Advertisement

Neurosurgical Treatments of Depression

  • Yasin TemelEmail author
  • Lee Wei Lim
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 14)

Abstract

The neurosurgical treatment of treatment-resistant depression (TRD) has entered a new era with more and more patients being treated with deep brain stimulation (DBS) via surgically implanted intracerebral electrodes. Although the mechanisms of action of DBS are still not fully understood, preclinical studies are being conducted to elucidate how the treatment might work. DBS in its present form can be considered as a relatively new neurosurgical treatment for TRD. However, the use of neurosurgery in the management of depression has a much longer history particularly with ablative procedures but also vagal nerve stimulation. Here, we provide a review of the clinical neurosurgical treatments for TRD, with a main emphasis on DBS. In addition, we discuss relevant preclinical data that are revealing new information about DBS mechanisms.

Keywords

Treatment resistant depression Neurosurgery Ablative surgery Vagal nerve stimulation Deep brain stimulation 

Notes

Acknowledgments

The scientific work of YT and LWL in the field of DBS in depression received support from the Netherlands Organization for Scientific Research (NWO Veni), Dutch Brain Foundation, and the Singapore Lee Kuan Yew Research Fellowship.

References

  1. Altar CA, Whitehead RE, Chen R, Wortwein G, Madsen TM (2003) Effects of electroconvulsive seizures and antidepressant drugs on brain-derived neurotrophic factor protein in rat brain. Biol Psychiatry 54:703–709PubMedCrossRefGoogle Scholar
  2. Andrade P, Noblesse LH, Temel Y et al (2010) Neurostimulatory and ablative treatment options in major depressive disorder: a systematic review. Acta Neurochir (Wien) 152:565–577Google Scholar
  3. Bailey HR, Dowling JL, Davies E (1973) Studies in depression. 3. The control of affective illness by cingulotractotomy: a review of 150 cases. Med J Aust 2:366–371PubMedGoogle Scholar
  4. Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry 64:863–870PubMedCrossRefGoogle Scholar
  5. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral parkinson disease. Appl Neurophysiol 50:344–346PubMedGoogle Scholar
  6. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389PubMedCrossRefGoogle Scholar
  7. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMedCrossRefGoogle Scholar
  8. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, Axmacher N, Lemke M, Cooper-Mahkorn D, Cohen MX, Brockmann H, Lenartz D, Sturm V, Schlaepfer TE (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67:110–116PubMedCrossRefGoogle Scholar
  9. Bewernick BH, Kayser S, Sturm V et al (2012) Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: evidence for sustained efficacy. NeuropsychopharmacologyGoogle Scholar
  10. Birley JL (1964) Modified frontal leucotomy: a review of 106 cases. Br J Psychiatry 110:211–221PubMedCrossRefGoogle Scholar
  11. Bridges PK, Goktepe EO, Maratos J (1973) A comparative review of patients with obsessional neurosis and with depression treated by psychosurgery. Br J Psychiatry 123:663–674PubMedCrossRefGoogle Scholar
  12. Brown MH, Lighthill JA (1968) Selective anterior cingulotomy: a psychosurgical evaluation. J Neurosurg 29:513–519CrossRefGoogle Scholar
  13. Coenen VA, Schlaepfer TE, Maedler B, Panksepp J (2011) Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35:1971–1981PubMedCrossRefGoogle Scholar
  14. Dougherty DD, Weiss AP, Cosgrove GR, Alpert NM, Cassem EH, Nierenberg AA, Price BH, Mayberg HS, Fischman AJ, Rauch SL (2003) Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 99:1010–1017PubMedCrossRefGoogle Scholar
  15. Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE (2000) Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 42:203–210PubMedCrossRefGoogle Scholar
  16. Elithorn A (1959) Discussion on psychosurgery; prefrontal leucotomy and depression. Proc R Soc Med 52:203–206PubMedGoogle Scholar
  17. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J, Hochberg H, Murrough J, Strohmayer E, Stern E, Silbersweig DA (2006) Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 163:1784–1790PubMedCrossRefGoogle Scholar
  18. Freeman W, Watts JW (1937) Prefrontal lobotomy in the treatment of mental disorders. South Med J 30:23–31CrossRefGoogle Scholar
  19. Friedman A, Frankel M, Flaumenhaft Y, Merenlender A, Pinhasov A, Feder Y, Taler M, Gil-Ad I, Abeles M, Yadid G (2009) Programmed acute electrical stimulation of ventral tegmental area alleviates depressive-like behavior. Neuropsychopharmacology 34:1057–1066PubMedCrossRefGoogle Scholar
  20. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC (2000) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 47:287–295PubMedCrossRefGoogle Scholar
  21. Gersner R, Toth E, Isserles M, Zangen A (2010) Site-specific antidepressant effects of repeated subconvulsive electrical stimulation: potential role of brain-derived neurotrophic factor. Biol Psychiatry 67:125–132PubMedCrossRefGoogle Scholar
  22. Goktepe EO, Young LB, Bridges PK (1975) A further review of the results of sterotactic subcaudate tractotomy. Br J Psychiatry 126:270–280PubMedCrossRefGoogle Scholar
  23. Hamani C, Temel Y (2012) Deep brain stimulation for psychiatric disease: contributions and validity of animal models. Sci Transl Med 4(142):142rv8Google Scholar
  24. Hamani C, Diwan M, Isabella S, Lozano AM, Nobrega JN (2010a) Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. J Psychiatr Res 44:683–687PubMedCrossRefGoogle Scholar
  25. Hamani C, Diwan M, Macedo CE, Brandao ML, Shumake J, Gonzalez-Lima F, Raymond R, Lozano AM, Fletcher PJ, Nobrega JN (2010b) Antidepressant-like effects of medial prefrontal cortex deep brain stimulation in rats. Biol Psychiatry 67:117–124PubMedCrossRefGoogle Scholar
  26. Hamani C, Machado DC, Hipolide DC et al (2011a) Deep brain stimulation reverses anhedonic-like behavior in a chronic model of depression: role of serotonin and BDNF. Biol Psychiatry 71(1):30–35Google Scholar
  27. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM (2011b) The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry 69:301–308PubMedCrossRefGoogle Scholar
  28. Harden CL, Pulver MC, Ravdin LD, Nikolov B, Halper JP, Labar DR (2000) A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav 1:93–99PubMedCrossRefGoogle Scholar
  29. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophr Res 71:249–262PubMedCrossRefGoogle Scholar
  30. Hodgkiss AD, Malizia AL, Bartlett JR, Bridges PK (1995) Outcome after the psychosurgical operation of stereotactic subcaudate tractotomy, 1979–1991. J Neuropsychiatry Clin Neurosci 7:230–234PubMedGoogle Scholar
  31. Hoppe C, Helmstaedter C, Scherrmann J, Elger CE (2001) Self-reported mood changes following six months of vagus nerve stimulation in epilepsy patients. Epilepsy Behav 2:335–342PubMedCrossRefGoogle Scholar
  32. Jimenez F, Velasco F, Salin-Pascual R et al (2005) A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57: 585–593Google Scholar
  33. Kelly DH, Walter CJ, Sargant W (1966) Modified leucotomy assessed by forearm blood flow and other measurements. Br J Psychiatry 112:871–881PubMedCrossRefGoogle Scholar
  34. Kelly D, Walter CJ, Mitchell-Heggs N, Sargant W (1972) Modified leucotomy assessed clinically, physiologically and psychologically at six weeks and eighteen months. Br J Psychiatry 120:19–29PubMedCrossRefGoogle Scholar
  35. Kelly D, Richardson A, Mitchell-Heggs N (1973a) Stereotactic limbic leucotomy: neurophysiological aspects and operative technique. Br J Psychiatry 123:133–140PubMedCrossRefGoogle Scholar
  36. Kelly D, Richardson A, Mitchell-Heggs N, Greenup J, Chen C, Hafner RJ (1973b) Stereotactic limbic leucotomy: a preliminary report on forty patients. Br J Psychiatry 123:141–148PubMedCrossRefGoogle Scholar
  37. Kennedy SH, Giacobbe P, Rizvi SJ, Placenza FM, Nishikawa Y, Mayberg HS, Lozano AM (2011) Deep brain stimulation for treatment-resistant depression: follow-up after 3 to 6 years. Am J Psychiatry 168:502–510PubMedCrossRefGoogle Scholar
  38. Knight G (1965) Stereotactic tractotomy in the surgical treatment of mental illness. J Neurol Neurosurg Psychiatry 28:304–310PubMedCrossRefGoogle Scholar
  39. Knight GC, Tredgold RF (1955) Orbital leucotomy; a review of 52 cases. Lancet 268:981–986PubMedCrossRefGoogle Scholar
  40. Kosel M, Sturm V, Frick C, Lenartz D, Zeidler G, Brodesser D, Schlaepfer TE (2007) Mood improvement after deep brain stimulation of the internal globus pallidus for tardive dyskinesia in a patient suffering from major depression. J Psychiatr Res 41:801–803PubMedCrossRefGoogle Scholar
  41. Kuipers SD, Trentani A, Westenbroek C, Bramham CR, Korf J, Kema IP, Ter Horst GJ, Den Boer JA (2006) Unique patterns of FOS, phospho-CREB and BrdU immunoreactivity in the female rat brain following chronic stress and citalopram treatment. Neuropharmacology 50:428–440PubMedCrossRefGoogle Scholar
  42. Le Beau J (1954) Anterior cingulectomy in man. J Neurosurg 11:268–276CrossRefGoogle Scholar
  43. Little A (2009) Treatment-resistant depression. Am Fam Physician 80:167–172PubMedGoogle Scholar
  44. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN, Rauch SL, Rasmussen SA, Machado AG, Kubu CS, Tyrka AR, Price LH, Stypulkowski PH, Giftakis JE, Rise MT, Malloy PF, Salloway SP, Greenberg BD (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65:267–275PubMedCrossRefGoogle Scholar
  45. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682PubMedGoogle Scholar
  46. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843PubMedCrossRefGoogle Scholar
  47. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660PubMedCrossRefGoogle Scholar
  48. Mc KW (1959) Discussion on psychosurgery. Proc R Soc Med 52:206–209Google Scholar
  49. Miller WC, DeLong MR (1987) Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate model of parkinsonism. In: Carpenter MB, Jayaraman A (eds) The Basal Ganglia II: structure and function. Plenum, New York, pp 415–427CrossRefGoogle Scholar
  50. Moniz E (1937) Prefrontal leucotomy in the treatment of mental disorders. Am J Psychiatry 93:1379–1385Google Scholar
  51. Montoya A, Weiss AP, Price BH et al (2002) Magnetic resonance imaging-guided stereotactic limbic leukotomy for treatment of intractable psychiatric disease. Neurosurgery 50: 1043–1049; discussion 1049–1052Google Scholar
  52. Mottaghy FM, Keller CE, Gangitano M, Ly J, Thall M, Parker JA, Pascual-Leone A (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115:1–14PubMedCrossRefGoogle Scholar
  53. Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547PubMedGoogle Scholar
  54. Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158:305–308PubMedCrossRefGoogle Scholar
  55. Penry JK, Dean JC (1990) Prevention of intractable partial seizures by intermittent vagal stimulatioin in humans: preliminary results. Epilepsia 31(Suppl 2):S40–S43PubMedCrossRefGoogle Scholar
  56. Pollak P, Benabid AL, Gross C, Gao DM, Laurent A, Benazzouz A, Hoffmann D, Gentil M, Perret J (1993) Effects of the stimulation of the subthalamic nucleus in parkinson disease. Rev Neurol 149:175–176PubMedGoogle Scholar
  57. Pool JL (1949) Topectomy; the treatment of mental illness by frontal gyrectomy or bilateral subtotal ablation of frontal cortex. Lancet 2:776–781PubMedCrossRefGoogle Scholar
  58. Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124PubMedCrossRefGoogle Scholar
  59. Ridout N, O’Carroll RE, Dritschel B, Christmas D, Eljamel M, Matthews K (2007) Emotion recognition from dynamic emotional displays following anterior cingulotomy and anterior capsulotomy for chronic depression. Neuropsychologia 45:1735–1743PubMedCrossRefGoogle Scholar
  60. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK Jr, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47:276–286PubMedCrossRefGoogle Scholar
  61. Rush AJ, Sackeim HA, Marangell LB, George MS, Brannan SK, Davis SM, Lavori P, Howland R, Kling MA, Rittberg B, Carpenter L, Ninan P, Moreno F, Schwartz T, Conway C, Burke M, Barry JJ (2005) Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry 58:355–363PubMedCrossRefGoogle Scholar
  62. Sachdev PS, Sachdev J (2005) Long-term outcome of neurosurgery for the treatment of resistant depression. J Neuropsychiatry Clin Neurosci 17:478–485PubMedCrossRefGoogle Scholar
  63. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67:e9–e11PubMedCrossRefGoogle Scholar
  64. Schlaepfer TE, Cohen MX, Frick C et al (2007) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. NeuropsychopharmacologyGoogle Scholar
  65. Schlaepfer TE, Frick C, Zobel A, Maier W, Heuser I, Bajbouj M, O’Keane V, Corcoran C, Adolfsson R, Trimble M, Rau H, Hoff HJ, Padberg F, Muller-Siecheneder F, Audenaert K, van den Abbeele D, Stanga Z, Hasdemir M (2008) Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 38:651–661PubMedCrossRefGoogle Scholar
  66. Scoville WB (1949) Selective cortical undercutting as a means of modifying and studying frontal lobe function in man; preliminary report of 43 operative cases. J Neurosurg 6:65–73PubMedCrossRefGoogle Scholar
  67. Scoville WB (1960) Late results of orbital undercutting. Report of 76 patients undergoing quantitative selective lobotomies. Am J Psychiatry 117:525–532PubMedGoogle Scholar
  68. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75PubMedCrossRefGoogle Scholar
  69. Slattery DA, Morrow JA, Hudson AL, Hill DR, Nutt DJ, Henry B (2005) Comparison of alterations in c-fos and Egr-1 (zif268) expression throughout the rat brain following acute administration of different classes of antidepressant compounds. Neuropsychopharmacology 30:1278–1287CrossRefGoogle Scholar
  70. Slattery DA, Neumann I, Cryan JF (2010) Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol 25(10):1295–1303Google Scholar
  71. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777PubMedGoogle Scholar
  72. Spangler WJ, Cosgrove GR, Ballantine HT et al (1996) Magnetic resonance image-guided stereotactic cingulotomy for intractable psychiatric disease. Neurosurgery 38:1071–1076; discussion 1076–1078Google Scholar
  73. Swayze VW 2nd (1995) Frontal leukotomy and related psychosurgical procedures in the era before antipsychotics (1935–1954): a historical overview. Am J Psychiatry 152:505–515PubMedGoogle Scholar
  74. Temel Y, Visser-Vandewalle V (2006) Targets for deep brain stimulation in parkinson’s disease. Expert Opin Ther Targets 10:355–362PubMedCrossRefGoogle Scholar
  75. Tooth JC, Newton MP (1961) Leucotomy in England and Wales 1942–1954. Reports on public health and medical subjects. Report no.: 104. Her Majesty’s Stationery Office, LondonGoogle Scholar
  76. Uylings HB, Groenewegen HJ, Kolb B (2003) Do rats have a prefrontal cortex? Behav Brain Res 146:3–17PubMedCrossRefGoogle Scholar
  77. Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51:32–58PubMedCrossRefGoogle Scholar
  78. Zabara J (1985) Peripheral control of hypersynchronous discharge in epilepsy. Electroencephalogr Clin Neurophysiol 61:S162Google Scholar
  79. Zabara J (1992) Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 33:1005–1012PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Neurosurgery and NeuroscienceMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  3. 3.Department of NeurosurgeryUniversity Hospital MaastrichtMaastrichtThe Netherlands

Personalised recommendations