Nonhuman Primate Models of Addiction and PET Imaging: Dopamine System Dysregulation

  • Robert W. Gould
  • Linda J. Porrino
  • Michael A. Nader


This chapter highlights the use of nonhuman primate models of cocaine addiction and the use of positron emission tomography (PET) imaging to study the role of individual differences in vulnerability and how environmental and pharmacological variables can impact cocaine abuse. The chapter will describe studies related to the dopamine (DA) neurotransmitter system, and focus primarily on the D2-like DA receptor, the DA transporter and the use of fluorodeoxyglucose to better understand the neuropharmacology of cocaine abuse. The use of nonhuman primates allows for within-subject, longitudinal studies that have provided insight into the human condition and serve as an ideal model of translational research. The combination of nonhuman primate behavior, pharmacology and state-of-the-art brain imaging using PET will provide the foundation for future studies aimed at developing behavioral and pharmacological treatments for drug addiction in humans.


Animal models PET imaging Dopamine D2-like receptors Fluorodeoxyglucose (FDG) Nonhuman primates 


  1. Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63(1):182–217PubMedCrossRefGoogle Scholar
  2. Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14(1):21–27PubMedCrossRefGoogle Scholar
  3. Beveridge TJR, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of nonhuman primates. Eur J Neurosci 23:3109–3118PubMedCrossRefGoogle Scholar
  4. Beveridge TJ, Gill KE, Hanlon CA, Porrino LJ (2008) Review: parallel studies of cocaine-related neural and cognitive impairment in humans and monkeys. Philos Trans R Soc Lond B Biol Sci 363(1507):3257–3266PubMedCrossRefGoogle Scholar
  5. Bolla K, Ernst M, Kiehl K, Mouratidis M, Eldreth D, Contoreggi C et al (2004) Prefrontal cortical dysfunction in abstinent cocaine abusers. J Neuropsychiatry Clin Neurosci 16(4):456–464PubMedCrossRefGoogle Scholar
  6. Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, Arahata Y, Kato T, Gjedde A (2010) Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct 214(4):303–317PubMedCrossRefGoogle Scholar
  7. Bradberry CW (2000) Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J Neurosci 20:7109–7115PubMedGoogle Scholar
  8. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611PubMedCrossRefGoogle Scholar
  9. Carlton PL (1983) A primer of behavioral pharmacology: concepts and principles in the behavioral analysis of drug action. W.H. Freeman, New YorkGoogle Scholar
  10. Czoty PW, Justice JB Jr, Howell LL (2000) Cocaine-induced changes in extracellular dopamine determined by microdialysis in awake squirrel monkeys. Psychopharmacology (Berl) 148(3):299–306CrossRefGoogle Scholar
  11. Czoty PW, Morgan D, Shannon EE, Gage HD, Nader MA (2004) Characterization of dopamine D1 and D2 receptor function in socially housed cynomolgus monkeys self-administering cocaine. Psychopharmacology (Berl) 174(3):381–388CrossRefGoogle Scholar
  12. Czoty PW, Gage HD, Nader MA (2005) PET imaging of striatal dopamine D2 receptors in nonhuman primates: increases in availability produced by chronic raclopride treatment. Synapse 58(4):215–219PubMedCrossRefGoogle Scholar
  13. Czoty PW, Gage DG, Nader SH, Reboussin BA, Bounds M, Nader MA (2007) PET imaging of dopamine D2 receptors and transporter availability during acquisition of cocaine self-administration in rhesus monkeys. J Addict Med 1(1):33–39PubMedCrossRefGoogle Scholar
  14. Czoty PW, Gould RW, Nader MA (2009a) Relationship between social rank and cortisol and testosterone concentrations in male cynomolgus monkeys (Macaca fascicularis). J Neuroendocrinol 21(1):68–76PubMedCrossRefGoogle Scholar
  15. Czoty PW, Riddick NV, Gage HD, Sandridge M, Nader SH, Garg S et al (2009b) Effect of menstrual cycle phase on dopamine D2 receptor availability in female cynomolgus monkeys. Neuropsychopharmacology 34(3):548–554PubMedCrossRefGoogle Scholar
  16. Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27(52):14239–14247PubMedCrossRefGoogle Scholar
  17. Dewey SL, Smith GS, Logan J, Brodie JD, Yu DW, Ferrieri RA, King PT, MacGregor RR, Martin TP, Wolf AP et al (1992) GABAergic inhibition of endogenous dopamine release measured in vivo with 11C-raclopride and positron emission tomography. J Neurosci 12:3773–3780PubMedGoogle Scholar
  18. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci 85:5274–5278PubMedCrossRefGoogle Scholar
  19. Doudet DJ, Holden JE (2003) Sequential versus nonsequential measurement of density and affinity of dopamine D2 receptors with [11C]raclopride: effect of methamphetamine. J Cereb Blood Flow Metab 23(12):1489–1494PubMedCrossRefGoogle Scholar
  20. Dukelow WR, Grauwiler J, Bruggemann S (1979) Characteristics of the menstrual cycle in nonhuman primates: I. similarities and dissimilarities between Macaca fascicularis and Macaca arctoides. J Med Primatol 8(1):39–47PubMedGoogle Scholar
  21. Dworkin SI, Mirkis S, Smith JE (1995) Response-dependent versus response-independent presentation of cocaine: differences in the lethal effects of the drug. Psychopharmacology (Berl) 117(3):262–266CrossRefGoogle Scholar
  22. Evans SM, Foltin RW (2010) Does the response to cocaine differ as a function of sex or hormonal status in human and non-human primates? Horm Behav 58(1):13–21PubMedCrossRefGoogle Scholar
  23. Everitt BJ, Belin D, Economidou D, Peloux Y, Dalley JW, Robbins TW (2008) Review: neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Phil Trans R Soc B 363(1507):3125–3135PubMedCrossRefGoogle Scholar
  24. Fillmore MT, Rush CR (2002) Impaired inhibitory control of behavior in chronic cocaine users. Drug Alcohol Depend 66(3):265–273PubMedCrossRefGoogle Scholar
  25. Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, MacGregor RR et al (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4(4):371–377PubMedCrossRefGoogle Scholar
  26. Galici R, Pechnick RN, Poland RE, France CP (2000) Comparison of noncontingent versus contingent cocaine administration on plasma corticosterone levels in rats. Eur J Pharmacol 387(1):59–62PubMedCrossRefGoogle Scholar
  27. Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652PubMedCrossRefGoogle Scholar
  28. Goldstein RZ, Tomasi D, Rajaram S, Cottone LA, Zhang L, Maloney T et al (2007) Role of anterior cingulate and medial orbitofrontal cortex in processing drug cues in cocaine addiction. Neuroscience 144(4):1153–1159PubMedCrossRefGoogle Scholar
  29. Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J et al (2010) Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Nat Acad Sci 107(38):16667–16672PubMedCrossRefGoogle Scholar
  30. Greenfield SF, Back SE, Lawson K, Brady KT (2010) Substance abuse in women. Psychiatr Clin North Am 33(2):339–355PubMedCrossRefGoogle Scholar
  31. Griffiths RR, Bigelow GE, Henningfield JE (1980) Similarities in animal and human drug-taking behavior. In: Mello NK (ed) Advances in substance abuse. JAI Press, Greenwich, pp 1–90Google Scholar
  32. Hacia JG, Makalowski W, Edgemon K, Erdos MR, Robbins CM, Fodor SP et al (1998) Evolutionary sequence comparisons using high-density oligonucleotide arrays. Nat Genet 18(2):155–158PubMedCrossRefGoogle Scholar
  33. Hampson RE, España RA, Rogers GA, Porrino LJ, Deadwyler SA (2009) Mechanisms underlying cognitive enhancement and reversal of cognitive deficits in nonhuman primates by the ampakine CX717. Psychopharmacology (Berl) 202(1–3):355–369CrossRefGoogle Scholar
  34. Hampson RE, Porrino LJ, Opris I, Stanford T, Deadwyler SA (2011) Effects of cocaine rewards on neural representations of cognitive demand in nonhuman primates. Psychopharmacology (Berl) 213(1):105–118CrossRefGoogle Scholar
  35. Henry PK, Murnane KS, Votaw JR, Howell LL (2010) Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use. Brain Imaging and Behav 4(3–4):212–219CrossRefGoogle Scholar
  36. Hester R, Garavan H (2004) Executive dysfunction in cocaine addiction: evidence for discordant frontal, cingulate, and cerebellar activity. J Neurosci 24(49):11017–11022PubMedCrossRefGoogle Scholar
  37. Howell LL, Murnane KS (2011) Nonhuman primate positron emission tomography neuroimaging in drug abuse research. J Pharmacol Exp Ther 337(2):324–334PubMedCrossRefGoogle Scholar
  38. Howell LL, Hoffman JM, Votaw JR, Landrum AM, Jordan JF (2001) An apparatus and behavioral training protocol to conduct positron emission tomography (PET) neuroimaging in conscious rhesus monkeys. J Neurosci Methods 106(2):161–169PubMedCrossRefGoogle Scholar
  39. Howell LL, Hoffman JM, Votaw JR, Landrum AM, Wilcox KM, Lindsey KP (2002) Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys. Psychopharmacology 159(2):154–160PubMedCrossRefGoogle Scholar
  40. Howell LL, Carroll FI, Votaw JR, Goodman MM, Kimmel HL (2007) Effects of combined dopamine and serotonin transporter inhibitors on cocaine self-administration in rhesus monkeys. J Pharmacol Exp Ther 320(2):757–765PubMedCrossRefGoogle Scholar
  41. Howell LL, Votaw JR, Goodman MM, Lindsey KP (2010) Cortical activation during cocaine use and extinction in rhesus monkeys. Psychopharmacology (Berl) 208(2):191–199CrossRefGoogle Scholar
  42. Joel D, Weiner I (2000) The connections of dopaminergic system with the striatum in rats and primates: an analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96(3):451–474PubMedCrossRefGoogle Scholar
  43. Kaplan JR, Manuck SB, Clarkson TB, Lusso FM, Taub DM (1982) Social status, environment, and atherosclerosis in cynomolgus monkeys. Arterosclerosis 2:359–368CrossRefGoogle Scholar
  44. Katz JL, Higgins ST (2003) The validity of the reinstatement model of craving and relapse to drug use. Psychopharmacology 168:21–30PubMedCrossRefGoogle Scholar
  45. Kimmel HL, Negus SS, Wilcox KM, Ewing SB, Stehouwer J, Goodman MM et al (2008) Relationship between rate of drug uptake in brain and behavioral pharmacology of monoamine transporter inhibitors in rhesus monkeys. Pharmacol Biochem Behav 90(3):453–462PubMedCrossRefGoogle Scholar
  46. Koob GF, Le Moal M (2000) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129CrossRefGoogle Scholar
  47. Koob GF, Volkow ND (2011) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238CrossRefGoogle Scholar
  48. Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 37(4):333–364PubMedGoogle Scholar
  49. Kubler A, Murphy K, Garavan H (2005) Cocaine dependence and attention switching within and between verbal and visuospatial working memory. Eur J Neurosci 21(7):1984–1992PubMedCrossRefGoogle Scholar
  50. Lecca D, Cacciapaglia F, Valentini V, Acquas E, Di Chiara G (2007) Differential neurochemical and behavioral adaptation to cocaine after response contingent and noncontingent exposure in rat. Psychopharmacology (Berl) 191(3):653–667CrossRefGoogle Scholar
  51. Letchworth SR, Nader MA, Smith HR, Friedman DP, Porrino LJ (2001) Progression of changes in dopamine transporter binding site density as a result of cocaine self-administration in rhesus monkeys. J Neurosci 21(8):2799–2807PubMedGoogle Scholar
  52. Lile JA, Wang Z, Woolverton WL, France JE, Gregg TC, Davies HM et al (2003) The reinforcing efficacy of psychostimulants in rhesus monkeys: the role of pharmacokinetics and pharmacodynamics. J Pharmacol Exp Ther 307(1):356–366PubMedCrossRefGoogle Scholar
  53. Lindsey KP, Wilcox KM, Votaw JR, Goodman MM, Plisson C, Carroll FI et al (2004) Effects of dopamine transporter inhibitors on cocaine self-administration in rhesus monkeys: relationship to transporter occupancy determined by positron emission tomography neuroimaging. J Pharmacol Exp Ther 309(3):959–969PubMedCrossRefGoogle Scholar
  54. Liu S, Heitz RP, Sampson AR, Zhang W, Bradberry CW (2008) Evidence of temporal cortical dysfunction in rhesus monkeys following chronic cocaine self-administration. Cerebral Cortex 18:2109–2116PubMedCrossRefGoogle Scholar
  55. Liu S, Heitz RP, Bradberry CW (2009) A touch screen based stop signal response task in rhesus monkeys for studying impulsivity associated with chronic cocaine self-administration. J Neurosci Methods 177(1):67–72PubMedCrossRefGoogle Scholar
  56. Lynch WJ (2006) Sex differences in vulnerability to drug self-administration. Exp Clin Psychopharmacol 14(1):34–41PubMedCrossRefGoogle Scholar
  57. Lyons D, Friedman DP, Nader MA, Porrino LJ (1996) Cocaine alters cerebral metabolism within the ventral striatum and limbic cortex of monkeys. J Neurosci 16(3):1230–1238PubMedGoogle Scholar
  58. Mach RH, Nader MA, Ehrenkaufer RLE, Line SW, Smith CR, Luedtke RR, Kung MP, Kung HF, Lyons D, Morton TE (1996) Comparison of two fluorine-18 labeled benzamide derivatives that bind reversibly to dopamine D2 receptors: in vitro binding studies and positron emission tomography. Synapse 24:322–333PubMedCrossRefGoogle Scholar
  59. Mach RH, Nader MA, Ehrenkaufer RL, Line SW, Smith CR, Gage HD et al (1997) Use of positron emission tomography to study the dynamics of psychostimulant-induced dopamine release. Pharmacol Biochem Behav 57(3):477–486PubMedCrossRefGoogle Scholar
  60. Mello NK, Mendelson JH (2009) Cocaine, hormones, and behavior: clinical and preclinical studies. In: Pfaff DW, Arnold AP, Etgen AM, Fahrbach SE, Rubin RT (eds) Hormones, brain and behavior, 2nd edn. Academic Press, San Deigo, pp 3081–3139CrossRefGoogle Scholar
  61. Mello NK, Negus SS (1996) Preclinical evaluation of pharmacotherapies for treatment of cocaine and opioid abuse using drug self-administration procedures. Neuropsychopharmacology 14(6):375–424PubMedCrossRefGoogle Scholar
  62. Miller GM, Yatin SM, De La Garza R II, Goulet M, Madras BK (2001) Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity. Brain Res Mol Brain Res 87(1):124–143PubMedCrossRefGoogle Scholar
  63. Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998) Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 30(1):88–96PubMedCrossRefGoogle Scholar
  64. Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O et al (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5(2):169–174PubMedCrossRefGoogle Scholar
  65. Munro CA, McCaul ME, Wong DF, Oswald LM, Zhou Y, Brasic J et al (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59(10):966–974PubMedCrossRefGoogle Scholar
  66. Murnane KS, Howell LL (2011) Neuroimaging and drug taking in primates. Psychopharmacology (Berl) 206:153–171CrossRefGoogle Scholar
  67. Nader MA, Czoty PW (2005) PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 162(8):1473–1482PubMedCrossRefGoogle Scholar
  68. Nader MA, Czoty PW (2008) Brain imaging in nonhuman primates: insights into drug addiction. ILAR J 49(1):89–102PubMedGoogle Scholar
  69. Nader MA, Daunais JB, Moore T, Nader SH, Moore RJ, Smith HR et al (2002) Effects of cocaine self-administration on striatal dopamine systems in rhesus monkeys: initial and chronic exposure. Neuropsychopharmacology 27(1):3–46CrossRefGoogle Scholar
  70. Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N et al (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9(8):1050–1056PubMedCrossRefGoogle Scholar
  71. Nordström AL, Olsson H, Halldin C (1998) A PET study of D2 dopamine receptor density at different phases of the menstrual cycle. Psychiatry Res 83:1--6PubMedCrossRefGoogle Scholar
  72. O’Brien MS, Anthony JC (2005) Risk of becoming cocaine dependent: epidemiological estimates for the United States, 2000–2001. Neuropsychopharmacology 30(5):1006–1018PubMedCrossRefGoogle Scholar
  73. Porrino LJ, Daunais JB, Rogers GA, Hampson RE, Deadwyler SA (2005) Facilitation of task performance and removal of the effects of sleep deprivation by an ampakine (CX717) in nonhuman primates. PLoS Biol 3(9):299CrossRefGoogle Scholar
  74. Porrino LJ, Smith HR, Nader MA, Beveridge TJ (2007) The effects of cocaine: a shifting target over the course of addiction. Prog Neuropsychopharmacol Biol Psychiatry 31(8):1593–1600PubMedCrossRefGoogle Scholar
  75. Porter JN, Olsen AS, Gurnsey K, Dugan BP, Jedema HP, Bradberry CW (2011) Chronic cocaine self-administration in rhesus monkeys: impact on associative learning, cognitive control, and working memory. J Neurosci 31(13):4926–4934PubMedCrossRefGoogle Scholar
  76. Riddick NV, Czoty PW, Gage HD, Kaplan JR, Nader SH, Icenhower M et al (2009) Behavioral and neurobiological characteristics influencing social hierarchy formation in female cynomolgus monkeys. Neurosci 158(4):1257–1265CrossRefGoogle Scholar
  77. Roberts DCS, Phelan R, Hodges LM, Hodges MM, Bennett BA, Childers SR et al (1999) Self-administration of cocaine analogs by rats. Psychopharmacology 144(4):389–397PubMedCrossRefGoogle Scholar
  78. SAMHSA (2009) Substance Abuse and Mental Health Services Administration: Results from the 2008 national survey on drug use and health: national findings. Office of Applied Studies, NSDUH series H-36, HHS publication number SMA 09-4434, RockvilleGoogle Scholar
  79. SAMHSA (2010) Substance Abuse and Mental Health Services Administration: Reliability of key measures in the national survey on drug use and health. Substance Abuse and Mental Health Services Administration, US Department of Health and Human Services, RockvilleGoogle Scholar
  80. Strickland TL, Mena I, Villanueva-Meyer J, Miller BL, Cummings J, Mehringer CM et al (1993) Cerebral perfusion and neuropsychological consequences of chronic cocaine abuse. J Neuropsychiatry Clin Neurosci 5(4):419–427PubMedGoogle Scholar
  81. Terner JM, de Wit H (2006) Menstrual cycle phase and responses to drugs of abuse in humans. Drug Alcohol Depend 84(1):1–13PubMedCrossRefGoogle Scholar
  82. Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND (2007a) Thalamo-cortical dysfunction in cocaine abusers: implications in attention and perception. Psychiatry Res 155(3):189–201PubMedCrossRefGoogle Scholar
  83. Tomasi D, Goldstein RZ, Telang F, Maloney T, Alia-Klein N, Caparelli EC, Volkow ND (2007b) Widespread disruption in brain activation patterns to a working memory task during cocaine abstinence. Brain Res 1171:83–92PubMedCrossRefGoogle Scholar
  84. Vallone D, Picetti R, Borrelli E (2000) Structure and function of dopamine receptors. Neurosci Biobehav Rev 24(1):125–132PubMedCrossRefGoogle Scholar
  85. Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ et al (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177PubMedCrossRefGoogle Scholar
  86. Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Gifford A, Hitzemann R, Ding YS, Pappas N (1999) Prediction of reinforcing responses to psychostimulants in humans by brain D2 dopamine receptors. Am J Psychiatry 156:1440–1443PubMedGoogle Scholar
  87. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR et al (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26(24):6583–6588PubMedCrossRefGoogle Scholar
  88. Weed MR, Woolverton WL, Paul IA (1998) Dopamine D1 and D2 receptor selectivities of phenylbenzazepines in rhesus monkey striata. Eur J Pharmacol 361(1):129–142PubMedCrossRefGoogle Scholar
  89. Weerts EM, Fantegrossi WE, Goodwin AK (2007) The value of nonhuman primates in drug abuse research. Exp Clin Psychopharmacol 15(4):309–327PubMedCrossRefGoogle Scholar
  90. WHO (2004) Neuroscience of psychoactive substance use and dependence. World Health Organization, GenevaGoogle Scholar
  91. Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR (2011) Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug Alcohol Depend 115(1–2):137–144PubMedCrossRefGoogle Scholar
  92. Woicik PA, Urban C, Alia-Klein N, Henry A, Maloney T, Telang F et al (2011) A pattern of perseveration in cocaine addiction may reveal neurocognitive processes implicit in the Wisconsin card sorting task. Neuropsychologia 49(7):1660–1669PubMedCrossRefGoogle Scholar
  93. Wong DF, Broussolle EP, Wand G, Villemagne V, Dannals RF, Links JM et al (1988) In vivo measurement of dopamine receptors in human brain by positron emission tomography: age and sex differences. Ann N Y Acad Sci 515:203–214PubMedCrossRefGoogle Scholar
  94. Woolverton WL, Nader MA (1990) Experimental evaluation of the reinforcing effects of drugs. In: Adler MW, Cowans A (eds) Modern methods in pharmacology: testing and evaluation of drugs of abuse. Wiley-Liss, New York, pp 165–192Google Scholar
  95. Zilberman M, Tavares H, el-Guebaly N (2003) Gender similarities and differences: the prevalence and course of alcohol- and other substance-related disorders. J Addict Dis 22(4):61–74PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert W. Gould
    • 1
  • Linda J. Porrino
    • 1
  • Michael A. Nader
    • 1
  1. 1.Department of Physiology and PharmacologyWake Forest University School of MedicineWinston-SalemUSA

Personalised recommendations