What Can Fear and Reward Learning Teach Us About Depression?

Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 14)

Abstract

The precise neural substrates of major depressive disorder (MDD) remain elusive, and FDA-approved antidepressants fail at least one-third of treatment-seeking patients. It is imperative, therefore, to identify novel research strategies to tackle the factors impeding progress. In this chapter we propose that the knowledge derived from computational investigations of associative learning might offer new insights into the neurobiology of MDD.

Keywords

Associative learning Reward learning Fear learning/conditioning Prediction error Major Depressive Disorder (Mdd) 

References

  1. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders (DSM-IV-TR). Fourth, Text Revision ed. Washington, DC: American Psychological AssociationGoogle Scholar
  2. Amsterdam JD, Settle RG, Doty RL, Abelman E, Winokur A (1987) Taste and smell perception in depression. Biol Psychiatry 22(12):1481–1485PubMedCrossRefGoogle Scholar
  3. Arnone D, McIntosh AM, Ebmeier KP, Munafò MR, Anderson IM (2012) Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol 22(1):1–16Google Scholar
  4. Arnulf I, Quintin P, Alvarez J, Vigil L, Touitou Y, Lèbre A, et al. (2002) Mid-morning tryptophan depletion delays REM sleep onset in healthy subjects. Neuropsychopharmacology 27(5):843–851Google Scholar
  5. Beck AT (1963) Thinking and depression: I. idiosyncratic content and cognitive distortions. Arch Gen Psychiatry 9(4):324−333 Google Scholar
  6. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311(5762):864–868PubMedCrossRefGoogle Scholar
  7. Blackburn I (1986) Cognitive style in depression. Br J Clin Psychol 25(4):241–251PubMedCrossRefGoogle Scholar
  8. Bunney WE Jr, Davis JM (1965) Norepinephrine in depressive reactions: a review. Arch Gen Psychiatry 13(6):483–494PubMedCrossRefGoogle Scholar
  9. Calu DJ, Roesch MR, Haney RZ, Holland PC, Schoenbaum G (2010) Neural correlates of variations in event processing during learning in central nucleus of amygdala. Neuron 68(5):991–1001PubMedCrossRefGoogle Scholar
  10. Connor TJ, Kelly JP, Leonard BE (1997) Forced swim test-induced neurochemical, endocrine, and immune changes in the rat. Pharmacol Biochem Behav 58(4):961–967Google Scholar
  11. Dalgleish T, Williams JM, Golden AM, Perkins N, Barrett LF, Barnard PJ et al (2007) Reduced specificity of autobiographical memory and depression: the role of executive control. J Exp Psychol Gen 136(1):23–42PubMedCrossRefGoogle Scholar
  12. David MC (1983) On the induction of depressed mood in the laboratory: evaluation and comparison of the velten and musical procedures. Adv Behav Res Therapy 5(1):27–49CrossRefGoogle Scholar
  13. Delgado MR, Li J, Schiller D, Phelps EA (2008a) The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc Lond B Biol Sci 363(1511):3787–3800PubMedCrossRefGoogle Scholar
  14. Delgado MR, Nearing KI, Ledoux JE, Phelps EA (2008b) Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59(5):829–838PubMedCrossRefGoogle Scholar
  15. Depression [Internet].: World Health Organization; 2012; cited Janurary 18, 2012. Available from: http://www.who.int/mental_health/management/depression/definition/en/
  16. Drevets WC, Savitz J, Trimble M (2008) The subgenual anterior cingulate cortex in mood disorders. CNS Spectr 13(8):663–681PubMedGoogle Scholar
  17. Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29(4–5):771–783PubMedCrossRefGoogle Scholar
  18. Duman RS, Heninger GR, Nestler EJ (1997) A molecular and cellular theory of depression. Arch Gen Psychiatry 54(7):597–606PubMedCrossRefGoogle Scholar
  19. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127PubMedCrossRefGoogle Scholar
  20. Emmett VJ (1968) A laboratory task for induction of mood states. Behav Res Ther 6(4):473–482Google Scholar
  21. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J et al (2006) Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 163(10):1784–1790swPubMedCrossRefGoogle Scholar
  22. Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM et al (2009) Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry 166(1):64–73PubMedCrossRefGoogle Scholar
  23. Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J et al (2004) Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry 61(9):877–889PubMedCrossRefGoogle Scholar
  24. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M et al (2011) Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 134(Pt 6):1751–1764PubMedCrossRefGoogle Scholar
  25. Greenberg PE, Kessler RC, Birnbaum HG, Leong SA, Lowe SW, Berglund PA, et al. (2003) The economic burden of depression in the united states: How did it change between 1990 and 2000? J Clin Psychiatry 64(12):1465–1475Google Scholar
  26. Haber SN, Knutson B (2010) The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 35(1):4–26PubMedCrossRefGoogle Scholar
  27. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM (2011) The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 69(4):301–308Google Scholar
  28. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH (2012) Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry 169(7):693–703Google Scholar
  29. Hare TA, Camerer CF, Rangel A (2009) Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324(5927):646–648PubMedCrossRefGoogle Scholar
  30. Harmer CJ (1849) Antidepressant drug action: a neuropsychological perspective. Depress Anxiety. 27(3):231–233CrossRefGoogle Scholar
  31. Hippocrates (1849) Aphorisms. In: Proceedings of the Genuine works of Hippocrates (F. Adams Trans). London: Sydenham Society. [Internet] Retrieved from the Internet Cassics Archive ( D.C. Stevenson ed.). Web Atomics [Cited June 1, 2012]Google Scholar
  32. Hollon S (1965) Specificity of depressotypic cognitions in clinical depression. J Abnorm Psychol 95(1):52–59CrossRefGoogle Scholar
  33. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ (2007) Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci 27(33):8877–8884PubMedCrossRefGoogle Scholar
  34. Joormann J, Cooney RE, Henry ML, Gotlib IH (2011) Neural correlates of automatic mood regulation in girls at high risk for depression. J Abnorm Psychol 121(1):61−72 Google Scholar
  35. Kanda K, Omori S, Yamamoto C, Miyamoto N, Kawano S, Murata Y et al (1993) Urinary excretion of stress hormones of rats in tail-suspension. Environ Med. 37(1):39–41PubMedGoogle Scholar
  36. Kanske P, Heissler J, Schonfelder S, Bongers A, Wessa M (2010) How to regulate emotion? neural networks for reappraisal and distraction. Cereb Cortex 21(6):379−388 Google Scholar
  37. Katz RJ, Baldrighi G (1982) A further parametric study of imipramine in an animal model of depression. Pharmacol Biochem Behav 16(6):969–972Google Scholar
  38. Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 5(2):247–251Google Scholar
  39. Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A, Frangou S et al (2011) Structural neuroimaging studies in major depressive disorder. meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry 68(7):675–690PubMedCrossRefGoogle Scholar
  40. Kishida KT, Sandberg SG, Lohrenz T, Comair YG, Saez I, Phillips PE et al (2011) Sub-second dopamine detection in human striatum. PLoS ONE 6(8):e23291PubMedCrossRefGoogle Scholar
  41. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ (2009) Hulshoff Pol HE, Kahn RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30(11):3719–3735PubMedCrossRefGoogle Scholar
  42. Kumar P, Waiter G, Ahearn T, Milders M, Reid I, Steele JD (2008) Abnormal temporal difference reward-learning signals in major depression. Brain. 131(Pt 8):2084–2093PubMedCrossRefGoogle Scholar
  43. Lázaro-Muñoz G, LeDoux JE, Cain CK (2010) Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated pavlovian processes. Biol Psychiatry 67(12):1120–1127Google Scholar
  44. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  45. Lehmann HE, Cahn CH, DeVerteuil RL (1958) The treatment of depressive conditions with imipramine (G 22355). Can Psychiatr Assoc J 3(4):155–164PubMedGoogle Scholar
  46. Li J, Schiller D, Schoenbaum G, Phelps EA, Daw ND (2011) Differential roles of human striatum and amygdala in associative learning. Nat Neurosci 14(10):1250–1252PubMedCrossRefGoogle Scholar
  47. Maier SF, Amat J, Baratta MV, Paul E, Watkins LR (2006) Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci. 8(4):397–406PubMedGoogle Scholar
  48. Maier SF (1984) Learned helplessness and animal models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry 8(3):435–446Google Scholar
  49. Maren S (2001) Neurobiology of pavlovian fear conditioning. Annu Rev Neurosci 24:897–931PubMedCrossRefGoogle Scholar
  50. Mayberg HS, Brannan SK, Mahurin RK, Jerabek PA, Brickman JS, Tekell JL et al (1997) Cingulate function in depression: a potential predictor of treatment response. NeuroReport 8(4):1057–1061PubMedCrossRefGoogle Scholar
  51. Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207PubMedCrossRefGoogle Scholar
  52. McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346PubMedCrossRefGoogle Scholar
  53. Meaney MJ (2001) Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24:1161–1192PubMedCrossRefGoogle Scholar
  54. Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420(6911):70–74PubMedCrossRefGoogle Scholar
  55. Murray EA, Wise SP, Drevets WC (2011) Localization of dysfunction in major depressive disorder: prefrontal cortex and amygdala. Biol Psychiatry 69(12):e43–e54Google Scholar
  56. Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, et al. (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 57(8):935–937Google Scholar
  57. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15(11):7539–7547PubMedGoogle Scholar
  58. Ochsner KN, Bunge SA, Gross JJ, Gabrieli JD (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci. 14(8):1215–1229PubMedCrossRefGoogle Scholar
  59. Ochsner KN, Gross JJ (2005) The cognitive control of emotion. Trends Cogn Sci (Regul Ed) 9(5):242–249Google Scholar
  60. Ochsner KN, Ray RD, Cooper JC, Robertson ER, Chopra S, Gabrieli JD et al (2004) For better or for worse: neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 23(2):483–499PubMedCrossRefGoogle Scholar
  61. O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337PubMedCrossRefGoogle Scholar
  62. O’Doherty JP (2011) Contributions of the ventromedial prefrontal cortex to goal-directed action selection. Ann N Y Acad Sci 1239:118–129PubMedCrossRefGoogle Scholar
  63. Pagnoni G, Zink CF, Montague PR, Berns GS (2002) Activity in human ventral striatum locked to errors of reward prediction. Nat Neurosci 5(2):97–98PubMedCrossRefGoogle Scholar
  64. Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38(4):725–743CrossRefGoogle Scholar
  65. Pearce JM, Hall G (1980) A model for pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev 87(6):532–552PubMedCrossRefGoogle Scholar
  66. Phelps EA, Delgado MR, Nearing KI, LeDoux JE (2004) Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43(6):897–905Google Scholar
  67. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R et al (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166(6):702–710PubMedCrossRefGoogle Scholar
  68. Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 36(1):183–206PubMedCrossRefGoogle Scholar
  69. Plotsky PM, Meaney MJ (1993) Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 18(3):195–200Google Scholar
  70. Porsolt RD (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47(4):379–391Google Scholar
  71. Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology. 35(1):192–216PubMedCrossRefGoogle Scholar
  72. Pringle A, Browning M, Cowen PJ, Harmer CJ. (2011) A cognitive neuropsychological model of antidepressant drug action. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1586–1592Google Scholar
  73. Quirk GJ, Beer JS (2006) Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol 16(6):723–727Google Scholar
  74. Quirk GJ, Garcia R, González-Lima F. (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60(4):337–343Google Scholar
  75. Quirk GJ, Likhtik E, Pelletier JG, Pare D (2003) Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J Neurosci 23(25):8800–8807PubMedGoogle Scholar
  76. Rangel A, Hare T (2010) Neural computations associated with goal-directed choice. Curr Opin Neurobiol 20(2):262–270Google Scholar
  77. Reilly JG, McTavish SF, Young AH (1997) Rapid depletion of plasma tryptophan: a review of studies and experimental methodology. J Psychopharmacol 11(4):381–392PubMedCrossRefGoogle Scholar
  78. Ridderinkhof KR, van den Wildenberg WP, Segalowitz SJ, Carter CS (2004) Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cognition 56(2):129–140. doi:10.1016/j.bandc.2004.09.016 Google Scholar
  79. Riskind JH, Rholes WS, Eggers J (1982) The velten mood induction procedure: effects on mood and memory. J Consult Clin Psychol 50(1):146–147PubMedCrossRefGoogle Scholar
  80. Robinson OJ, Cools R, Carlisi CO, Sahakian BJ, Drevets WC (2011) Ventral striatum response during reward and punishment reversal learning in unmedicated major depressive disorder. Am J Psychiatry 169(2):152−159Google Scholar
  81. Roesch MR, Calu DJ, Esber GR, Schoenbaum G (2010) Neural correlates of variations in event processing during learning in basolateral amygdala. J Neurosci 30(7):2464–2471PubMedCrossRefGoogle Scholar
  82. Roesch MR, Esber GR, Li J, Daw ND, Schoenbaum G (2012) Surprise! neural correlates of pearce-hall and rescorla-wagner coexist within the brain. Eur J Neurosci 35(7):1190–1200PubMedCrossRefGoogle Scholar
  83. Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci (Regul Ed) 16(3):147–156Google Scholar
  84. Ruedi-Bettschen D, Feldon J, Pryce CR (2004) The impaired coping induced by early deprivation is reversed by chronic fluoxetine treatment in adult fischer rats. Behav Pharmacol 15(5–6):413–421PubMedCrossRefGoogle Scholar
  85. Ruhe HG, Mason NS, Schene AH (2007) Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 12(4):331–359PubMedCrossRefGoogle Scholar
  86. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D et al (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am J Psychiatry 163(11):1905–1917PubMedCrossRefGoogle Scholar
  87. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77PubMedCrossRefGoogle Scholar
  88. Schildkraut JJ (1967) The catecholamine hypothesis of affective disorders. A review of supporting evidence. Int J Psychiatry 4(3):203–217PubMedGoogle Scholar
  89. Schiller D, Delgado MR (2010) Overlapping neural systems mediating extinction, reversal and regulation of fear. Trends Cogn Sci (Regul Ed) 14(6):268–276Google Scholar
  90. Schiller D, Levy I, Niv Y, LeDoux JE, Phelps EA (2008) From fear to safety and back: reversal of fear in the human brain. J Neurosci 28(45):11517–11525PubMedCrossRefGoogle Scholar
  91. Schoenbaum G, Takahashi Y, Liu T-, Mcdannald MA. Does the orbitofrontal cortex signal value? [Internet]; 2011 [cited 1 June 2012]Google Scholar
  92. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599PubMedCrossRefGoogle Scholar
  93. Seligman ME (1972) Learned helplessness. Annu Rev Med 23:407–412PubMedCrossRefGoogle Scholar
  94. Seymour B, O’Doherty JP, Dayan P, Koltzenburg M, Jones AK, Dolan RJ et al (2004) Temporal difference models describe higher-order learning in humans. Nature 429(6992):664–667PubMedCrossRefGoogle Scholar
  95. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50(9):651–658Google Scholar
  96. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS (2002) Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 51(9):693–707Google Scholar
  97. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME (2007) Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry 61(2):198–209Google Scholar
  98. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3 Pt 1):1768–1777PubMedGoogle Scholar
  99. Smoski MJ, Felder J, Bizzell J, Green SR, Ernst M, Lynch TR, et al. (2009) fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J Affect Disord. 118(1–3):69–78Google Scholar
  100. Spoormaker VI, Andrade KC, Schröter MS, Sturm A, Goya-Maldonado R, Sämann PG, et al. (2011) The neural correlates of negative prediction error signaling in human fear conditioning. Neuroimage 54(3):2250–2256Google Scholar
  101. Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85(3):367–370CrossRefGoogle Scholar
  102. Sumner JA, Griffith JW, Mineka S. (2010) Overgeneral autobiographical memory as a predictor of the course of depression: a meta-analysis. Behav Res Ther 48(7):614–625Google Scholar
  103. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schöning S, et al. (2010) Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biol Psychiatry 67(2):155–160Google Scholar
  104. Sutton RRS (1988) Learning to predict by the methods of temporal differences Mach Learning 3(1):9–44Google Scholar
  105. Sutton RS, Barto AG (1988) Reinforcement learning: an introduction. MIT Press, CambridgeGoogle Scholar
  106. Trullas R, Skolnick P (1990) Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol 185(1):1–10PubMedCrossRefGoogle Scholar
  107. van Vreeswijk MF, de Wilde EJ (2004) Autobiographical memory specificity, psychopathology, depressed mood and the use of the autobiographical memory test: a meta-analysis. Behav Res Ther 42(6):731–743Google Scholar
  108. Victor TA, Furey ML, Fromm SJ, Ohman A, Drevets WC (2010) Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry 67(11):1128–1138PubMedCrossRefGoogle Scholar
  109. Voderholzer U, Hornyak M, Thiel B, Huwig-Poppe C, Kiemen A, König A, et al. (1998) Impact of experimentally induced serotonin deficiency by tryptophan depletion on sleep EEC in healthy subjects. Neuropsychopharmacology 18(2):112–124Google Scholar
  110. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93(3):358–364PubMedCrossRefGoogle Scholar
  111. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology 134(4):319–329PubMedCrossRefGoogle Scholar
  112. Yan HC, Cao X, Das M, Zhu XH, Gao TM (2010) Behavioral animal models of depression. Neurosci Bull 26(4):327–337PubMedCrossRefGoogle Scholar
  113. Young KD (2011) Functional anatomy of autobiographical memory recall deficits in depression. Psychol Med. 42(02):1–13Google Scholar
  114. Zimmermann RC, McDougle CJ, Schumacher M, Olcese J, Mason JW, Heninger GR et al (1993) Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J Clin Endocrinol Metab 76(5):1160–1164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Mt. Sinai School of MedicineNew YorkUS

Personalised recommendations