Dopamine-Based Reward Circuitry Responsivity, Genetics, and Overeating

Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 6)


Data suggest that low levels of dopamine D2 receptors and attenuated responsivity of dopamine-target regions to food intake is associated with increased eating and elevated weight. There is also growing (although mixed) evidence that genotypes that appear to lead to reduced dopamine signaling (e.g., DRD2, DRD4, and DAT) and certain appetite-related hormones and peptides (e.g., ghrelin, orexin A, leptin) moderate the relation between dopamine signaling, overeating, and obesity. This chapter reviews findings from studies that have investigated the relation between dopamine functioning and food intake and how certain genotypes and appetite-related hormones and peptides affect this relation.


Dopamine Food reward Genetics Overeating Obesity 


  1. Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschop MH, Gao XB, Horvath TL (2006) Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Investig 116:3229–3239CrossRefPubMedGoogle Scholar
  2. Asghari V, Sanyal S, Buchwaldt S, Paterson A, Jovanovic V, Van Tol HH (1995) Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 65:1157–1165CrossRefPubMedGoogle Scholar
  3. Avena NM, Rada P, Hoebel BG (2008) Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 16:865–871CrossRefGoogle Scholar
  4. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141CrossRefPubMedGoogle Scholar
  5. Bello NT, Lucas LR, Hajnal A (2002) Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 13(12):1575–1578CrossRefPubMedGoogle Scholar
  6. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369CrossRefPubMedGoogle Scholar
  7. Bilder R, Volavka J, Lachman H, Grace A (2004) Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology 29(11):1943–1961CrossRefPubMedGoogle Scholar
  8. Blackburn JR, Phillips AG, Jakubovic A, Fibiger HC (1989) Dopamine and preparatory behavior: a neurochemical analysis. Behav Neurosci 103:15–23CrossRefPubMedGoogle Scholar
  9. Boettiger CA, Mitchell JM, Tavares VC, Robertson M, Joslyn G, D'Esposito M, Fields HL (2007) Immediate reward bias in humans: fronto-parietal networks and a role for the catechol-O methyltransferase 158(Val/Val) genotype. J Neurosci 27(52):14383–14391CrossRefPubMedGoogle Scholar
  10. Bowirrat A, Oscar-Berman M (2005) Relationship between dopaminergic neurotransmission, alcoholism, and reward deficiency syndrome. Am J Med Genet B Neuropsychiatr Genet 132(1):29–37Google Scholar
  11. Brody AL, Mandelkern MA, Olmstead RE, Scheibal D, Hahn E, Shiraga S, Zamora-Paja E, Farahi J, Saxena S, London ED, McCracken JT (2006) Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 63:808–816CrossRefPubMedGoogle Scholar
  12. Carvelli L, Moron JA, Kahlig KM, Ferrer V (2002) PI 3-kinase regulation of dopamine uptake. J Neurochem 81:859–869CrossRefPubMedGoogle Scholar
  13. Chen PS, Yang YK, Yeh TL, Lee IH, Yao WJ, Chiu NT, Lu RB (2008) Correlation between body mass index and striatal dopamine transporter availability in healthy volunteers: a SPECT study. Neuroimage 40:275–279CrossRefPubMedGoogle Scholar
  14. Comings DE, Flanagan SD, Dietz G, Muhleman D, Knell E, Gysin R (1993) The dopamine D2 receptor (DRD2) as a major gene in obesity and height. Biochem Med Metab Biol 50(2):176–185CrossRefPubMedGoogle Scholar
  15. Cota D, Barrera JG, Seeley RJ (2006) Leptin in energy balance and reward: two faces of the same coin? Neuron 51:678–680CrossRefPubMedGoogle Scholar
  16. Davis JF, Tracy AL, Schurdak JD, Tschöp MH, Lipton JW, Clegg DJ, Benoit SC (2008) Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 122(6):1257–1263CrossRefPubMedGoogle Scholar
  17. Epstein LH, Jaroni JL, Paluch RA, Leddy JJ, Vahue HE, Hawk L, Pl W, Shields PG, Lerman C (2002) Dopamine transport genotype as a risk factor for obesity in smokers. Obesity 10:1232–1240CrossRefGoogle Scholar
  18. Epstein LH, Wright SM, Paluch RA, Leddy JJ, Hawk LW, Jaroni JL, Saad FG, Crystal-Mansour S, Shields PG, Lerman C (2004) Relation between food reinforcement and dopamine genotypes and its effect on food intake in smokers. Am J Clin Nutr 80:82–88PubMedGoogle Scholar
  19. Epstein LJ, Leddy JJ, Temple JL, Faith MS (2007) Food reinforcment and eating: a multilevel analysis. Psychol Bull 133:884–906CrossRefPubMedGoogle Scholar
  20. Erblich J, Lerman C, Self DW, Diaz GA, Bovbjerg DH (2005) Effects of dopamine D2 receptor (DRD2) and transporter (SLC6A3) polymorphisms on smoking cue-induced cigarette craving among African American smokers. Mol Psychiatry 10:407–414CrossRefPubMedGoogle Scholar
  21. Fetissov SO, Meguid MM, Sato T, Zhang LH (2002) Expression of dopaminergic receptors in the hypothalamus of lean and obese Zucker rates and food intake. Am J Physiol Regul Integr Comp Physiol 283:905–910Google Scholar
  22. Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964(1):107–115CrossRefPubMedGoogle Scholar
  23. Filbey FM, Ray L, Smolen A, Claus ED, Audette A, Hutchison K (2008) Differential neural response to alcohol priming and alcohol taste cues is associated with DRD4 VNTR and OPRM1 genotypes. Alcohol Clin Exp Res 32:1–11CrossRefGoogle Scholar
  24. Floresco SB, West AR, Ash B, Moore H, Grace AA (2003) Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6:968–973CrossRefPubMedGoogle Scholar
  25. Fossella J, Green AE, Fan J (2006) Evaluation of a structural polymorphism in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene and the activation of executive attention networks. Cogn Affect Behav Neurosci 6:71–78CrossRefPubMedGoogle Scholar
  26. Fulton S, Woodside B, Shizgal P (2000) Modulation of brain reward circuitry by leptin. Science 287:125–128CrossRefPubMedGoogle Scholar
  27. Fulton S, Richard D, Woodside B, Shizgal P (2004) Food restriction and leptin impact brain reward circuitry in lean and obese Zucker rats. Behav Brain Res 155:319–329CrossRefPubMedGoogle Scholar
  28. Garcia BG, Wei Y, Moron JA, Lin RZ, Javitch JA, Galli A (2005) Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol Pharmacol 68:102–109PubMedGoogle Scholar
  29. Geiger BM, Haburcak M, Avena NM, Moeyer MC, Hoebel BG, Photos EN (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159(4):1193–1199CrossRefPubMedGoogle Scholar
  30. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D et al (1998) Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A 95:9991–9996CrossRefPubMedGoogle Scholar
  31. Goldstein R, Klein A, Tomasi D, Zhang L, Cottone L, Maloney T et al (2007) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164:43–51CrossRefPubMedGoogle Scholar
  32. Guo G, North KE, Gorden-Larsen P, Bulik CM, Choi S (2007) Body mass, DRD4, physical activity, sedentary behavior, and family socioeconomic status. Obesity 15:1199–1206CrossRefPubMedGoogle Scholar
  33. Hamarman S, Fossella J, Ulger C, Brimacombe M, Dermody J (2004) Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorders: a pharmacogenetic study. J Child Adolesc Psychopharmacol 14:564–574CrossRefPubMedGoogle Scholar
  34. Hao J, Cabeza DV, Carr KD (2004) Effects of chronic ICV leptin infusion on motor-activating effects of D-amphetamine in food-restricted and ad libitum fed rats. Physiol Behav 83:377–381CrossRefPubMedGoogle Scholar
  35. Hare TA, O'Doherty J, Camerer CF, Schultz W, Rangel A (2008) Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J Neurosci 28(22):5623–5630CrossRefPubMedGoogle Scholar
  36. Huang XF, Zavitsanou K, Huang X, Yu Y, Wang H, Chen F, Lawrence AJ, Deng C (2006) Dopamine transporter and D2 receptor binding densities in mice prone or resistant to chronic high fat diet-incuded obesity. Behav Brain Res 175:415–419CrossRefPubMedGoogle Scholar
  37. Hutchison KE, McGeary J, Smolen A, Bryan A, Swift RM (2002) The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol 21:139–146CrossRefPubMedGoogle Scholar
  38. Kaplan AS, Levitan RD, Yilmaz Z, Davis C, Tharmalingam S, Kennedy JL (2008) A DRD4/BDNF gene-gene interaction associated with maximum BMI in women with bulimia nervosa. Int J Eat Disord 41:22–28CrossRefPubMedGoogle Scholar
  39. Kelley AE, Will MJ, Steininger TL, Zhang M, Haber SN (2003) Restricted daily consumption of a highly palatable food (chocolate Ensure(R)) alters striatal enkephalin gene expression. Eur J Neurosci 18(9):2592–2598CrossRefPubMedGoogle Scholar
  40. Kirsch P, Reuter M, Mier D, Lonsdorf T, Stark R, Gallhofer B et al (2006) Imaging gene-substance interactions: the effect of the DRD2 TaqIA polymorphism and the dopamine agonists bromocriptine on the brain activation during the anticipation of reward. Neurosci Lett 405:196–201CrossRefPubMedGoogle Scholar
  41. Kiyatkin EA, Gratton A (1994) Electrochemical monitoring of extracellular dopamine in nucleus accumbens of rats lever-pressing for food. Brain Res 652:225–234CrossRefPubMedGoogle Scholar
  42. Knutson B, Gibbs SE (2007) Linking nucleus accumbens dopamine and blood oxygenation. Psychopharmacology (Berl) 191(3):813–822CrossRefGoogle Scholar
  43. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA, Haas HL (2006) Effects of arousal and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. Eur J Neurosci 23:2677–2685CrossRefPubMedGoogle Scholar
  44. Levin BE, Meynell AA (2002) Defense of body weight depends on dietary composition and palatability in rats with diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 282:R46–54PubMedGoogle Scholar
  45. Levitan RD, Masellis M, Lam RW, Muglia P, Basile VS, Jain U, Kaplan AS, Tharmakingam S, Kennedy SH, Kennedy JL (2004) Childhood in-attention and dysphoria and adult obesity associated with the dopamine D4 receptor gene in overeating women with seasonal affective disorder. Neuropsychopharmacology 29:179–186CrossRefPubMedGoogle Scholar
  46. Li Y, Shao C, Zhang D, Zhao M, Lin L, Yan P, Xie Y, Jiang K, Jin L (2006) The effect of dopamine D2, D5 receptor and transporter (SLC6A3) polymorphisms on the cue-elicited heroin craving in Chinese. Am J Med Genet B Neuropsychiatr Genet 141B:269–273CrossRefPubMedGoogle Scholar
  47. Matsumoto M, Weickert C, Beltaifa S, Kolachana B, Chen J, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2003) Catechol 0-methyltransferase (COMT) mRNA expression in the dorsolateral prefrontal cortex of patients with schizophrenia. Neuropsychopharmacology 28(8):1521–30CrossRefPubMedGoogle Scholar
  48. McClernon FJ, Hutchison KE, Rose JE, Kozink RV (2007) DRD4 VNTR polymorphism is associated with transient fMRI-BOLD responses to smoking cues. Psychopharmacology (Berl) 194:433–441CrossRefGoogle Scholar
  49. Mikolajczyk E, Smiarowska M, Grzywacz A, Samochowiec J (2006) Association of eating disorders with catechol-O-methyltransferase gene functional polymorphism. Neuropsychobiology 54(1):82–86CrossRefPubMedGoogle Scholar
  50. Narita M, Nagumo Y, Hashimoto S, Narita M, Khotib J, Miyatake M et al (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405CrossRefPubMedGoogle Scholar
  51. Nascimento EBM, Fodor M, van der Zon GCM, Jazet IM, Meinders AE, Voshol PJ, Vlasblom R, Baan B, Eckel J, Maassen JA, Diamant M, Ouwens DM (2007) Insulin-mediated phosphorylation of the proline-rich AKT substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats. Diabetes Nutr Metab 55(12):3221–3228Google Scholar
  52. Noain D, Avale ME, Wedemeyer C, Calvo D, Peper M, Rubinstein M (2006) Identification of brain neurons expressin the dopamine D4 receptor gene using BAC transgenic mice. Eur J Neurosci 24:2429–2438CrossRefPubMedGoogle Scholar
  53. Orosco M, Rouch C, Nicolaidis S (1996) Rostromedial hypothalamic monoamine changes in response to intravenous infusions of insulin and glucose in freely feeding obese Zucker rats: a microdialysis study. Appetite 26:1–20CrossRefPubMedGoogle Scholar
  54. Patterson TA, Brot MD, Zavosh A, Schenk JO, Szot P, Figlewicz DP (1998) Food deprivation decreases mRNA and activity of the rat dopamine transporter. Neuroendocrinology 68:11–20CrossRefPubMedGoogle Scholar
  55. Pecina S, Cagniard B, Berridge KC, Aldrigde JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23:9395–9402PubMedGoogle Scholar
  56. Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28:73–82CrossRefPubMedGoogle Scholar
  57. Robinson TE, Berridge KC (2000) Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J Neurosci 20:s91–s117Google Scholar
  58. Schultz W, Apicella P, Ljungberg T (1993) Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J Neurosci 13(3):900–913PubMedGoogle Scholar
  59. Shalev U, Yap J, Shaham Y (2001) Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J Neurosci 21:RC129PubMedGoogle Scholar
  60. Shao C, Li Y, Jiang K, Zhang D, Xu Y, Lin L, Wang Q, Zhao M, Jin L (2006) Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese. Psychopharmacology (Berl) 186:185–190CrossRefGoogle Scholar
  61. Simon G, von Korff M, Saunders K, Miglioretti D, Crane P et al (2006) Association between obesity and psychiatric disorders in the US population. Arch Gen Psychiatry 63:824–830CrossRefPubMedGoogle Scholar
  62. Small DM, Jones-Gotman M, Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19:1709–15CrossRefPubMedGoogle Scholar
  63. Sobik L, Hutchison K, Craighead L (2005) Cue-elicited craving for food: a fresh approach to the study of binge eating. Appetite 44:253–61CrossRefPubMedGoogle Scholar
  64. South T, Huang XF (2008) High-fat diet exposure increases dopamine D2 receptor and decreases dopamine transporter receptor binding density in the nucleus accumbens and caudate putamen of mice. Neurochem Res 33:598–605CrossRefPubMedGoogle Scholar
  65. Southon AWK, Sanigorski AM, Zimmet P, Nicholson GC, Kotowicz MA, Collier G (2003) The Taq IA and Ser311 Cys polymorphisms in the dopamine D2 receptor gene and obesity. Diabetes Nutr Metab 16:72–76PubMedGoogle Scholar
  66. Spitz MR, Detry MA, Pillow P, Hu YH, Amos CI, Hong WK, Wu X (2000) Variant alleles of the D2 dopamine receptor gene and obesity. Nutr Res 20:371–380CrossRefGoogle Scholar
  67. Stice E, Spoor S, Bohon C, Small DM (2008a) Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 322:449–452CrossRefPubMedGoogle Scholar
  68. Stice E, Spoor S, Bohon C, Veldhuizen M, Small DM (2008b) Relation of reward from food intake and anticipated intake to obesity: a functional magnretic resonance imaging study. J Abnorm Psychol 117:924–935CrossRefPubMedGoogle Scholar
  69. Stice E, Yokum S, Bohon C, Marti N, Smolen A (2010) Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Neuroimage 50(4):1618–1625CrossRefPubMedGoogle Scholar
  70. Thanos PK, Volkow ND, Freimuth P, Umegaki H, Ikari H, Roth G, Ingram DK, Hitzemann R (2001) Overexpression of dopamine receptors reduces alcohol self-administration. J Neurochem 78(5):1094–1103CrossRefPubMedGoogle Scholar
  71. Thomas GN, Critchley JA, Tomlinson B, Cockram CS, Chan JC (2001) Relationships between the TaqI polymorphism of the dopamine D2 receptor and blood pressure in hyperglycemic and normoglycemic Chinese subjects. Clin Endocrinol 55:605–611CrossRefGoogle Scholar
  72. Tupala E, Hall H, Bergström K, Mantere T, Räsänen P, Särkioja T, Tiihonen J (2003) Dopamine D2 receptors and transporters in type 1 and 2 alcoholics measured with human whole hemisphere autoradiography. Hum Brain Mapp 20(2):91–102CrossRefPubMedGoogle Scholar
  73. Vittoz NM, Berridge CW (2006) Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31:384–395CrossRefPubMedGoogle Scholar
  74. Volkow ND, Fowler JS, Wang GJ (2002) Role of dopamine in drug reinforcement and addiction in humans: results from imaging studies. Behav Pharmacol 13:355–366PubMedGoogle Scholar
  75. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Neuroimage 42(4):1537–1543CrossRefPubMedGoogle Scholar
  76. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357(9253):354–357CrossRefPubMedGoogle Scholar
  77. Warren M, Frost-Pineda K, Gold M (2005) Body mass index and marijuana use. J Addict Dis 24:95–100CrossRefPubMedGoogle Scholar
  78. Wellman PJ, Nation JR, Davis KW (2007) Impairment of cocaine self-administration in rats maintained on a high fat diet. Pharmacol Biochem Behav 88:89–93CrossRefPubMedGoogle Scholar
  79. Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, France CP, Gore JC, Daws LC, Avison MJ, Galli A (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5(10):e274CrossRefPubMedGoogle Scholar
  80. Yamamoto T (2006) Neural substrates for the processing of cognitive and affective aspects of taste in the brain. Arch Histol Cytol 69:243–255CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eric Stice
    • 1
  • Sonja Yokum
    • 1
  • David Zald
    • 2
  • Alain Dagher
    • 3
  1. 1.Oregon Research InstituteEugeneUSA
  2. 2.Vanderbilt UniversityNashvilleUSA
  3. 3.McGill UniversityMontrealCanada

Personalised recommendations