its expression in extra-pituitary tissues. Biochem Biophys Res Commun 212(3):751–757PubMedGoogle Scholar
  233. Salomé N, Stemmelin J, Cohen C, Griebel G (2006) Differential roles of amygdaloid nuclei in the anxiolytic- and antidepressant-like effects of the V1b receptor antagonist, SSR149415, in rats. Psychopharmacology 187(2):237–244PubMedGoogle Scholar
  234. Sammler EM, Foley PL, Lauder GD, Wilson SJ, Goudie AR, O’Riordan JI (2010) A harmless high? Lancet 376(9742):742PubMedGoogle Scholar
  235. Sánchez C, Arnt J, Hyttel J, Moltzen EK (1993) The role of serotonergic mechanisms in inhibition of isolation-induced aggression in male mice. Psychopharmacology 110(1–2):53–59PubMedGoogle Scholar
  236. Sánchez C, Hyttel J (1994) Isolation-induced aggression in mice: effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur J Pharmacol 264(3):241–247PubMedGoogle Scholar
  237. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC et al (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265(5180):1875–1878PubMedGoogle Scholar
  238. Sawchenko PE, Swanson LW, Steinbusch HW, Verhofstad AA (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277(2):355–360PubMedGoogle Scholar
  239. Schoenfeld T, Leonard C (1985) Behavioral development in the syrian golden hamster. In: Siegel H (ed) The hamster: reproduction and behavior. Plenum Press, New York, pp 289–321Google Scholar
  240. Schwartzer JJ, Ricci LA, Melloni RH (2009) Adolescent anabolic-androgenic steroid exposure alters lateral anterior hypothalamic serotonin-2A receptors in aggressive male hamsters. Behav Brain Res 199(2):257–262PubMedGoogle Scholar
  241. Scordalakes EM, Rissman EF (2004) Aggression and arginine vasopressin immunoreactivity regulation by androgen receptor and estrogen receptor alpha. Genes Brain Behav 3(1):20–26PubMedGoogle Scholar
  242. Semsar K, Kandel FL, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. Horm Behav 40(1):21–31PubMedGoogle Scholar
  243. Share L (1988) Role of vasopressin in cardiovascular regulation. Physiol Rev 68(4):1248–1284PubMedGoogle Scholar
  244. Sheard MH, Marini JL, Bridges CI, Wagner E (1976) The effect of lithium on impulsive aggressive behavior in man. Am J Psychiatry 133(12):1409–1413PubMedGoogle Scholar
  245. Shimizu H, Bray GA (1989) Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vivo. Brain Res Bull 22(6):945–950PubMedGoogle Scholar
  246. Shoaf SE, Carson R, Hommer D, Williams W, Higley JD, Schmall B, Herscovitch P et al (1998) Brain serotonin synthesis rates in rhesus monkeys determined by [11C]alpha-methyl-l-tryptophan and positron emission tomography compared to CSF 5-hydroxyindole-3-acetic acid concentrations. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 19(5):345–353Google Scholar
  247. Sijbesma H, Schipper J, De Kloet ER, Mos J, Van Aken H, Olivier B (1991) Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol Biochem Behav 38(2):447–458PubMedGoogle Scholar
  248. Soloff PH, Kelly TM, Strotmeyer SJ, Malone KM, Mann JJ (2003) Impulsivity, gender, and response to fenfluramine challenge in borderline personality disorder. Psychiatry Res 119(1–2):11–24PubMedGoogle Scholar
  249. Spanos LJ, Yamamoto BK (1989) Acute and subchronic effects of methylenedioxymethamphetamine [(±)MDMA] on locomotion and serotonin syndrome behavior in the rat. Pharmacol Biochem Behav 32(4):835–840PubMedGoogle Scholar
  250. Sperry TS, Moore IT, Meddle SL, Benowitz-Fredericks ZM, Wingfield JC (2005) Increased sensitivity of the serotonergic system during the breeding season in free-living American tree sparrows. Behav Brain Res 157(1):119–126PubMedGoogle Scholar
  251. Sperry TS, Thompson CK, Wingfield JC (2003) Effects of acute treatment with 8-OH-DPAT and fluoxetine on aggressive behaviour in male song sparrows (Melospiza melodia morphna). J Neuroendocrinol 15(2):150–160PubMedGoogle Scholar
  252. Spiller HA, Ryan ML, Weston RG, Jansen J (2011) Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (synthetic cathinones) in the United States. Clin Toxicol 49(6):499–505Google Scholar
  253. Sprouse J, Braselton J, Reynolds L, Clarke T, Rollema H (2001) Activation of postsynaptic 5-HT(1A) receptors by fluoxetine despite the loss of firing-dependent serotonergic input: electrophysiological and neurochemical studies. Synapse 41(1):49–57PubMedGoogle Scholar
  254. Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1(1):3–9PubMedGoogle Scholar
  255. Steensland P, Hallberg M, Kindlundh A, Fahlke C, Nyberg F (2005) Amphetamine-induced aggression is enhanced in rats pre-treated with the anabolic androgenic steroid nandrolone decanoate. Steroids 70(3):199–204PubMedGoogle Scholar
  256. Stemmelin J, Lukovic L, Salome N, Griebel G (2005) Evidence that the lateral septum is involved in the antidepressant-like effects of the vasopressin V1b receptor antagonist, SSR149415. Neuropsychopharmacology 30(1):35–42PubMedGoogle Scholar
  257. Stribley JM, Carter CS (1999) Developmental exposure to vasopressin increases aggression in adult prairie voles. Proc Nat Acad Sci USA 96(22):12601–12604PubMedCentralPubMedGoogle Scholar
  258. Summers CH, Korzan WJ, Lukkes JL, Watt MJ, Forster GL, Øverli Ø, Höglund E et al (2005) Does serotonin influence aggression? Comparing regional activity before and during social interaction. Physiol Biochem Zool PBZ 78(5):679–694Google Scholar
  259. Swanson LW, Kuypers HG (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J Comp Neurol 194(3):555–570PubMedGoogle Scholar
  260. Taravosh-Lahn K, Bastida C, Delville Y (2006) Differential responsiveness to fluoxetine during puberty. Behav Neurosci 120(5):1084–1092PubMedGoogle Scholar
  261. Thurmond JB, Lasley SM, Kramarcy NR, Brown JW (1979) Differential tolerance to dietary amino acid-induced changes in aggressive behavior and locomotor activity in mice. Psychopharmacology 66(3):301–308PubMedGoogle Scholar
  262. Treiser SL, Cascio CS, O’Donohue TL, Thoa NB, Jacobowitz DM, Kellar KJ (1981) Lithium increases serotonin release and decreases serotonin receptors in the hippocampus. Science 213(4515):1529–1531PubMedGoogle Scholar
  263. Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Dreifuss JJ (1988) Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography. Brain Res 442(1):105–118PubMedGoogle Scholar
  264. Tupin JP, Smith DB, Clanon TL, Kim LI, Nugent A, Groupe A (1973) The long-term use of lithium in aggressive prisoners. Compr Psychiatry 14(4):311–317PubMedGoogle Scholar
  265. Vaccari C, Lolait SJ, Ostrowski NL (1998) Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribonucleic acids in brain. Endocrinology 139(12):5015–5033PubMedGoogle Scholar
  266. Vacher C-M, Calas A, Maltonti F, Hardin-Pouzet H (2004) Postnatal regulation by monoamines of vasopressin expression in the neuroendocrine hypothalamus of MAO-A-deficient mice. Eur J Neurosci 19(4):1110–1114PubMedGoogle Scholar
  267. Vacher C-M, Frétier P, Créminon C, Calas A, Hardin-Pouzet H (2002) Activation by serotonin and noradrenaline of vasopressin and oxytocin expression in the mouse paraventricular and supraoptic nuclei. J Neurosci 22(5):1513–1522PubMedGoogle Scholar
  268. Van Der Vegt BJ, Lieuwes N, Van De Wall EHEM, Kato K, Moya-Albiol L, Martínez-Sanchis S, De Boer SF et al (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117(4):667–674PubMedGoogle Scholar
  269. Van Erp AM, Miczek KA (2000) Aggressive behavior, increased accumbal dopamine, and decreased cortical serotonin in rats. J Neurosci: Off J Soc Neurosci 20(24):9320–9325Google Scholar
  270. Van Putten T, Sanders DG (1975) Lithium in treatment failures. J Nerv Ment Dis 161(4):255–264PubMedGoogle Scholar
  271. Veenema AH, Beiderbeck DI, Lukas M, Neumann ID (2010) Distinct correlations of vasopressin release within the lateral septum and the bed nucleus of the stria terminalis with the display of intermale aggression. Horm Behav 58(2):273–281PubMedGoogle Scholar
  272. Veiga CP, Miczek KA, Lucion AB, De Almeida RMM (2007) Effect of 5-HT1B receptor agonists injected into the prefrontal cortex on maternal aggression in rats. Braz J Med Biol Res 40(6):825–830PubMedGoogle Scholar
  273. Vergnes M, Depaulis A, Boehrer A (1986) Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol Behav 36(4):653–658PubMedGoogle Scholar
  274. Vergnes M, Depaulis A, Boehrer A, Kempf E (1988) Selective increase of offensive behavior in the rat following intrahypothalamic 5,7-DHT-induced serotonin depletion. Behav Brain Res 29(1–2):85–91PubMedGoogle Scholar
  275. Vergnes M, Kempf E (1982) Effect of hypothalamic injections of 5,7-dihydroxytryptamine on elicitation of mouse-killing in rats. Behav Brain Res 5(4):387–397PubMedGoogle Scholar
  276. Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313(4):643–668PubMedGoogle Scholar
  277. Villalba C, Boyle PA, Caliguri EJ, De Vries GJ (1997) Effects of the selective serotonin reuptake inhibitor fluoxetine on social behaviors in male and female prairie voles (Microtus ochrogaster). Horm Behav 32(3):184–191PubMedGoogle Scholar
  278. Vincent J-L, Su F (2008) Physiology and pathophysiology of the vasopressinergic system. Best Pract Res Clin Anaesthesiol 22(2):243–252PubMedGoogle Scholar
  279. Vomachka AJ, Ruppert PH, Clemens LG, Greenwald GS (1981) Adult sexual behavior deficits and altered hormone levels in male hamsters given steroids during development. Physiol Behav 26(3):461–466PubMedGoogle Scholar
  280. Wagner GC, Fisher H, Pole N, Borve T, Johnson SK (1993) Effects of monoaminergic agonists on alcohol-induced increases in mouse aggression. J Stud Alcohol Suppl 11:185–191PubMedGoogle Scholar
  281. Wang Z, Bullock NA, De Vries GJ (1993) Sexual differentiation of vasopressin projections of the bed nucleus of the stria terminals and medial amygdaloid nucleus in rats. Endocrinology 132(6):2299–2306PubMedGoogle Scholar
  282. Wersinger SR, Caldwell HK, Christiansen M, Young WS (2007a) Disruption of the vasopressin 1b receptor gene impairs the attack component of aggressive behavior in mice. Genes Brain Behav 6(7):653–660PubMedCentralPubMedGoogle Scholar
  283. Wersinger SR, Caldwell HK, Martinez L, Gold P, Hu S-B, Young WS (2007b) Vasopressin 1a receptor knockout mice have a subtle olfactory deficit but normal aggression. Genes Brain Behav 6(6):540–551PubMedGoogle Scholar
  284. Wersinger SR, Ginns EI, O’Carroll A-M, Lolait SJ, Young WS (2002) Vasopressin V1b receptor knockout reduces aggressive behavior in male mice. Mol Psychiatry 7(9):975–984PubMedGoogle Scholar
  285. Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ (2000) Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology 150(1):120–122PubMedGoogle Scholar
  286. Whitsett JM (1975) The development of aggressive and marking behavior in intact and castrated male hamsters. Horm Behav 6(1):47–57PubMedGoogle Scholar
  287. Willoughby JO, Blessing WW (1987) Neuropeptide Y injected into the supraoptic nucleus causes secretion of vasopressin in the unanesthetized rat. Neurosci Lett 75(1):17–22PubMedGoogle Scholar
  288. Winslow JT, Hastings N, Carter CS, Harbaugh CR, Insel TR (1993) A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365(6446):545–548PubMedGoogle Scholar
  289. Wood DM, Davies S, Greene SL, Button J, Holt DW, Ramsey J, Dargan PI (2010) Case series of individuals with analytically confirmed acute mephedrone toxicity. Clin Toxicol 48(9):324–327Google Scholar
  290. Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351(3):357–373PubMedGoogle Scholar
  291. Yatham LN, Steiner M (1993) Neuroendocrine probes of serotonergic function: a critical review. Life Sci 53(6):447–463PubMedGoogle Scholar
  292. Young LJ, Nilsen R, Waymire KG, MacGregor GR, Insel TR (1999) Increased affiliative response to vasopressin in mice expressing the V1a receptor from a monogamous vole. Nature 400(6746):766–768PubMedGoogle Scholar
  293. Young WS, Li J, Wersinger SR, Palkovits M (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143(4):1031–1039PubMedCentralPubMedGoogle Scholar
  294. Zai CC, Muir KE, Nowrouzi B, Shaikh SA, Choi E, Berall L, Trépanier M-O et al (2012) Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res 200(2–3):784–788PubMedGoogle Scholar
  295. Zhang L, Hernández VS (2013) Synaptic innervation to rat hippocampus by vasopressin-immuno-positive fibres from the hypothalamic supraoptic and paraventricular nuclei. Neuroscience 228:139–162PubMedGoogle Scholar
  296. Zhang L, Ma W, Barker JL, Rubinow DR (1999) Sex differences in expression of serotonin receptors (subtypes 1A and 2A) in rat brain: a possible role of testosterone. Neuroscience 94(1):251–259PubMedGoogle Scholar
  297. Zimmermann M, Grabemann M, Mette C, Abdel-Hamid M, Uekermann J, Ueckermann J, Kraemer M et al (2012) The effects of acute tryptophan depletion on reactive aggression in adults with attention-deficit/hyperactivity disorder (ADHD) and healthy controls. PLoS ONE 7(3):e32023PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Program in Behavioral Neuroscience, Department of PsychologyNortheastern UniversityBostonUSA

Personalised recommendations