Epidemiology of Cognitive Aging and Alzheimer’s Disease: Contributions of the Cache County Utah Study of Memory, Health and Aging

Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 10)

Abstract

Epidemiological studies of Alzheimer’s disease (AD) provide insights into changing public health trends and their contribution to disease incidence. The current chapter considers how the population-based approach has contributed to our understanding of lifetime exposures that contribute to later disease risk and may act to modify onset of symptoms. We focus on the findings from a recent survey of an exceptionally long-lived population, the Cache County Utah Study of Memory, Health, and Aging. This study is confined to a single geographic population has allowed estimation of the genetic and environmental influences on AD expression across the expected human lifespan of 95+ years. Given the emphasis of this text on the behavioral neurosciences of aging, we highlight within the current chapter the particular contributions of this population-based study to the neuropsychology of aging and AD. We also discuss hypotheses generated from this survey with respect to factors that may either accelerate or delay symptom onset in AD and the conditions that appear to be associated with successful cognitive aging.

Keywords

Epidemiology Alzheimer’s disease Population-based study Prodromal AD Mild cognitive impairment 

References

  1. Aisen PS, Schafer KA et al (2003) Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. J Am Med Assoc 289(21):2819–2826CrossRefGoogle Scholar
  2. American Psychiatric Association (1987) Diagnostic and statistical manual of mental disorders, 3rd edn revised: DSM-III-R. American Psychiatric Association, WashingtonGoogle Scholar
  3. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn: DSM-IV. American Psychiatric Association, WashingtonGoogle Scholar
  4. Andersen K, Launer LJ et al (1995) Do nonsteroidal anti-inflammatory drugs decrease the risk for Alzheimer’s disease? The Rotterdam Study. Neurology 45(8):1441–1445PubMedCrossRefGoogle Scholar
  5. Backman L, Jones S et al (2005) Cognitive impairment in preclinical Alzheimer’s disease: a meta-analysis. Neuropsychology 19(4):520–531PubMedCrossRefGoogle Scholar
  6. Baker LD, Frank LL et al (2010) Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol 67(1):71–79PubMedCrossRefGoogle Scholar
  7. Barnes LL, Mendes de Leon CF et al (2004) Social resources and cognitive decline in a population of older African Americans and Whites. Neurology 63(12):2322–2326PubMedCrossRefGoogle Scholar
  8. Beck AT, Steer RA et al (1996) Manual for the beck depression inventory-II. Psychological Corporation, San AntonioGoogle Scholar
  9. Benton A (1992) Benton Visual Retention Test, 5th edn. Psychological Corporation, New YorkGoogle Scholar
  10. Benton AL, Hamsher K (eds) (1983) Multilingual aphasia examination. AJA Associates, Iowa CityGoogle Scholar
  11. Blackford RC, LA Rua A (1989) Criterion for diagnosing age associated memory impairment: proposed improvements from the field. Dev Neuropsychol 5:298–300CrossRefGoogle Scholar
  12. Bozoki A, Giordani B et al (2001) Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. Arch Neurol 58(3):411–416PubMedCrossRefGoogle Scholar
  13. Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand Suppl 165:3–12PubMedCrossRefGoogle Scholar
  14. Brayne C, Stephan BC et al (2011) A European perspective on population studies of dementia. Alzheimers Dement 7(1):3–9PubMedCrossRefGoogle Scholar
  15. Breitner JC, Gau BA et al (1994a) Inverse association of anti-inflammatory treatments and Alzheimer’s disease: initial results of a co-twin control study. Neurology 44(2):227–232PubMedCrossRefGoogle Scholar
  16. Breitner JC, Welsh KA et al (1994b) Alzheimer’s disease in the NAS-NRC registry of aging twin veterans. II. Longitudinal findings in a pilot series. National Academy of Sciences. National Research Council Registry. Dementia 5(2):99–105PubMedGoogle Scholar
  17. Breitner JC, Welsh KA et al (1995) Alzheimer’s disease in the National Academy of Sciences–National Research Council Registry of Aging Twin Veterans. III. Detection of cases, longitudinal results, and observations on twin concordance. Arch Neurol 52(8):763–771PubMedCrossRefGoogle Scholar
  18. Breitner JC, Wyse BW et al (1999) APOE-epsilon4 count predicts age when prevalence of AD increases, then declines: the Cache County Study. Neurology 53(2):321–331PubMedCrossRefGoogle Scholar
  19. Breteler MM, Claus JJ et al (1992) Epidemiology of Alzheimer’s disease. Epidemiol Rev 14:59–82PubMedGoogle Scholar
  20. Brookmeyer R, Johnson E et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3(3):186–191PubMedCrossRefGoogle Scholar
  21. Brookmeyer R, Evans DA et al (2011) National estimates of the prevalence of Alzheimer’s disease in the United States. Alzheimers Dement 7(1):61–73PubMedCrossRefGoogle Scholar
  22. Carlson MC, Zandi PP et al (2001) Hormone replacement therapy and reduced cognitive decline in older women: the Cache County Study. Neurology 57(12):2210–2216PubMedCrossRefGoogle Scholar
  23. Carlson MC, Erickson KI et al (2009) Evidence for neurocognitive plasticity in at-risk older adults: the experience corps program. J Gerontol A Biol Sci Med Sci 64(12):1275–1282PubMedCrossRefGoogle Scholar
  24. Corder EH, Saunders AM et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123):921–923PubMedCrossRefGoogle Scholar
  25. Crook T, Bartus RT et al (1986) Age-associated memory impairment: proposed diagnostic criteria and measures of clinical change—report of a National Institute of Mental Health Work Group. Dev Neuropsychol 2(4):261–276CrossRefGoogle Scholar
  26. Cummings JL, Mega M et al (1994) The Neuropsychiatric Inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314PubMedCrossRefGoogle Scholar
  27. DeKosky ST, Carrillo MC et al (2011) Revision of the criteria for Alzheimer’s disease: a symposium. Alzheimers Dement 7(1):e1–e12PubMedCrossRefGoogle Scholar
  28. Dubois B, Feldman HH et al (2007) Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 6(8):734–746PubMedCrossRefGoogle Scholar
  29. Folstein MF, Folstein SE et al (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198PubMedCrossRefGoogle Scholar
  30. Fotuhi M, Zandi PP et al (2006) APOE ε4 positive elderly taking anti-oxidant vitamins E and C in combination with NSAIDs develop less cognitive decline with aging: the Cache County Study. In: 10th international conference on Alzheimer’s disease and related disorders, Madrid, SpainGoogle Scholar
  31. Goldman W, Price J et al (2001) Absence of cognitive impairment or decline in preclinical Alzheimer’s disease. Neurology 56(3):361–367PubMedCrossRefGoogle Scholar
  32. Graham JE, Rockwood K et al (1997) Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet 349(9068):1793–1796PubMedCrossRefGoogle Scholar
  33. Hayden KM, Warren LH et al (2005) Identification of VaD and AD prodromes: the Cache County Study. Alzheimers Dement 1(1):19–29PubMedCrossRefGoogle Scholar
  34. Hayden KM, Zandi PP et al (2006) Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County Study. Alzheimer Dis Assoc Disord 20(2):93–100PubMedCrossRefGoogle Scholar
  35. Hayden KM, Zandi PP et al (2007) Does NSAID use modify cognitive trajectories in the elderly? The Cache County Study. Neurology 69(3):275–282PubMedCrossRefGoogle Scholar
  36. Heart Protection Study Collaborative Group (1999) MRC/BHF Heart Protection Study of cholesterol-lowering therapy and of antioxidant vitamin supplementation in a wide range of patients at increased risk of coronary heart disease death: early safety and efficacy experience. Eur Heart J 20(10):725–741CrossRefGoogle Scholar
  37. Hebert LE, Scherr PA et al (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60(8):1119–1122PubMedCrossRefGoogle Scholar
  38. Hofman A, Ott A et al (1997) Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349(9046):151–154PubMedCrossRefGoogle Scholar
  39. Honig LS, Tang MX et al (2003) Stroke and the risk of Alzheimer disease. Arch Neurol 60(12):1707–1712PubMedCrossRefGoogle Scholar
  40. in ‘t Veld BA, Launer LJ et al (1998) NSAIDs and incident Alzheimer’s disease. The Rotterdam Study. Neurobiol Aging 19(6):607–611PubMedCrossRefGoogle Scholar
  41. Jorm AF, Jacomb PA (1989) The Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychol Med 19(4):1015–1022PubMedCrossRefGoogle Scholar
  42. Jorm AF, Jolley D (1998) The incidence of dementia: a meta-analysis. Neurology 51(3):728–733PubMedCrossRefGoogle Scholar
  43. Jorm AF, Korten AE et al (1987) The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatr Scand 76(5):465–479PubMedCrossRefGoogle Scholar
  44. Kaplan E, Goodglass H et al (1978) The Boston naming test. Veterans Administration, BostonGoogle Scholar
  45. Katzman R (1976) Editorial: the prevalence and malignancy of Alzheimer disease. A major killer. Arch Neurol 33(4):217–218PubMedCrossRefGoogle Scholar
  46. Kawas C, Segal J et al (1994) A validation study of the Dementia Questionnaire. Arch Neurol 51(9):901–906PubMedCrossRefGoogle Scholar
  47. Khachaturian AS, Zandi PP et al (2006) Antihypertensive medication use and incident Alzheimer disease: the Cache County Study. Arch Neurol 63(5):686–692PubMedCrossRefGoogle Scholar
  48. Kivipelto M, Helkala EL et al (2001) Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology 56(12):1683–1689PubMedCrossRefGoogle Scholar
  49. Kryscio RJ, Mendiondo MS et al (2004) Designing a large prevention trial: statistical issues. Stat Med 23(2):285–296PubMedCrossRefGoogle Scholar
  50. Langa KM, Plassman BL et al (2005) The aging, demographics, and memory study: study design and methods. Neuroepidemiology 25(4):181–191PubMedCrossRefGoogle Scholar
  51. Launer LJ (2011) Counting dementia: there is no one “best” way. Alzheimers Dement 7(1):10–14PubMedCrossRefGoogle Scholar
  52. Launer LJ, Brock DB (2004) Population-based studies of AD: message and methods: an epidemiologic view. Stat Med 23(2):191–197PubMedCrossRefGoogle Scholar
  53. Launer LJ, Ross GW et al (2000) Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 21(1):49–55PubMedCrossRefGoogle Scholar
  54. Lautenschlager NT, Cox KL et al (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. J Am Med Assoc 300(9):1027–1037CrossRefGoogle Scholar
  55. Levy R (1994) Aging-associated cognitive decline. Working Party of the International Psychogeriatric Association in collaboration with the World Health Organization. Int Psychogeriatr 6(1):63–68PubMedCrossRefGoogle Scholar
  56. Lindsay J, Sykes E et al (2004) More than the epidemiology of Alzheimer’s disease: contributions of the Canadian Study of Health and Aging. Can J Psychiatry 49(2):83–91PubMedGoogle Scholar
  57. Luchsinger JA, Tang MX et al (2003) Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol 60(2):203–208PubMedCrossRefGoogle Scholar
  58. Lyketsos CG, Toone L et al (2006) A population-based study of the association between coronary artery bypass graft surgery (CABG) and cognitive decline: the Cache County Study. Int J Geriatr Psychiatry 21(6):509–518PubMedCrossRefGoogle Scholar
  59. Manly JJ, Bell-McGinty S et al (2005) Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Arch Neurol 62(11):1739–1746PubMedCrossRefGoogle Scholar
  60. Manton KG, Tolley HD (1991) Rectangularization of the survival curve: implications of an ill-posed question. J Aging Health 3(2):172–193PubMedCrossRefGoogle Scholar
  61. Martin BK, Szekely C et al (2008) Cognitive function over time in the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): results of a randomized, controlled trial of naproxen and celecoxib. Arch Neurol 65(7):896–905PubMedCrossRefGoogle Scholar
  62. Mayeux R, Reitz C et al (2011) Operationalizing diagnostic criteria for Alzheimer’s disease and other age-related cognitive impairment—part 1. Alzheimers Dement 7(1):15–34PubMedCrossRefGoogle Scholar
  63. McGeer PL, Schulzer M et al (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47(2):425–432PubMedCrossRefGoogle Scholar
  64. McGinnis JM, Foege WH (1993) Actual causes of death in the United States. J Am Med Assoc 270(18):2207–2212CrossRefGoogle Scholar
  65. McKhann G, Drachman D et al (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944PubMedCrossRefGoogle Scholar
  66. Meinert CL, Breitner JC (2008) Chronic disease long-term drug prevention trials: lessons from the Alzheimer’s Disease Anti-inflammatory Prevention Trial (ADAPT). Alzheimers Dement 4(Suppl 1):S7–S14PubMedCrossRefGoogle Scholar
  67. Miech RA, Breitner JC et al (2002) Incidence of AD may decline in the early 90s for men, later for women: the Cache County Study. Neurology 58(2):209–218PubMedCrossRefGoogle Scholar
  68. Mielke MM, Rosenberg PB et al (2007) Vascular factors predict rate of progression in Alzheimer disease. Neurology 69(19):1850–1858PubMedCrossRefGoogle Scholar
  69. Morris MC, Beckett LA et al (1998) Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 12(3):121–126PubMedCrossRefGoogle Scholar
  70. Morris JC, Storandt M et al (2001) Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol 58(3):397–405PubMedCrossRefGoogle Scholar
  71. Murray CJL, Michaud CM et al (1988) U.S. patterns of mortality by county and race: 1965–1994. C. f. P. a. D. Studies. Harvard, CambridgeGoogle Scholar
  72. Norton MC, Breitner JC et al (1994) Characteristics of nonresponders in a community survey of the elderly. J Am Geriatr Soc 42(12):1252–1256PubMedGoogle Scholar
  73. Ostbye T, Krause KM et al (2006) Ten dimensions of health and their relationships with overall self-reported health and survival in a predominately religiously active elderly population: the Cache County Memory Study. J Am Geriatr Soc 54(2):199–209PubMedCrossRefGoogle Scholar
  74. Ott A, Breteler MM et al (1997) Atrial fibrillation and dementia in a population-based study. The Rotterdam Study. Stroke 28(2):316–321PubMedCrossRefGoogle Scholar
  75. Ott A, Stolk RP et al (1999) Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53(9):1937–1942PubMedCrossRefGoogle Scholar
  76. Paleologos M, Cumming RG et al (1998) Cohort study of vitamin C intake and cognitive impairment. Am J Epidemiol 148(1):45–50PubMedCrossRefGoogle Scholar
  77. Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60:173–196PubMedCrossRefGoogle Scholar
  78. Petersen RC, Morris JC (2005) Mild cognitive impairment as a clinical entity and treatment target. Arch Neurol 62(7):1160–1163, discussion 1167PubMedCrossRefGoogle Scholar
  79. Petersen RC, Smith GE et al (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56(3):303–308PubMedCrossRefGoogle Scholar
  80. Plassman BL, Langa KM et al (2007) Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 29(1–2):125–132PubMedCrossRefGoogle Scholar
  81. Plassman BL, Langa KM et al (2008) Prevalence of cognitive impairment without dementia in the United States. Ann Intern Med 148(6):427–434PubMedGoogle Scholar
  82. Plassman BL, Williams JW Jr et al (2010) Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med 153(3):182–193PubMedGoogle Scholar
  83. Plassman BL, Langa KM et al (2011) Incidence of dementia and cognitive impairment, not dementia in the United States. Ann Neurol [Epub ahead of print]Google Scholar
  84. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45(3):358–368PubMedCrossRefGoogle Scholar
  85. Price JL, Ko AI et al (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402PubMedCrossRefGoogle Scholar
  86. Quinn JF, Montine KS et al (2004) Suppression of longitudinal increase in CSF F2-isoprostanes in Alzheimer’s disease. J Alzheimers Dis 6(1):93–97PubMedGoogle Scholar
  87. Refolo LM, Malester B et al (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7(4):321–331PubMedCrossRefGoogle Scholar
  88. Reitan R (1958) Validity of the Trail Making Test as an indicator of organic brain damage. Percept Mot Skills 8:271–276Google Scholar
  89. Rockwood K, Ebly E et al (1997) Presence and treatment of vascular risk factors in patients with vascular cognitive impairment. Arch Neurol 54(1):33–39PubMedCrossRefGoogle Scholar
  90. Roman GC, Tatemichi TK et al (1993) Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43(2):250–260PubMedCrossRefGoogle Scholar
  91. Sano M, Ernesto C et al (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336(17):1216–1222PubMedCrossRefGoogle Scholar
  92. Scarmeas N, Stern Y et al (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912–921PubMedCrossRefGoogle Scholar
  93. Scarmeas N, Luchsinger JA et al (2009) Physical activity, diet, and risk of Alzheimer disease. J Am Med Assoc 302(6):627–637CrossRefGoogle Scholar
  94. Shipley W (1967) Shipley Institute of Living Scale. Western Psychological Services, Los AngelesGoogle Scholar
  95. Skoog I, Lernfelt B et al (1996) 15-year longitudinal study of blood pressure and dementia. Lancet 347(9009):1141–1145PubMedCrossRefGoogle Scholar
  96. Sliwinski M, Buschke H et al (1997) The effect of dementia risk factors on comparative and diagnostic selective reminding norms. J Int Neuropsychol Soc 3(4):317–326PubMedGoogle Scholar
  97. Smith A (1991) Symbol Digit Modalities Test. Western Psychological Services, Los AngelesGoogle Scholar
  98. Smith PJ, Blumenthal JA et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3):239–252PubMedCrossRefGoogle Scholar
  99. Stewart WF, Kawas C et al (1997) Risk of Alzheimer’s disease and duration of NSAID use. Neurology 48(3):626–632PubMedCrossRefGoogle Scholar
  100. Strauss E, Sherman EMS, Spreen O (eds) (2006) A Compendium of Neuropsychological Tests, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  101. Treiber KA, Carlson MC et al (2011) Cognitive stimulation and cognitive and functional decline in Alzheimer’s disease: the Cache County Dementia Progression Study. J Gerontol B Psychol Sci Soc SciGoogle Scholar
  102. Tschanz JT, Welsh-Bohmer KA et al (2000) Dementia diagnoses from clinical and neuropsychological data compared: the Cache County Study. Neurology 54(6):1290–1296PubMedCrossRefGoogle Scholar
  103. Tschanz JT, Welsh-Bohmer KA et al (2002) An adaptation of the modified mini-mental state examination: analysis of demographic influences and normative data: the Cache County Study. Neuropsychiatry Neuropsychol Behav Neurol 15(1):28–38PubMedGoogle Scholar
  104. Tschanz JT, Treiber K et al (2005) A population study of Alzheimer’s disease: findings from the Cache County Study on memory, health, and aging. Care Manag J 6(2):107–114PubMedCrossRefGoogle Scholar
  105. Tschanz JT, Welsh-Bohmer KA et al (2006) Conversion to dementia from mild cognitive disorder: the Cache County Study. Neurology 67(2):229–234PubMedCrossRefGoogle Scholar
  106. Tuokko HA, Frerichs RJ et al (2001) Cognitive impairment, no dementia: concepts and issues. Int Psychogeriatr 13(Supp 1):183–202PubMedCrossRefGoogle Scholar
  107. Unverzagt FW, Smith DM et al (2009) The Indiana Alzheimer Disease Center’s symposium on mild cognitive impairment. Cognitive training in older adults: lessons from the ACTIVE Study. Curr Alzheimer Res 6(4):375–383PubMedCrossRefGoogle Scholar
  108. Wechsler D (1987) WMS-R: Wechsler Memory Scale-Revised. Harcourt Brace Jovanovich, New YorkGoogle Scholar
  109. Wechsler D (1997) Wechsler Adult Intelligence Scales, 3rd edn. The Psychological Corporation, San AntonioGoogle Scholar
  110. Weggen S, Eriksen JL et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414(6860):212–216PubMedCrossRefGoogle Scholar
  111. Welsh KA, Butters N et al (1994) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology 44(4):609–614PubMedCrossRefGoogle Scholar
  112. Welsh-Bohmer KA, Mohs RC (1997) Neuropsychological assessment of Alzheimer's disease. Neurology 49(Suppl 3):S11–13PubMedCrossRefGoogle Scholar
  113. Welsh-Bohmer KA, Ostbye T et al (2009) Neuropsychological performance in advanced age: influences of demographic factors and Apolipoprotein E: findings from the Cache County Memory Study. Clin Neuropsychol 23(1):77–99PubMedCrossRefGoogle Scholar
  114. Wengreen HJ, Munger R et al (2005). Fruit and vegetable intake and cognitive function in the elderly: the Cache County Study on memory, health and aging. Alzheimer’s Dementia J Alzheimer’s Assoc 1(1): S100Google Scholar
  115. Wengreen HJ, Munger RG et al (2007) Antioxidant intake and cognitive function of elderly men and women: the Cache County Study. J Nutr Health Aging 11(3):230–237PubMedGoogle Scholar
  116. Wengreen H, Munger R et al Prospective study of DASH-and Mediterranean-style dietary patterns and age-related cognitive change. J Nutr Health Aging (in press)Google Scholar
  117. Whitmer RA, Quesenberry CP et al (2011) Timing of hormone therapy and dementia: the critical window theory revisited. Ann Neurol 69(1):163–169PubMedCrossRefGoogle Scholar
  118. Wolinsky FD, Vander Weg MW et al (2010) Does cognitive training improve internal locus of control among older adults? J Gerontol B Psychol Sci Soc Sci 65(5):591–598PubMedCrossRefGoogle Scholar
  119. Zandi PP, Anthony JC et al (2002a) Reduced incidence of AD with NSAID but not H2 receptor antagonists: the Cache County Study. Neurology 59(6):880–886PubMedCrossRefGoogle Scholar
  120. Zandi PP, Carlson MC et al (2002b) Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. J Am Med Assoc 288(17):2123–2129CrossRefGoogle Scholar
  121. Zandi PP, Anthony JC et al (2004) Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 61(1):82–88PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kathleen M. Hayden
    • 1
  • Kathleen A. Welsh-Bohmer
    • 1
  1. 1.Department of PsychiatryJoseph and Kathleen Bryan Alzheimer’s Disease Research Center—Division of NeurologyDurhamUSA

Personalised recommendations