Hippocampal Neurogenesis and Ageing

  • Sébastien Couillard-Després
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 15)


Although significant inconsistencies remain to be clarified, a role for neurogenesis in hippocampal functions, such as cognition, has been suggested by several reports. Yet, investigation in various species of mammals, including humans, revealed that rates of hippocampal neurogenesis are steadily declining with age. The very low levels of hippocampal neurogenesis persisting in the aged brain have been suspected to underlie the cognitive deficits observed in elderly. However, current evidence fails to support the hypothesis that decrease of neurogenesis along normal ageing leads to hippocampal dysfunction. Nevertheless, current studies are suggestive for a distinct role of hippocampal neurogenesis in young versus adult and old brain.


Cognition Ageing Neurogenesis Doublecortin Neural stem cell 



The author is grateful to Prof. L. Aigner (Paracelsus Medical University, Salzburg) and Prof. B. Iglseder (Christian Doppler Clinic, Salzburg) for their critical and stimulating comments. This work has been made possible through the support from the State Government of Salzburg (Austria), the German Federal Ministry of Education and Research (BMBF grant 01GN0978) and the foundation Propter Homines (Liechtenstein). The research leading to these publication has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n° HEALTH-F2-2011-278850 (INMiND) and n° HEALTH-F2-2011-279288 (IDEA).


  1. Aimone JB, Gage FH (2011) Modeling new neuron function: a history of using computational neuroscience to study adult neurogenesis. Eur J Neurosci 33(6):1160–1169. doi:  10.1111/j.1460-9568.2011.07615.x PubMedCrossRefGoogle Scholar
  2. Altman J, Das GD (1965a) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335PubMedCrossRefGoogle Scholar
  3. Altman J, Das GD (1965b) Post-natal origin of microneurones in the rat brain. Nature 207(5000):953–956PubMedCrossRefGoogle Scholar
  4. Altman J, Das GD (1966) Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126(3):337–389. doi:  10.1002/cne.901260302 PubMedCrossRefGoogle Scholar
  5. Altman J, Das GD (1967) Postnatal neurogenesis in the guinea-pig. Nature 214(5093):1098–1101PubMedCrossRefGoogle Scholar
  6. Alvarez-Buylla A, Seri B, Doetsch F (2002) Identification of neural stem cells in the adult vertebrate brain. Brain Res Bull 57(6):751–758PubMedCrossRefGoogle Scholar
  7. Amrein I, Dechmann DKN, Winter Y, Lipp H-P (2007) Absent or low rate of adult neurogenesis in the hippocampus of bats (Chiroptera). PLoS ONE 2(5):e455. doi:  10.1371/journal.pone.0000455 PubMedCrossRefGoogle Scholar
  8. Amrein I, Isler K, Lipp H-P (2011) Comparing adult hippocampal neurogenesis in mammalian species and orders: influence of chronological age and life history stage. Eur J Neurosci 34(6):978–987. doi:  10.1111/j.1460-9568.2011.07804.x PubMedCrossRefGoogle Scholar
  9. Bartkowska K, Djavadian RL, Taylor JRE, Turlejski K (2008) Generation recruitment and death of brain cells throughout the life cycle of Sorex shrews (Lipotyphla). Eur J Neurosci 27(7):1710–1721. doi:  10.1111/j.1460-9568.2008.06133.x PubMedCrossRefGoogle Scholar
  10. Biebl M, Cooper CM, Winkler J, Kuhn HG (2000) Analysis of neurogenesis and programmed cell death reveals a self-renewing capacity in the adult rat brain. Neurosci Lett 291(1):17–20PubMedCrossRefGoogle Scholar
  11. Bizon JL, Lee HJ, Gallagher M (2004) Neurogenesis in a rat model of age-related cognitive decline. Aging Cell 3(4):227–234. doi:  10.1111/j.1474-9728.2004.00099.x PubMedCrossRefGoogle Scholar
  12. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ, Ming G-L, Song H (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155. doi:  10.1016/j.cell.2011.05.024 PubMedCrossRefGoogle Scholar
  13. Burgmans S, van Boxtel MPJ, Vuurman EFPM, Evers EAT, Jolles J (2010) Increased neural activation during picture encoding and retrieval in 60-year-olds compared to 20-year-olds. Neuropsychologia 48(7):2188–2197. doi:  10.1016/j.neuropsychologia.2010.04.011 PubMedCrossRefGoogle Scholar
  14. Cameron HA, McKay RD (1999a) Restoring production of hippocampal neurons in old age. Nat Neurosci 2(10):894–897. doi:  10.1038/13197 PubMedCrossRefGoogle Scholar
  15. Cameron HA, McKay RD (1999b) Restoring production of hippocampal neurons in old age. Nat Neurosci 2(10):894–897. doi:  10.1038/13197 PubMedCrossRefGoogle Scholar
  16. Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R, Bogdahn U et al (2009) Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 14(9):856–864. doi:  10.1038/mp.2008.147 PubMedCrossRefGoogle Scholar
  17. Couillard-Després S, Winner B, Karl C, Lindemann G, Schmid P, Aigner R, Laemke J et al (2006) Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 24(6):1535–1545. doi:  10.1111/j.1460-9568.2006.05039.x PubMedCrossRefGoogle Scholar
  18. Cuppini R, Bucherelli C, Ambrogini P, Ciuffoli S, Orsini L, Ferri P, Baldi E (2006) Age-related naturally occurring depression of hippocampal neurogenesis does not affect trace fear conditioning. Hippocampus 16(2):141–148. doi:  10.1002/hipo.20140 PubMedCrossRefGoogle Scholar
  19. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11(5):339–350. doi:  10.1038/nrn2822 PubMedCrossRefGoogle Scholar
  20. Encinas JM, Sierra A (2012) Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis. Behav Brain Res 227(2):433–439. doi:  10.1016/j.bbr.2011.10.010 PubMedCrossRefGoogle Scholar
  21. Encinas JM, Michurina TV, Peunova N, Park J-H, Tordo J, Peterson DA, Fishell G et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Stem Cell 8(5):566–579. doi:  10.1016/j.stem.2011.03.010 Google Scholar
  22. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317. doi:  10.1038/3305 PubMedCrossRefGoogle Scholar
  23. Ge S, Yang C-H, Hsu K-S, Ming G-L, Song H (2007) A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 54(4):559–566. doi:  10.1016/j.neuron.2007.05.002 PubMedCrossRefGoogle Scholar
  24. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult old world primates. Proc Natl Acad Sci U S A 96(9):5263–5267PubMedCrossRefGoogle Scholar
  25. Grady CL (2008) Cognitive neuroscience of aging. Ann NY Acad Sci 1124:127–144. doi:  10.1196/annals.1440.009 PubMedCrossRefGoogle Scholar
  26. Huber C, Marschallinger J, Tempfer H, Furtner T, Couillard-Després S, Bauer H-C, Rivera FJ et al (2011) Inhibition of leukotriene receptors boosts neural progenitor proliferation. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 28(5):793–804. doi:  10.1159/000335793 CrossRefGoogle Scholar
  27. Jaholkowski P, Kiryk A, Jedynak P, Ben Abdallah NM, Knapska E, Kowalczyk A, Piechal A, et al (2009) New hippocampal neurons are not obligatory for memory formation; cyclin D2 knockout mice with no adult brain neurogenesis show learning. Learn Mem (Cold Spring Harbor, N.Y.) 16(7):439–451. doi:  10.1101/lm.1459709
  28. Jedynak P, Jaholkowski P, Wozniak G, Sandi C, Kaczmarek L, Filipkowski RK (2012) Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability. Behav Brain Res 227(1):159–166. doi:  10.1016/j.bbr.2011.11.007 PubMedCrossRefGoogle Scholar
  29. Kempermann G (2008) The neurogenic reserve hypothesis: what is adult hippocampal neurogenesis good for? Trends Neurosci 31(4):163–169. doi:  10.1016/j.tins.2008.01.002 PubMedCrossRefGoogle Scholar
  30. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52(2):135–143. doi:  10.1002/ana.10262 PubMedCrossRefGoogle Scholar
  31. Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci Off J Soc Neurosci 18(9):3206–3212Google Scholar
  32. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA et al (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167(2):209–213. doi:  10.1083/jcb.200404181 PubMedCrossRefGoogle Scholar
  33. Kronenberg G, Reuter K, Steiner B, Brandt MD, Jessberger S, Yamaguchi M, Kempermann G (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467(4):455–463. doi:  10.1002/cne.10945 PubMedCrossRefGoogle Scholar
  34. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci Off J Soc Neurosci 16(6):2027–2033Google Scholar
  35. Lazic SE (2010) Relating hippocampal neurogenesis to behavior: the dangers of ignoring confounding variables. Neurobiol Aging 31(12):2169–2171. doi:  10.1016/j.neurobiolaging.2010.04.037 PubMedCrossRefGoogle Scholar
  36. Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Nat Acad Sci U S A 104(43):17169–17173. doi:  10.1073/pnas.0708228104 CrossRefGoogle Scholar
  37. Lucassen PJ, Stumpel MW, Wang Q, Aronica E (2010) Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58(6):940–949. doi:  10.1016/j.neuropharm.2010.01.012 PubMedCrossRefGoogle Scholar
  38. Madsen TM, Kristjansen PEG, Bolwig TG, Wörtwein G (2003) Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience 119(3):635–642PubMedCrossRefGoogle Scholar
  39. Ming G-L, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. doi:  10.1016/j.neuron.2011.05.001 PubMedCrossRefGoogle Scholar
  40. Nichols NR, Zieba M, Bye N (2001) Do glucocorticoids contribute to brain aging? Brain Res. Brain Res Rev 37(1–3):273–286PubMedCrossRefGoogle Scholar
  41. Nyffeler M, Yee BK, Feldon J, Knuesel I (2010) Abnormal differentiation of newborn granule cells in age-related working memory impairments. Neurobiol Aging 31(11):1956–1974. doi:  10.1016/j.neurobiolaging.2008.10.014 PubMedCrossRefGoogle Scholar
  42. Popa- Wagner A, Buga A-M, Kokaia Z (2011) Perturbed cellular response to brain injury during aging. Ageing Res Rev 10(1):71–79. doi:  10.1016/j.arr.2009.10.008 PubMedCrossRefGoogle Scholar
  43. Rao MS, Hattiangady B, Abdel-Rahman A, Stanley DP, Shetty AK (2005) Newly born cells in the ageing dentate gyrus display normal migration, survival and neuronal fate choice but endure retarded early maturation. Eur J Neurosci 21(2):464–476. doi:  10.1111/j.1460-9568.2005.03853.x PubMedCrossRefGoogle Scholar
  44. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Nat Acad Sci U S A 93(18):9926–9930CrossRefGoogle Scholar
  45. Rapp PR, Stack EC, Gallagher M (1999) Morphometric studies of the aged hippocampus: I. Volumetric analysis in behaviorally characterized rats. J Comp Neurol 403(4):459–470PubMedCrossRefGoogle Scholar
  46. Schmidt-Hieber C, Jonas P, Bischofberger J (2004) Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429(6988):184–187. doi:  10.1038/nature02553 PubMedCrossRefGoogle Scholar
  47. Shors TJ, Miesegaes G, Beylin A, Zhao M, Rydel T, Gould E (2001) Neurogenesis in the adult is involved in the formation of trace memories. Nature 410(6826):372–376. doi:  10.1038/35066584 PubMedCrossRefGoogle Scholar
  48. Spanswick SC, Epp JR, Sutherland RJ (2011) Time-course of hippocampal granule cell degeneration and changes in adult neurogenesis after adrenalectomy in rats. NSC 190(C):166–176. doi: 10.1016/j.neuroscience.2011.06.023 Google Scholar
  49. Stephens CL, Toda H, Palmer TD, DeMarse TB, Ormerod BK (2011) Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp Neurol 234(1):20–30. doi:  10.1016/j.expneurol.2011.12.009 Google Scholar
  50. Stern Y (2006) Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord 20(2):112–117. doi:  10.1097/01.wad.0000213815.20177.19 PubMedCrossRefGoogle Scholar
  51. Suh H, Consiglio A, Ray J, Sawai T, D’Amour KA, Gage FH (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2 + neural stem cells in the adult hippocampus. Stem Cell 1(5):515–528. doi:  10.1016/j.stem.2007.09.002 Google Scholar
  52. Tervo S, Kivipelto M, H auml nninen T, Vanhanen M, Hallikainen M, Mannermaa A, Soininen H (2004) Incidence and risk factors for mild cognitive impairment: a population-based three-year follow-up study of cognitively healthy elderly subjects. Dement Geriatr Cogn Disord 17(3):196–203. doi:  10.1159/000076356 PubMedCrossRefGoogle Scholar
  53. Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, Stan TM et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94. doi:  10.1038/nature10357 PubMedCrossRefGoogle Scholar
  54. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293PubMedCrossRefGoogle Scholar
  55. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344(8925):769–772PubMedCrossRefGoogle Scholar
  56. Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34(10):515–525. doi:  10.1016/j.tins.2011.06.006 PubMedCrossRefGoogle Scholar
  57. Yassa MA, Lacy JW, Stark SM, Albert MS, Gallagher M, Stark CEL (2011) Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21(9):968–979. doi:  10.1002/hipo.20808 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Spinal Cord Injury and Tissue Regeneration Center Salzburg, Institute of Molecular Regenerative MedicineParacelsus Medical UniversitySalzburgAustria

Personalised recommendations