Repair of the CNS Using Endogenous and Transplanted Neural Stem Cells

  • R. C. Trueman
  • A. Klein
  • H. S. Lindgren
  • M. J. Lelos
  • S. B. DunnettEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 15)


Restoration of the damaged central nervous system is a vast challenge. However, there is a great need for research into this topic, due to the prevalence of central nervous system disorders and the devastating impact they have on people’s lives. A number of strategies are being examined to achieve this goal, including cell replacement therapy, enhancement of endogenous plasticity and the recruitment of endogenous neurogenesis. The current chapter reviews this topic within the context of Parkinson’s disease, Huntington’s disease and stroke. For each disease exogenous cell therapies are discussed including primary (foetal) cell transplants, neural stem cells, induced pluripotent stem cells and marrow stromal cells. This chapter highlights the different mechanistic approaches of cell replacement therapy versus cells that deliver neurotropic factors, or enhance the endogenous production of these factors. Evidence of exogenously transplanted cells functionally integrating into the host brain, replacing cells, and having a behavioural benefit are discussed, along with the ability of some cell sources to stimulate endogenous neuroprotective and restorative events. Alongside exogenous cell therapy, the role of endogenous neurogenesis in each of the three diseases is outlined and methods to enhance this phenomenon are discussed.


Stroke Huntington's disease Parkinson's disease Neural transplantation Stem cell Neurogenesis Cell therapy 





Blood–brain barrier


Brain-derived neurotrophic factor


Nerve growth factor beta






Embryonic stem cells


Fibroblast growth factor


Glial cell line-derived growth factor


Ganglionic eminence


Huntington’s disease


Induced neural stem cells


Induced pluripotent stem cells




1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine


Mesenchymal stem cells


Neural stem cells


Parkinson’s disease


Subgranular zone


Substantia nigra


Subventricular zone


Tyrosine hydroxylase


Vascular endothelial growth factor


Ventral mesencephalon


  1. Abrous DN, Torres EM, Dunnett SB (1993) Dopaminergic grafts implanted into the neonatal or adult striatum: comparative effects on rotation and paw reaching deficits induced by subsequent unilateral nigrostriatal lesions in adulthood. Neuroscience 54:657–668PubMedGoogle Scholar
  2. Aihara N, Mizukawa K, Koide K, Mabe H, Nishino H (1994) Striatal grafts in infarct striatopallidum increase GABA release, reorganize GABAA receptor and improve water-maze learning in the rat. Brain Res Bull 33:483–488PubMedGoogle Scholar
  3. Aimone JB, Deng W, Gage FH (2011) Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation. Neuron 70:589–596PubMedGoogle Scholar
  4. Alonso-Frech F, Sanahuja JJ, Rodriguez AM (2011) Exercise and physical therapy in early management of Parkinson disease. Neurologist 17:S47–S53PubMedGoogle Scholar
  5. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335PubMedGoogle Scholar
  6. Andrews EM, Tsai S-Y, Johnson SC, Farrer JR, Wagner JP, Kopen GC, Kartje GL (2008) Human adult bone marrow-derived somatic cell therapy results in functional recovery and axonal plasticity following stroke in the rat. Exp Neurol 211:588–592PubMedGoogle Scholar
  7. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970PubMedGoogle Scholar
  8. Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:16707–16712PubMedGoogle Scholar
  9. Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B, Boisse MF, Grandmougin T, Jeny R, Bartolomeo P, Dalla BG, Degos JD, Lisovoski F, Ergis AM, Pailhous E, Cesaro P, Hantraye P, Peschanski M (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979PubMedGoogle Scholar
  10. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P, Cesaro P, Hantraye P, Peschanski M (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309PubMedGoogle Scholar
  11. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Jametti LP, Kilic E, Kilic U, Salani G, Brambilla E, West MJ, Comi G, Martino G, Hermann DM (2009) Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain J Neurol 132:2239–2251Google Scholar
  12. Baker SA, Baker KA, Hagg T (2004) Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone. Eur J Neurosci 20:575–579PubMedGoogle Scholar
  13. Ben-Hur T, Idelson M, Khaner H, Pera M, Reinhartz E, Itzik A, Reubinoff BE (2004) Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells (Dayton, Ohio) 22:1246–1255Google Scholar
  14. Benowitz LI, Carmichael ST (2010) Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis 37:259–266PubMedGoogle Scholar
  15. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS, Isacson O (2002) Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 99:2344–2349PubMedGoogle Scholar
  16. Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 199:307–333PubMedGoogle Scholar
  17. Bjornson CR, Rietze RL, Reynolds BA, Magli MC, Vescovi AL (1999) Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science (New York) 283:534–537 Google Scholar
  18. Bjugstad KB, Zawada WM, Goodman S, Freed CR (2001) IGF-1 and bFGF reduce glutaric acid and 3-hydroxyglutaric acid toxicity in striatal cultures. J Inherit Metab Dis 24:631–647PubMedGoogle Scholar
  19. Boy S, Sauerbruch S, Kraemer M, Schormann T, Schlachetzki F, Schuierer G, Luerding R, Hennemann B, Orso E, Dabringhaus A, Winkler J, Bogdahn U (2011) Mobilisation of hematopoietic CD34+ precursor cells in patients with acute stroke is safe—results of an open-labeled non randomized phase I/II trial. PloS One 6:e23099PubMedGoogle Scholar
  20. Brasted PJ, Watts C, Torres EM, Robbins TW, Dunnett SB (2000) Behavioral recovery after transplantation into a rat model of Huntington’s disease: dependence on anatomical connectivity and extensive postoperative training. Behav Neurosci 114:431–436PubMedGoogle Scholar
  21. Brederlau A, Correia AS, Anisimov SV, Elmi M, Paul G, Roybon L, Morizane A, Bergquist F, Riebe I, Nannmark U, Carta M, Hanse E, Takahashi J, Sasai Y, Funa K, Brundin P, Eriksson PS, Li J-Y (2006) Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells (Dayton, Ohio) 24:1433–1440Google Scholar
  22. Bühnemann C, Scholz A, Bernreuther C, Malik CY, Braun H, Schachner M, Reymann KG, Dihné M (2006) Neuronal differentiation of transplanted embryonic stem cell-derived precursors in stroke lesions of adult rats. Brain 129:3238–3248PubMedGoogle Scholar
  23. Cai J, Yang M, Poremsky E, Kidd S, Schneider JS, Iacovitti L (2010) Dopaminergic neurons derived from human induced pluripotent stem cells survive and integrate into 6-OHDA-lesioned rats. Stem Cells Dev 19:1017–1023PubMedGoogle Scholar
  24. Chari S, Quraishi SH, Jainer AK (2003) Fluoxetine-induced exacerbation of chorea in Huntington’s disease? A case report. Pharmacopsychiatry 36:41–43PubMedGoogle Scholar
  25. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, Lu M, Gautam SC, Chopp M (2003a) Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 73:778–786PubMedGoogle Scholar
  26. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, Lu M, Zhu Z, Chopp M (2003b) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699PubMedGoogle Scholar
  27. Chen S-J, Chang C-M, Tsai S-K, Chang Y-L, Chou S-J, Huang S–S, Tai L-K, Chen Y-C, Ku H–H, Li H-Y, Chiou S-H (2010) Functional improvement of focal cerebral ischemia injury by subdural transplantation of induced pluripotent stem cells with fibrin glue. Stem Cells Dev 19:1757–1767PubMedGoogle Scholar
  28. Chen J, Ye X, Yan T, Zhang C, Yang X-P, Cui X, Cui Y, Zacharek A, Roberts C, Liu X, Dai X, Lu M, Chopp M (2011) Adverse effects of bone marrow stromal cell treatment of stroke in diabetic rats. Stroke 42:3551–3558PubMedGoogle Scholar
  29. Cho S-R, Benraiss A, Chmielnicki E, Samdani A, Economides A, Goldman SA (2007) Induction of neostriatal neurogenesis slows disease progression in a transgenic murine model of Huntington disease. J Clin Invest 117:2889–2902PubMedGoogle Scholar
  30. Cho MS, Lee Y-E, Kim JY, Chung S, Cho YH, Kim D-S, Kang S-M, Lee H, Kim M-H, Kim J-H, Leem JW, Oh SK, Choi YM, Hwang D-Y, Chang JW, Kim D-W (2008) Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 105:3392–3397PubMedGoogle Scholar
  31. Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H, Lendahl U, Frisén J (2000) Generalized potential of adult neural stem cells. Science (New York, NY) 288:1660–1663Google Scholar
  32. Como PG, Rubin AJ, O’Brien CF, Lawler K, Hickey C, Rubin AE, Henderson R, McDermott MP, McDermott M, Steinberg K, Shoulson I (1997) A controlled trial of fluoxetine in nondepressed patients with Huntington’s disease. Mov Disord 12:397–401PubMedGoogle Scholar
  33. Coronas V, Bantubungi K, Fombonne J, Krantic S, Schiffmann SN, Roger M (2004) Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone. J Neurochem 91:1292–1301PubMedGoogle Scholar
  34. Cragg SJ, Clarke DJ, Greenfield SA (2000) Real-time dynamics of dopamine released from neuronal transplants in experimental Parkinson’s disease. Exp Neurol 164:145–153PubMedGoogle Scholar
  35. Crews L, Mizuno H, Desplats P, Rockenstein E, Adame A, Patrick C, Winner B, Winkler J, Masliah E (2008) Alpha-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J Neurosci 28:4250–4260PubMedGoogle Scholar
  36. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, Savant-Bhonsale S, Chopp M (2007) Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells (Dayton, Ohio) 25:2777–2785Google Scholar
  37. Curtis MA, Penney EB, Pearson AG, Roon-Mom WM, Butterworth NJ, Dragunow M, Connor B, Faull RL (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain. Proc Natl Acad Sci U S A 100:9023–9027PubMedGoogle Scholar
  38. Daadi MM, Maag AL, Steinberg GK (2008) Adherent self-renewable human embryonic stem cell-derived neural stem cell line: functional engraftment in experimental stroke model. PLoS One 3:e1644Google Scholar
  39. Daadi MM, Lee SH, Arac A, Grueter BA, Bhatnagar R, Maag A-L, Schaar B, Malenka RC, Palmer TD, Steinberg GK (2009) Functional engraftment of the medial ganglionic eminence cells in experimental stroke model. Cell Transplant 18:815–826Google Scholar
  40. Dahlqvist P, Zhao L, Johansson IM, Mattsson B, Johansson BB, Seckl JR, Olsson T (1999) Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neuroscience 93:527–535PubMedGoogle Scholar
  41. Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Eur J Neurosci 26:605–614PubMedGoogle Scholar
  42. David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493PubMedGoogle Scholar
  43. Diaz J, Ridray S, Mignon V, Griffon N, Schwartz JC, Sokoloff P (1997) Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J Neurosci 17:4282–4292PubMedGoogle Scholar
  44. Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397PubMedGoogle Scholar
  45. Döbrössy M, Busse M, Piroth T, Rosser A, Dunnett S, Nikkhah G (2010) Neurorehabilitation with neural transplantation. Neurorehabil Neural Repair 24:692–701PubMedGoogle Scholar
  46. Donaldson AE, Marshall CE, Yang M, Suon S, Iacovitti L (2005) Purified mouse dopamine neurons thrive and function after transplantation into brain but require novel glial factors for survival in culture. Mol Cell Neurosci 30:601–610PubMedGoogle Scholar
  47. Doty RL (2012) Olfactory dysfunction in parkinson disease. Nature Rev Neurol 8:329–339Google Scholar
  48. Dowd E, Dunnett SB (2004) Deficits in a lateralized associative learning task in dopamine-depleted rats with functional recovery by dopamine-rich transplants. Eur J Neurosci 20:1953–1959PubMedGoogle Scholar
  49. Duan W, Guo Z, Jiang H, Ladenheim B, Xu X, Cadet JL, Mattson MP (2004) Paroxetine retards disease onset and progression in Huntingtin mutant mice. Ann Neurol 55:590–594PubMedGoogle Scholar
  50. Duan W, Peng Q, Masuda N, Ford E, Tryggestad E, Ladenheim B, Zhao M, Cadet JL, Wong J, Ross CA (2008) Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol Dis 30:312–322PubMedGoogle Scholar
  51. Dunn E (1917) Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J Comp Neurol 27:565–582Google Scholar
  52. Dunnett SB (2010) Neural transplantation. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology/history of neurology. Elsevier B.V., Amsterdam, pp 885–912Google Scholar
  53. Dunnett SB, Björklund A (2010) Transplantation of dopamine neurons: extent and mechanisms of functional recovery in rodent models of Parkinson’s disease. In: Iversen LL, Iversen SD, Dunnett SB, Björklund A (eds) Dopamine handbook. Oxford University Press, New York, pp 454–477Google Scholar
  54. Dunnett SB, Bjorklund A, Schmidt RH, Stenevi U, Iversen SD (1983) Intracerebral grafting of neuronal cell suspensions. V. Behavioural recovery in rats with bilateral 6-OHDA lesions following implantation of nigral cell suspensions. Acta Physiol Scand Suppl 522:39–47PubMedGoogle Scholar
  55. Dunnett SB, Whishaw IQ, Rogers DC, Jones GH (1987) Dopamine-rich grafts ameliorate whole body motor asymmetry and sensory neglect but not independent limb use in rats with 6-hydroxydopamine lesions. Brain Res 415:63–78PubMedGoogle Scholar
  56. Dunnett SB, Rogers DC, Richards SJ (1989) Nigrostriatal reconstruction after 6-OHDA lesions in rats: combination of dopamine-rich nigral grafts and nigrostriatal “bridge” grafts. Exp Brain Res 75:523–535PubMedGoogle Scholar
  57. Dyson SC, Barker RA (2011) Cell-based therapies for Parkinson’s disease. Expert Rev Neurother 11:831–844PubMedGoogle Scholar
  58. Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637PubMedGoogle Scholar
  59. Ekdahl CT, Kokaia Z, Lindvall O (2009) Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158:1021–1029PubMedGoogle Scholar
  60. El-Akabawy G, Medina LM, Jeffries A, Price J, Modo M (2011) Purmorphamine increases DARPP-32 differentiation in human striatal neural stem cells through the Hedgehog pathway. Stem Cells Dev 20:1873–1887PubMedGoogle Scholar
  61. England TJ, Gibson CL, Bath PMW (2009) Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size and functional outcome: a systematic review. Brain Res Rev 62:71–82PubMedGoogle Scholar
  62. England TJ, Abaei M, Auer DP, Lowe J, Jones DRE, Sare G, Walker M, Bath PMW (2012) Granulocyte-colony stimulating factor for mobilizing bone marrow stem cells in subacute stroke: the stem cell trial of recovery enhancement after stroke 2 randomized controlled trial. Stroke 43:405–411PubMedGoogle Scholar
  63. Erdö F, Bührle C, Blunk J, Hoehn M, Xia Y, Fleischmann B, Föcking M, Küstermann E, Kolossov E, Hescheler J, Hossmann K-A, Trapp T (2003) Host-dependent tumorigenesis of embryonic stem cell transplantation in experimental stroke. J Cereb Blood Flow Metab 23:780–785PubMedGoogle Scholar
  64. Erlandsson A, Lin C-HA, Yu F, Morshead CM (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57PubMedGoogle Scholar
  65. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedGoogle Scholar
  66. Fallon J, Reid S, Kinyamu R, Opole I, Opole R, Baratta J, Korc M, Endo TL, Duong A, Nguyen G, Karkehabadhi M, Twardzik D, Patel S, Loughlin S (2000) In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A 97:14686–14691PubMedGoogle Scholar
  67. Floel A, Warnecke T, Duning T, Lating Y, Uhlenbrock J, Schneider A, Vogt G, Laage R, Koch W, Knecht S, Schäbitz W-R (2011) Granulocyte-colony stimulating factor (G-CSF) in stroke patients with concomitant vascular disease—a randomized controlled trial. PloS One 6:e19767PubMedGoogle Scholar
  68. Fong SP, Tsang KS, Chan ABW, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862PubMedGoogle Scholar
  69. Francardo V, Recchia A, Popovic N, Andersson D, Nissbrandt H, Cenci MA (2011) Impact of the lesion procedure on the profiles of motor impairment and molecular responsiveness toL-DOPA in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neurobiol Dis 42:327–340PubMedGoogle Scholar
  70. Freed WJ, Perlow MJ, Karoum F, Seiger A, Olson L, Hoffer BJ, Wyatt RJ (1980) Restoration of dopaminergic function by grafting of fetal rat substantia nigra to the caudate nucleus: long-term behavioral, biochemical, and histochemical studies. Ann Neurol 8:510–519PubMedGoogle Scholar
  71. Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 97:13877–13882PubMedGoogle Scholar
  72. Freund TF, Bolam JP, Bjorklund A, Stenevi U, Dunnett SB, Powell JF, Smith AD (1985) Efferent synaptic connections of grafted dopaminergic neurons reinnervating the host neostriatum: a tyrosine hydroxylase immunocytochemical study. J Neurosci 5:603–616PubMedGoogle Scholar
  73. Fricker RA, Torres EM, Hume SP, Myers R, Opacka-Juffrey J, Ashworth S, Brooks DJ, Dunnett SB (1997) The effects of donor stage on the survival and function of embryonic striatal grafts in the adult rat brain. II. Correlation between positron emission tomography and reaching behaviour. Neuroscience 79:711–721PubMedGoogle Scholar
  74. Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101:10177–10182PubMedGoogle Scholar
  75. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438PubMedGoogle Scholar
  76. Gao Q, Li Y, Chopp M (2005) Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen-activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor. Neuroscience 136:123–134PubMedGoogle Scholar
  77. Garcia J, Carlsson T, Dobrossy M, Nikkhah G, Winkler C (2011) Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiol Dis 43:576–587PubMedGoogle Scholar
  78. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugieres P, Mangin JF, Boisse MF, Palfi S, Cesaro P, Samson Y, Hantraye P, Peschanski M, Remy P (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127:65–72PubMedGoogle Scholar
  79. Gil JMAC, Leist M, Popovic N, Brundin P, Petersén A (2004) Asialoerythropoietin is not effective in the R6/2 line of Huntington’s disease mice. BMC Neurosci 5:17PubMedGoogle Scholar
  80. Gil JMAC, Mohapel P, Araújo IM, Popovic N, Li J-Y, Brundin P, Petersén A (2005) Reduced hippocampal neurogenesis in R6/2 transgenic Huntington’s disease mice. Neurobiol Dis 20:744–751PubMedGoogle Scholar
  81. Gil-Mohapel J, Simpson JM, Ghilan M, Christie BR (2011) Neurogenesis in Huntington’s disease: can studying adult neurogenesis lead to the development of new therapeutic strategies? Brain Res 1406:84–105PubMedGoogle Scholar
  82. Grabowski M, Brundin P, Johansson BB (1992) Fetal neocortical grafts implanted in adult hypertensive rats with cortical infarcts following a middle cerebral artery occlusion: ingrowth of afferent fibers from the host brain. Exp Neurol 116:105–121PubMedGoogle Scholar
  83. Grabowski M, Johansson BB, Brundin P (1996) Fetal neocortical grafts placed in brain infarcts do not improve paw-reaching deficits in adult spontaneously hypertensive rats. Acta Neurochir Suppl 66:68–72PubMedGoogle Scholar
  84. Graybiel AM, Hirsch EC, Agid YA (1987) Differences in tyrosine hydroxylase-like immunoreactivity characterize the mesostriatal innervation of striosomes and extrastriosomal matrix at maturity. Proc Natl Acad Sci U S A 84:303–307PubMedGoogle Scholar
  85. Grote HE, Bull ND, Howard ML, van Dellen A, Blakemore C, Bartlett PF, Hannan AJ (2005) Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur J Neurosci 22:2081–2088PubMedGoogle Scholar
  86. Hadani M, Freeman T, Munsiff A, Young W, Flamm E (1992) Fetal cortical cells survive in focal cerebral infarct after permanent occlusion of the middle cerebral artery in adult rats. J Neurotrauma 9:107–112PubMedGoogle Scholar
  87. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ, Osborn T, Jaenisch R, Isacson O (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926PubMedGoogle Scholar
  88. Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, Scott D, Nauert GM, Soety E, Sossi V, Holt DA, Sanberg PR, Stoessl AJ, Freeman TB (2002) Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58:687–695PubMedGoogle Scholar
  89. Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, Takagi Y, Dezawa M (2009) Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab 29:1409–1420PubMedGoogle Scholar
  90. Hedlund E, Pruszak J, Lardaro T, Ludwig W, Viñuela A, Kim K-S, Isacson O (2008) Embryonic stem cell-derived Pitx3-enhanced green fluorescent protein midbrain dopamine neurons survive enrichment by fluorescence-activated cell sorting and function in an animal model of Parkinson’s disease. Stem Cells (Dayton, Ohio) 26:1526–1536Google Scholar
  91. Hermann DM, Zechariah A (2009) Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab 29:1620–1643PubMedGoogle Scholar
  92. Hicks AU, Hewlett K, Windle V, Chernenko G, Ploughman M, Jolkkonen J, Weiss S, Corbett D (2007) Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146:31–40PubMedGoogle Scholar
  93. Höglinger GU, Rizk P, Muriel MP, Duyckaerts C, Oertel WH, Caille I, Hirsch EC (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nature Neurosci 7:726–735PubMedGoogle Scholar
  94. Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG, Kocsis JD (2011) Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134:1790–1807PubMedGoogle Scholar
  95. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA, Jiang K, Huhn S, Palmer TD, Bliss TM, Steinberg GK (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells (Dayton, Ohio) 29:274–285Google Scholar
  96. Hou SW, Wang YQ, Xu M, Shen DH, Wang JJ, Huang F, Yu Z, Sun FY (2008) Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39:2837–2844PubMedGoogle Scholar
  97. Huisman E, Uylings HB, Hoogland PV (2004) A 100 % increase of dopaminergic cells in the olfactory bulb may explain hyposmia in Parkinson’s disease. Mov Disord 19:687–692PubMedGoogle Scholar
  98. Isacson O, Brundin P, Kelly PA, Gage FH, Björklund A (1984) Functional neuronal replacement by grafted striatal neurones in the ibotenic acid-lesioned rat striatum. Nature 311:458–460PubMedGoogle Scholar
  99. Isacson O, Brundin P, Gage FH, Björklund A (1985) Neural grafting in a rat model of Huntington’s disease: progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16:799–817PubMedGoogle Scholar
  100. Isacson O, Dawbarn D, Brundin P, Gage FH, Emson PC, Björklund A (1987) Neural grafting in a rat model of Huntington’s disease: striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry and receptor autoradiography. Neuroscience 22:481–497PubMedGoogle Scholar
  101. Jain M, Armstrong RJE, Tyers P, Barker RA, Rosser AE (2003) GABAergic immunoreactivity is predominant in neurons derived from expanded human neural precursor cells in vitro. Exp Neurol 182:113–123PubMedGoogle Scholar
  102. Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27:8–30PubMedGoogle Scholar
  103. Jensen MB, Yan H, Krishnaney-Davison R, Al Sawaf A, Zhang S-C (2011) Survival and differentiation of transplanted neural stem cells derived from human induced pluripotent stem cells in a rat stroke model. J Stroke Cerebrovasc Dis. doi: 10.1016/j.jstrokecerebrovasdis.2011.09.008 PubMedGoogle Scholar
  104. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197–199PubMedGoogle Scholar
  105. Jiang M, Lv L, Ji H, Yang X, Zhu W, Cai L, Gu X, Chai C, Huang S, Sun J, Dong Q (2011) Induction of pluripotent stem cells transplantation therapy for ischemic stroke. Mol Cell Biochem 354:67–75PubMedGoogle Scholar
  106. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710–4715PubMedGoogle Scholar
  107. Jin K, LaFevre-Bernt M, Sun Y, Chen S, Gafni J, Crippen D, Logvinova A, Ross CA, Greenberg DA, Ellerby LM (2005) FGF-2 promotes neurogenesis and neuroprotection and prolongs survival in a transgenic mouse model of Huntington’s disease. Proc Natl Acad Sci U S A 102:18189–18194PubMedGoogle Scholar
  108. Jin K, Mao X, Xie L, Greenberg RB, Peng B, Moore A, Greenberg MB, Greenberg DA (2010a) Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats. Aging Cell 9:1076–1083PubMedGoogle Scholar
  109. Jin K, Wang X, Xie L, Mao XO, Greenberg DA (2010b) Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice. Proc Natl Acad Sci U S A 107:7993–7998PubMedGoogle Scholar
  110. Jin K, Xie L, Mao X, Greenberg MB, Moore A, Peng B, Greenberg RB, Greenberg DA (2011) Effect of human neural precursor cell transplantation on endogenous neurogenesis after focal cerebral ischemia in the rat. Brain Res 1374:56–62PubMedGoogle Scholar
  111. Jones L, Hughes A (2011) Pathogenic mechanisms in Huntington’s disease. Int Rev Neurobiol 98:373–418PubMedGoogle Scholar
  112. Jönsson ME, Ono Y, Björklund A, Thompson LH (2009) Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Exp Neurol 219:341–354PubMedGoogle Scholar
  113. Jungnickel J, Kalve I, Reimers L, Nobre A, Wesemann M, Ratzka A, Halfer N, Lindemann C, Schwabe K, Tollner K, Gernert M, Grothe C (2011) Topology of intrastriatal dopaminergic grafts determines functional and emotional outcome in neurotoxin-lesioned rats. Behav Brain Res 216:129–135PubMedGoogle Scholar
  114. Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L (2010) Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 69:717–728PubMedGoogle Scholar
  115. Kawai H, Yamashita T, Ohta Y, Deguchi K, Nagotani S, Zhang X, Ikeda Y, Matsuura T, Abe K (2010) Tridermal tumorigenesis of induced pluripotent stem cells transplanted in ischemic brain. J Cereb Blood Flow Metab 30:1487–1493PubMedGoogle Scholar
  116. Kay JN, Blum M (2000) Differential response of ventral midbrain and striatal progenitor cells to lesions of the nigrostriatal dopaminergic projection. Dev Neurosci 22:56–67PubMedGoogle Scholar
  117. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A 101:11839–11844PubMedGoogle Scholar
  118. Kelly CM, Precious SV, Scherf C, Penketh R, Amso NN, Battersby A, Allen ND, Dunnett SB, Rosser AE (2009) Neonatal desensitization allows long-term survival of neural xenotransplants without immunosuppression. Nat Methods 6:271–273PubMedGoogle Scholar
  119. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedGoogle Scholar
  120. Kim HJ (2011) Stem cell potential in Parkinson’s disease and molecular factors for the generation of dopamine neurons. Biochim Biophys Acta 1812:1–11PubMedGoogle Scholar
  121. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R (2002) Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 418:50–56PubMedGoogle Scholar
  122. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476PubMedGoogle Scholar
  123. Kippin TE, Kapur S, van der Kooy D (2005) Dopamine specifically inhibits forebrain neural stem cell proliferation, suggesting a novel effect of antipsychotic drugs. J Neurosci 25:5815–5823PubMedGoogle Scholar
  124. Kitamura Y, Inden M, Minamino H, Abe M, Takata K, Taniguchi T (2010) The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra. Glia 58:1686–1700PubMedGoogle Scholar
  125. Klein A, Metz GA, Papazoglou A, Nikkhah G (2007) Differential effects on forelimb grasping behavior induced by fetal dopaminergic grafts in hemiparkinsonian rats. Neurobiol Dis 27:24–35PubMedGoogle Scholar
  126. Klein A, Sacrey L-AR, Whishaw IQ, Dunnett SB (2012) The use of rodent skilled reaching as a translational model for investigating brain damage and disease. Neurosci Biobehav Rev 36:1030–1042PubMedGoogle Scholar
  127. Kohl Z, Kandasamy M, Winner B, Aigner R, Gross C, Couillard-Despres S, Bogdahn U, Aigner L, Winkler J (2007) Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington’s disease. Brain Res 1155:24–33PubMedGoogle Scholar
  128. Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Munch M, Barlow C, Carter T, Masliah E, Winkler J (2012) Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci 35:10–19PubMedGoogle Scholar
  129. Komitova M, Mattsson B, Johansson BB, Eriksson PS (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282PubMedGoogle Scholar
  130. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J, Jannetta P, DeCesare S, Elder EM, McGrogan M, Reitman MA, Bynum L (2000) Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55:565–569PubMedGoogle Scholar
  131. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, Decesare S, Jovin T, Zafonte R, Lebowitz J, Flickinger JC, Tong D, Marks MP, Jamieson C, Luu D, Bell-Stephens T, Teraoka J (2005) Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg 103:38–45PubMedGoogle Scholar
  132. Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS (1998) Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 149:97–108PubMedGoogle Scholar
  133. Kordower JH, Freeman TB, Chen EY, Mufson EJ, Sanberg PR, Hauser RA, Snow B, Olanow CW (1998) Fetal nigral grafts survive and mediate clinical benefit in a patient with Parkinson’s disease. Mov Disord 13:383–393PubMedGoogle Scholar
  134. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033PubMedGoogle Scholar
  135. Lane EL, Björklund A, Dunnett SB, Winkler C (2010) Neural grafting in Parkinson’s disease unraveling the mechanisms underlying graft-induced dyskinesia. Prog Brain Res 184:295–309PubMedGoogle Scholar
  136. Lapidot T, Kollet O (2010) The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology 2010(1):1–6PubMedGoogle Scholar
  137. Lazarini F, Lledo PM (2011) Is adult neurogenesis essential for olfaction? Trends Neurosci 34:20–30PubMedGoogle Scholar
  138. Lazic SE, Grote HE, Blakemore C, Hannan AJ, van Dellen A, Phillips W, Barker RA (2006) Neurogenesis in the R6/1 transgenic mouse model of Huntington’s disease: effects of environmental enrichment. Eur J Neurosci 23:1829–1838PubMedGoogle Scholar
  139. Lee SH, Lumelsky N, Studer L, Auerbach JM, McKay RD (2000) Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 18:675–679PubMedGoogle Scholar
  140. Lees JS, Sena ES, Egan KJ, Antonic A, Koblar SA, Howells DW, Macleod MR (2012) Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int J Stroke. doi: 10.1111/j.1747-4949.2012.00797.x Google Scholar
  141. Li Y, Chopp M (2009) Marrow stromal cell transplantation in stroke and traumatic brain injury. Neurosci Lett 456:120–123PubMedGoogle Scholar
  142. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523PubMedGoogle Scholar
  143. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M, Gao Q, Shen LH, Zhang J, Lu M, Chopp M (2005) Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 49:407–417PubMedGoogle Scholar
  144. Li J, Zhu H, Liu Y, Li Q, Lu S, Feng M, Xu Y, Huang L, Ma C, An Y, Zhao RC, Wang R, Qin C (2010) Human mesenchymal stem cell transplantation protects against cerebral ischemic injury and upregulates interleukin-10 expression in Macaca fascicularis. Brain Res 1334:65–72PubMedGoogle Scholar
  145. Lie DC, Dziewczapolski G, Willhoite AR, Kaspar BK, Shults CW, Gage FH (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22:6639–6649PubMedGoogle Scholar
  146. Lindgren HS, Dunnett SB (2012) Cognitive dysfunction and depression in Parkinson’s disease: what can be learned from rodent models? Eur J Neurosci 35:1894–1907PubMedGoogle Scholar
  147. Lindvall O (1997) Neural transplantation: a hope for patients with Parkinson’s disease. Neuroreport 8:iii–xGoogle Scholar
  148. Lindvall O (2010) Clinical experiences with dopamine neuron replacement in Parkinson’s disease: what is the future? In: Iversen LL, Iversen SD, Dunnett SB, Bjorklund A (eds) Dopamine handbook. Oxford University Press, New York , pp 478–488Google Scholar
  149. Liu Z, Li Y, Qu R, Shen L, Gao Q, Zhang X, Lu M, Savant-Bhonsale S, Borneman J, Chopp M (2007) Axonal sprouting into the denervated spinal cord and synaptic and postsynaptic protein expression in the spinal cord after transplantation of bone marrow stromal cell in stroke rats. Brain Res 1149:172–180PubMedGoogle Scholar
  150. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen J (2009) Expression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol 6:207–213PubMedGoogle Scholar
  151. Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc Natl Acad Sci U S A 90:2074–2077PubMedGoogle Scholar
  152. Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci 27:4424–4434PubMedGoogle Scholar
  153. Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang S-C (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10:455–464PubMedGoogle Scholar
  154. Madrazo I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F (1995) Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res 17:312–315PubMedGoogle Scholar
  155. Mampalam TJ, Gonzalez MF, Weinstein P, Sharp FR (1988) Neuronal changes in fetal cortex transplanted to ischemic adult rat cortex. J Neurosurg 69:904–912PubMedGoogle Scholar
  156. Mao L, Lau YS, Petroske E, Wang JQ (2001) Profound astrogenesis in the striatum of adult mice following nigrostriatal dopaminergic lesion by repeated MPTP administration. Dev Brain Res 131:57–65Google Scholar
  157. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638PubMedGoogle Scholar
  158. Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B (2009) Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 29:879–890PubMedGoogle Scholar
  159. Mattsson B, Sørensen JC, Zimmer J, Johansson BB (1997) Neural grafting to experimental neocortical infarcts improves behavioral outcome and reduces thalamic atrophy in rats housed in enriched but not in standard environments. Stroke 28:1225–1231, discussion 1231–1232Google Scholar
  160. Mazzocchi-Jones D, Döbrössy M, Dunnett SB (2009) Embryonic striatal grafts restore bi-directional synaptic plasticity in a rodent model of Huntington’s disease. Eur J Neurosci 30:2134–2142PubMedGoogle Scholar
  161. Mazzocchi-Jones D, Döbrössy M, Dunnett SB (2011) Environmental enrichment facilitates long-term potentiation in embryonic striatal grafts. Neurorehabil Neural Repair 25:548–557PubMedGoogle Scholar
  162. McGeer PL, Kimura H, McGeer EG (1984) Transplantation of newborn brain tissue into adult kainic-acid-lesioned neostriatum. In: Sladek JR, Gash DM (eds) Neural transplants: development and function. Plenum Publishing Corporation, New York, pp 361–371Google Scholar
  163. Mendez I, Sadi D, Hong M (1996) Reconstruction of the nigrostriatal pathway by simultaneous intrastriatal and intranigral dopaminergic transplants. J Neurosci 16:7216–7227PubMedGoogle Scholar
  164. Meredith GE, Farrell T, Kellaghan P, Tan Y, Zahm DS, Totterdell S (1999) Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur J Neurosci 11:3585–3596PubMedGoogle Scholar
  165. Metz GA, Piecharka DM, Klein A, Whishaw IQ (2004) Preserved ipsilateral-to-lesion motor map organization in the unilateral 6-OHDA-treated rat model of Parkinson’s disease. Brain Res 1026:126–135PubMedGoogle Scholar
  166. Ming G, Song H (2005) Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci 28:223–250PubMedGoogle Scholar
  167. Minger SL, Ekonomou A, Carta EM, Chinoy A, Perry RH, Ballard CG (2007) Endogenous neurogenesis in the human brain following cerebral infarction. Regen Med 2:69–74PubMedGoogle Scholar
  168. Minnerup J, Kim JB, Schmidt A, Diederich K, Bauer H, Schilling M, Strecker J-K, Ringelstein EB, Sommer C, Schöler HR, Schäbitz W-R (2011) Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke. Stroke 42:1757–1763PubMedGoogle Scholar
  169. Montoya CP, Astell S, Dunnett SB (1990) Effects of nigral and striatal grafts on skilled forelimb use in the rat. Prog Brain Res 82:459–466PubMedGoogle Scholar
  170. Mundinano IC, Caballero MC, Ordonez C, Hernandez M, DiCaudo C, Marcilla I, Erro ME, Tunon MT, Luquin MR (2011) Increased dopaminergic cells and protein aggregates in the olfactory bulb of patients with neurodegenerative disorders. Acta Neuropathol 122:61–74PubMedGoogle Scholar
  171. Munoz JR, Stoutenger BR, Robinson AP, Spees JL, Prockop DJ (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 102:18171–18176PubMedGoogle Scholar
  172. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106PubMedGoogle Scholar
  173. Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S, Elder EM, Zhang PJ, Jacobs A, McGrogan M, Lee VM-Y, Trojanowski JQ (2002) Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 160:1201–1206PubMedGoogle Scholar
  174. Nikkhah G, Rosenthal C, Falkenstein G, Samii M (1998) Dopaminergic graft-induced long-term recovery of complex sensorimotor behaviors in a rat model of Parkinson’s disease. Zentralbl Neurochir 59:97–103PubMedGoogle Scholar
  175. Nishino H, Koide K, Aihara N, Kumazaki M, Sakurai T, Nagai H (1993) Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res Bull 32:517–520PubMedGoogle Scholar
  176. Nithianantharajah J, Barkus C, Vijiaratnam N, Clement O, Hannan AJ (2009) Modeling brain reserve: experience-dependent neuronal plasticity in healthy and Huntington’s disease transgenic mice. Am J Geriatr Psychiatry 17:196–209PubMedGoogle Scholar
  177. Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T, Boy J, Kuhn M, Nguyen HP, Teismann P, Schulz JB, Neumann M, Pichler BJ, Reischl G, Holzmann C, Schmitt I, Bornemann A, Kuhn W, Zimmermann F, Servadio A, Riess O (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28:2471–2484PubMedGoogle Scholar
  178. O’Keeffe FE, Scott SA, Tyers P, O’Keeffe GW, Dalley JW, Zufferey R, Caldwell MA (2008) Induction of A9 dopaminergic neurons from neural stem cells improves motor function in an animal model of Parkinson’s disease. Brain 131:630–641PubMedGoogle Scholar
  179. O’Keeffe GC, Tyers P, Aarsland D, Dalley JW, Barker RA, Caldwell MA (2009) Dopamine-induced proliferation of adult neural precursor cells in the mammalian subventricular zone is mediated through EGF. Proc Natl Acad Sci U S A 106:8754–8759PubMedGoogle Scholar
  180. Ohtani N, Goto T, Waeber C, Bhide PG (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23:2840–2850PubMedGoogle Scholar
  181. Oki K, Tatarishvili J, Woods J, Koch P, Wattananit S, Mine Y, Monni E, Prietro DT, Ahlenius H, Ladewig J, Brüstle O, Lindvall O, Kokaia Z (2012) Human induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain. Stem Cells (Dayton, Ohio) 30:1120–1133Google Scholar
  182. Palfi S, Leventhal L, Chu Y, Ma SY, Emborg M, Bakay R, Déglon N, Hantraye P, Aebischer P, Kordower JH (2002) Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 22:4942–4954PubMedGoogle Scholar
  183. Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ (2006) Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in huntington’s disease transgenic mice. Neuroscience 141:569–584PubMedGoogle Scholar
  184. Pang TYC, Du X, Zajac MS, Howard ML, Hannan AJ (2009) Altered serotonin receptor expression is associated with depression-related behavior in the R6/1 transgenic mouse model of Huntington’s disease. Hum Mol Genet 18:753–766PubMedGoogle Scholar
  185. Park JH, Enikolopov G (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion. Exp Neurol 222:267–276PubMedGoogle Scholar
  186. Park I-H, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886PubMedGoogle Scholar
  187. Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210:154–163PubMedGoogle Scholar
  188. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ (1979) Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 204:643–647PubMedGoogle Scholar
  189. Petroske E, Meredith GE, Callen S, Totterdell S, Lau YS (2001) Mouse model of Parkinsonism: a comparison between subacute MPTP and chronic MPTP/probenecid treatment. Neuroscience 106:589–601PubMedGoogle Scholar
  190. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108:10343–10348PubMedGoogle Scholar
  191. Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: three case presentations. Cell Transplant 6:203–212PubMedGoogle Scholar
  192. Piccini P, Brooks DJ, Bjorklund A, Gunn RN, Grasby PM, Rimoldi O, Brundin P, Hagell P, Rehncrona S, Widner H, Lindvall O (1999) Dopamine release from nigral transplants visualized in vivo in a Parkinson’s patient. Nat Neurosci 2:1137–1140PubMedGoogle Scholar
  193. Porritt MJ, Batchelor PE, Hughes AJ, Kalnins R, Donnan GA, Howells DW (2000) New dopaminergic neurons in Parkinson’s disease striatum. Lancet 356:44–45PubMedGoogle Scholar
  194. Price J, Williams BP (2001) Neural stem cells. Curr Opin Neurobiol 11:564–567PubMedGoogle Scholar
  195. Pritzel M, Isacson O, Brundin P, Wiklund L, Björklund A (1986) Afferent and efferent connections of striatal grafts implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp Brain Res 65:112–126PubMedGoogle Scholar
  196. Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z, Chen X, Chopp M (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363PubMedGoogle Scholar
  197. Quinn L, Busse M, Khalil H, Richardson S, Rosser A, Morris H (2010) Client and therapist views on exercise programmes for early-mid stage Parkinson’s disease and Huntington’s disease. Disabil Rehabil 32:917–928PubMedGoogle Scholar
  198. Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, Clough C, Brooks DJ, Barker RA, Piccini P (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry 79:948–951PubMedGoogle Scholar
  199. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science (New York, N.Y.) 255:1707–1710Google Scholar
  200. Roberts TJ, Price J, Williams SCR, Modo M (2006) Preservation of striatal tissue and behavioral function after neural stem cell transplantation in a rat model of Huntington’s disease. Neuroscience 139:1187–1199PubMedGoogle Scholar
  201. Roberts TJ, Price J, Williams SCR, Modo M (2007) Pharmacological MRI of stem cell transplants in the 3-nitropropionic acid-damaged striatum. Neuroscience 144:100–109PubMedGoogle Scholar
  202. Rojin A, Verfaillie CM (2012) Adult stem cells for neuronal differentation and cell therapy. Prog Brain Res 201 (in press)Google Scholar
  203. Rosenzweig MR, Krech D, Bennett EL, Diamond MC (1962) Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Psychol 55:429–437Google Scholar
  204. Ross BD, Hoang TQ, Blüml S, Dubowitz D, Kopyov OV, Jacques DB, Lin A, Seymour K, Tan J (1999) In vivo magnetic resonance spectroscopy of human fetal neural transplants. NMR Biomed 12:221–236PubMedGoogle Scholar
  205. Rössler R, Boddeke E, Copray S (2010) Differentiation of non-mesencephalic neural stem cells towards dopaminergic neurons. Neuroscience 170:417–428PubMedGoogle Scholar
  206. Rutherford A, Garcia-Munoz M, Dunnett SB, Arbuthnott GW (1987) Electrophysiological demonstration of host cortical inputs to striatal grafts. Neurosci Lett 83:275–281PubMedGoogle Scholar
  207. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115PubMedGoogle Scholar
  208. Samuels BA, Hen R (2011) Neurogenesis and affective disorders. Eur J Neurosci 33:1152–1159PubMedGoogle Scholar
  209. Sanberg PR, Eve DJ, Metcalf C, Borlongan, CV (2012) Advantages and challenges of alternative sources of adult-derived stem cells for brain repair in stroke. Prog Brain Res 201 (in press)Google Scholar
  210. Sánchez-Pernaute R, Studer L, Bankiewicz KS, Major EO, McKay RD (2001) In vitro generation and transplantation of precursor-derived human dopamine neurons. J Neurosci Res 65:284–288PubMedGoogle Scholar
  211. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809PubMedGoogle Scholar
  212. Sass KJ, Buchanan CP, Westerveld M, Marek KL, Farhi A, Robbins RJ, Naftolin F, Vollmer TL, Leranth C, Roth RH et al (1995) General cognitive ability following unilateral and bilateral fetal ventral mesencephalic tissue transplantation for treatment of Parkinson’s disease. Arch Neurol 52:680–686PubMedGoogle Scholar
  213. Savitz SI, Dinsmore J, Wu J, Henderson GV, Stieg P, Caplan LR (2005) Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc Dis (Basel, Switzerland) 20:101–107Google Scholar
  214. Schäbitz WR, Laage R, Vogt G, Koch W, Kollmar R, Schwab S, Schneider D, Hamann GF, Rosenkranz M, Veltkamp R, Fiebach JB, Hacke W, Grotta JC, Fisher M, Schneider A (2010) AXIS: a trial of intravenous granulocyte colony-stimulating factor in acute ischemic stroke. Stroke 41:2545–2551PubMedGoogle Scholar
  215. Schmidt RH, Ingvar M, Lindvall O, Stenevi U, Björklund A (1982) Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and [14C]2-deoxy-d-glucose autoradiography. J Neurochem 38:737–748PubMedGoogle Scholar
  216. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, Chopp M (2006) Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 137:393–399PubMedGoogle Scholar
  217. Shen LH, Li Y, Chen J, Cui Y, Zhang C, Kapke A, Lu M, Savant-Bhonsale S, Chopp M (2007) One-year follow-up after bone marrow stromal cell treatment in middle-aged female rats with stroke. Stroke 38:2150–2156PubMedGoogle Scholar
  218. Shin E, Palmer MJ, Li M, Fricker RA (2011) GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington’s disease. Stem Cell Rev 38:513–531Google Scholar
  219. Silveira-Moriyama L, Holton JL, Kingsbury A, Ayling H, Petrie A, Sterlacci W, Poewe W, Maier H, Lees AJ, Revesz T (2009) Regional differences in the severity of Lewy body pathology across the olfactory cortex. Neurosci Lett 453:77–80PubMedGoogle Scholar
  220. Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A 106:4906–4911PubMedGoogle Scholar
  221. Simpson JM, Gil-Mohapel J, Pouladi MA, Ghilan M, Xie Y, Hayden MR, Christie BR (2011) Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease. Neurobiol Dis 41:249–260PubMedGoogle Scholar
  222. Sinden JD, Vishnubhatla I, Muir K (2012) Prospects for stem cell-derived therapy in stroke. Prog Brain Res 201 (in press)Google Scholar
  223. Sirén A-L, Fasshauer T, Bartels C, Ehrenreich H (2009) Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurother 6:108–127Google Scholar
  224. Sirinathsinghji DJ, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Björklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions–II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24:803–811PubMedGoogle Scholar
  225. Siviy SM, Walsh JP, Radisavljevic Z, Cohen RW, Buchwald NA, Levine MS (1993) Evidence for enhanced synaptic excitation in transplanted neostriatal neurons. Exp Neurol 123:222–234PubMedGoogle Scholar
  226. Smidt MP, Burbach JPH (2007) How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 8:21–32PubMedGoogle Scholar
  227. Smith AD, Zigmond MJ (2003) Can the brain be protected through exercise? Lessons from an animal model of parkinsonism. Exp Neurol 184:31–39PubMedGoogle Scholar
  228. Smith GA, Heuer A, Dunnett SB, Lane EL (2012) Unilateral nigrostriatal 6-hydroxydopamine lesions in mice II: predicting l-DOPA-induced dyskinesia. Behav Brain Res 226:281–292PubMedGoogle Scholar
  229. Snyder BR, Chiu AM, Prockop DJ, Chan AWS (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PloS One 5:e9347PubMedGoogle Scholar
  230. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, Isacson O, Jaenisch R (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977PubMedGoogle Scholar
  231. Sorensen JC, Grabowski M, Zimmer J, Johansson BB (1996) Fetal neocortical tissue blocks implanted in brain infarcts of adult rats interconnect with the host brain. Exp Neurol 138:227–235PubMedGoogle Scholar
  232. Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, Hannan AJ (2004) Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci 24:2270–2276PubMedGoogle Scholar
  233. Sramka M, Rattaj M, Molina H, Vojtassák J, Belan V, Ruzický E (1992) Stereotactic technique and pathophysiological mechanisms of neurotransplantation in Huntington’s chorea. Stereotact Funct Neurosurg 58:79–83PubMedGoogle Scholar
  234. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science (New York, N.Y.) 322:945–949Google Scholar
  235. Steiner B, Winter C, Hosman K, Siebert E, Kempermann G, Petrus DS, Kupsch A (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300PubMedGoogle Scholar
  236. Strecker RE, Sharp T, Brundin P, Zetterström T, Ungerstedt U, Björklund A (1987) Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience 22:169–178PubMedGoogle Scholar
  237. Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J (2009) The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23:895–909PubMedGoogle Scholar
  238. Strömberg I, Törnqvist N, Johansson S, Bygdeman M, Almqvist PM (2001) Evidence for target-specific outgrowth from subpopulations of grafted human dopamine neurons. Microsc Res Tech 54:287–297PubMedGoogle Scholar
  239. Studer L, Tabar V, McKay RD (1998) Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1:290–295PubMedGoogle Scholar
  240. Sullivan FR, Bird ED, Alpay M, Cha JH (2001) Remotivation therapy and Huntington’s disease. J Neurosci Nurs 33:136–142PubMedGoogle Scholar
  241. Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, Karmiol S, Dunnett SB (1997) Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol 148:135–146PubMedGoogle Scholar
  242. Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, Zeng X (2010) Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells (Dayton, Ohio) 28:1893–1904Google Scholar
  243. Sygnis (2011) Press release. Accessed 15 Dec 2011
  244. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676PubMedGoogle Scholar
  245. Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089PubMedGoogle Scholar
  246. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872PubMedGoogle Scholar
  247. Taylor JR, Elsworth JD, Roth RH, Collier TJ, Sladek JR Jr, Redmond DE Jr (1990) Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. Prog Brain Res 82:543–559PubMedGoogle Scholar
  248. Thompson WG (1890) Successful brain grafting. N Y Med J 51:701–702Google Scholar
  249. Thompson LH, Grealish S, Kirik D, Bjorklund A (2009) Reconstruction of the nigrostriatal dopamine pathway in the adult mouse brain. Eur J Neurosci 30:625–638PubMedGoogle Scholar
  250. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848PubMedGoogle Scholar
  251. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science (New York, N.Y.) 282:1145–1147Google Scholar
  252. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, Ekdahl CT, Kokaia Z, Lindvall O (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24:739–747PubMedGoogle Scholar
  253. Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21:4427–4435PubMedGoogle Scholar
  254. Toda H, Takahashi J, Mizoguchi A, Koyano K, Hashimoto N (2000) Neurons generated from adult rat hippocampal stem cells form functional glutamatergic and GABAergic synapses in vitro. Exp Neurol 165:66–76PubMedGoogle Scholar
  255. Trott CT, Fahn S, Greene P, Dillon S, Winfield H, Winfield L, Kao R, Eidelberg D, Freed CR, Breeze RE, Stern Y (2003) Cognition following bilateral implants of embryonic dopamine neurons in PD: a double blind study. Neurology 60:1938–1943PubMedGoogle Scholar
  256. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5:107–110PubMedGoogle Scholar
  257. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24:485–493PubMedGoogle Scholar
  258. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ (2000) Delaying the onset of Huntington’s in mice. Nature 404:721–722PubMedGoogle Scholar
  259. van Dellen A, Cordery PM, Spires TL, Blakemore C, Hannan AJ (2008) Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington’s disease. BMC Neurosci 9:34PubMedGoogle Scholar
  260. Vierbuchen T, Wernig M (2011) Direct lineage conversions: unnatural but useful? Nat Biotechnol 29:892–907PubMedGoogle Scholar
  261. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041PubMedGoogle Scholar
  262. Voorn P, Kalsbeek A, Jorritsma-Byham B, Groenewegen HJ (1988) The pre- and postnatal development of the dopaminergic cell groups in the ventral mesencephalon and the dopaminergic innervation of the striatum of the rat. Neuroscience 25:857–887PubMedGoogle Scholar
  263. Walsh JP, Zhou FC, Hull CD, Fisher RS, Levine MS, Buchwald NA (1988) Physiological and morphological characterization of striatal neurons transplanted into the striatum of adult rats. Synapse (New York, N.Y.) 2:37–44Google Scholar
  264. Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, Jørgensen JR, Lindvall O (2012) Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 32:387–398PubMedGoogle Scholar
  265. Wernig M, Zhao J-P, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R (2008) Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Natl Acad Sci U S A 105:5856–5861PubMedGoogle Scholar
  266. Wictorin K (1992) Anatomy and connectivity of intrastriatal striatal transplants. Prog Neurobiol 38:611–639PubMedGoogle Scholar
  267. Wictorin K, Clarke DJ, Bolam JP, Björklund A (1990) Fetal striatal neurons grafted into the ibotenate lesioned adult striatum: efferent projections and synaptic contacts in the host globus pallidus. Neuroscience 37:301–315PubMedGoogle Scholar
  268. Wilby MJ, Sinclair SR, Muir EM, Zietlow R, Adcock KH, Horellou P, Rogers JH, Dunnett SB, Fawcett JW (1999) A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra. J Neurosci 19:2301–2312PubMedGoogle Scholar
  269. Winkler C, Kirik D, Björklund A, Dunnett SB (2000) Transplantation in the rat model of Parkinson’s disease: ectopic versus homotopic graft placement. Prog Brain Res 127:233–265PubMedGoogle Scholar
  270. Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92PubMedGoogle Scholar
  271. Winner B, Lie DC, Rockenstein E, Aigner R, Aigner L, Masliah E, Kuhn HG, Winkler J (2004) Human wild-type alpha-synuclein impairs neurogenesis. J Neuropathol Exp Neurol 63:1155–1166PubMedGoogle Scholar
  272. Winner B, Geyer M, Couillard-Despres S, Aigner R, Bogdahn U, Aigner L, Kuhn G, Winkler J (2006) Striatal deafferentation increases dopaminergic neurogenesis in the adult olfactory bulb. Exp Neurol 197:113–121PubMedGoogle Scholar
  273. Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J (2009) Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol 219:543–552PubMedGoogle Scholar
  274. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung H-K, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766–770PubMedGoogle Scholar
  275. Wuerthele SM, Freed WJ, Olson L, Morihisa J, Spoor L, Wyatt RJ, Hoffer BJ (1981) Effect of dopamine agonists and antagonists on the electrical activity of substantia nigra neurons transplanted into the lateral ventricle of the rat. Exp Brain Res 44:1–10PubMedGoogle Scholar
  276. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang XL, Sang X, Zhang ZG, Chopp M (2012) Exosome mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells (Dayton, Ohio) 30:1556–1564Google Scholar
  277. Xu ZC, Wilson CJ, Emson PC (1991) Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation. J Neurophysiol 65:477–493PubMedGoogle Scholar
  278. Yamada M, Onodera M, Mizuno Y, Mochizuki H (2004) Neurogenesis in olfactory bulb identified by retroviral labeling in normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated adult mice. Neuroscience 124:173–181PubMedGoogle Scholar
  279. Yamashita T, Ninomiya M, Hernández Acosta P, García-Verdugo JM, Sunabori T, Sakaguchi M, Adachi K, Kojima T, Hirota Y, Kawase T, Araki N, Abe K, Okano H, Sawamoto K (2006) Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J Neurosci 26:6627–6636PubMedGoogle Scholar
  280. Yan J, Studer L, McKay RD (2001) Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. J Neurochem 76:307–311PubMedGoogle Scholar
  281. Yang D, Zhang Z-J, Oldenburg M, Ayala M, Zhang S-C (2008) Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 26:55–63PubMedGoogle Scholar
  282. Yasuhara T, Matsukawa N, Hara K, Maki M, Ali MM, Yu SJ, Bae E, Yu G, Xu L, McGrogan M, Bankiewicz K, Case C, Borlongan CV (2009) Notch-induced rat and human bone marrow stromal cell grafts reduce ischemic cell loss and ameliorate behavioral deficits in chronic stroke animals. Stem Cells Dev 18:1501–1514PubMedGoogle Scholar
  283. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, Feng Y, Gao Q, Chopp M (2007) Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 27:1684–1691PubMedGoogle Scholar
  284. Zetterström T, Brundin P, Gage FH, Sharp T, Isacson O, Dunnett SB, Ungerstedt U, Björklund A (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349PubMedGoogle Scholar
  285. Zhang R, Zhang L, Zhang Z, Wang Y, Lu M, Lapointe M, Chopp M (2001) A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats. Ann Neurol 50:602–611PubMedGoogle Scholar
  286. Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, Chopp M (2006) Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 141:687–695PubMedGoogle Scholar
  287. Zhang C, Chopp M, Cui Y, Wang L, Zhang R, Zhang L, Lu M, Szalad A, Doppler E, Hitzl M, Zhang ZG (2010) Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 88:3275–3281PubMedGoogle Scholar
  288. Zhang P, Li J, Liu Y, Chen X, Lu H, Kang Q, Li W, Gao M (2011) Human embryonic neural stem cell transplantation increases subventricular zone cell proliferation and promotes peri-infarct angiogenesis after focal cerebral ischemia. Neuropathology 31:384–391PubMedGoogle Scholar
  289. Zhao M, Momma S, Delfani K, Carlen M, Cassidy RM, Johansson CB, Brismar H, Shupliakov O, Frisen J, Janson AM (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100:7925–7930PubMedGoogle Scholar
  290. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y, Siuzdak G, Schöler HR, Duan L, Ding S (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. C. Trueman
    • 1
  • A. Klein
    • 2
  • H. S. Lindgren
    • 3
  • M. J. Lelos
    • 3
  • S. B. Dunnett
    • 3
    Email author
  1. 1.School of Biomedical SciencesUniversity of Nottingham Medical SchoolNottinghamUK
  2. 2.Hannover Medical School (MHH)Institute of NeuroanatomyHannoverGermany
  3. 3.The Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations