Advertisement

Understanding Bipolar Disorder: The Epigenetic Perspective

  • Tarang Khare
  • Mrinal Pal
  • Arturas PetronisEmail author
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 5)

Abstract

Bipolar disease (BPD) is a complex major psychiatric disorder that affects between 1% and 2% of the population and exhibits ?85% heritability. This has made BPD an appealing target for genetic studies yet, despite numerous attempts, the genetic basis of this disease remains elusive. Recently, it has come to light that epigenetic factors may also influence the development of BPD. These factors act via stable but reversible modifications of DNA and chromatin structure. In this chapter, we revisit the epidemiological, clinical, and molecular findings in BPD and reanalyze them from the perspective of inherited and acquired epigenetic misregulation. Epigenetic research has great potential to enhance our understanding of the molecular basis of BPD.

Keywords

Epigentics Complex diseases Methylation Histone modification Epigenetic model Epigenotype Methylome study Twin discordance Gender differences Imprinting Microarray 

Notes

Acknowledgements

We thank Carolyn Ptak and Gabriel Oh for their constructive suggestions and editorial help. This work was supported by the National Institute of Mental Health (R01 MH074127 and 1R01 MH088413), and the Canadian Institutes for Health and Research (CIHR). AP is a Senior Fellow of the Ontario Mental Health Foundation.

References

  1. Almeida R, Allshire RC (2005) RNA silencing and genome regulation. Trends Cell Biol 15:251–258PubMedGoogle Scholar
  2. Altschuler EL (2005) Schizophrenia and the Chinese famine of 1959–1961. JAMA 294:2968; discussion 2968–2969Google Scholar
  3. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999PubMedPubMedCentralGoogle Scholar
  4. Arnold LM (2003) Gender differences in bipolar disorder. Psychiatr Clin North Am 26:595–620PubMedGoogle Scholar
  5. Azzi L, El-Alfy M, Labrie F (2006) Gender differences and effects of sex steroids and dehydroepiandrosterone on androgen and oestrogen alpha receptors in mouse sebaceous glands. Br J Dermatol 154:21–27PubMedGoogle Scholar
  6. Badcock C, Crespi B (2006) Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J Evol Biol 19:1007–1032PubMedGoogle Scholar
  7. Badcock C, Crespi B (2008) Battle of the sexes may set the brain. Nature 454:1054–1055PubMedGoogle Scholar
  8. Barrett SL, Mulholland CC, Cooper SJ, Rushe TM (2009) Patterns of neurocognitive impairment in first-episode bipolar disorder and schizophrenia. Br J Psychiatry 195:67–72PubMedGoogle Scholar
  9. Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56:711–721PubMedPubMedCentralGoogle Scholar
  10. Baum AE, Hamshere M, Green E, Cichon S, Rietschel M, Noethen MM, Craddock N, McMahon FJ (2008) Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Mol Psychiatry 13:466–467PubMedPubMedCentralGoogle Scholar
  11. Benes FM, Berretta S (2001) GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25:1–27PubMedGoogle Scholar
  12. Bertelsen A, Harvald B, Hauge M (1977) A Danish twin study of manic-depressive disorders. Br J Psychiatry 130:330–351PubMedGoogle Scholar
  13. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, Doucet D, Thomas NJ, Wang Y, Vollmer E, Goldmann T, Seifart C, Jiang W, Barker DL, Chee MS, Floros J, Fan JB (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393PubMedPubMedCentralGoogle Scholar
  14. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedGoogle Scholar
  15. Boivin DB (2000) Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 25:446–458PubMedPubMedCentralGoogle Scholar
  16. Braunig P, Sarkar R, Effenberger S, Schoofs N, Kruger S (2009) Gender differences in psychotic bipolar mania. Gend Med 6:356–361PubMedGoogle Scholar
  17. Bromberg A, Bersudsky Y, Levine J, Agam G (2009) Global leukocyte DNA methylation is not altered in euthymic bipolar patients. J Affect Disord 118:234–239PubMedGoogle Scholar
  18. Bunney WE, Bunney BG (2000) Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22:335–345PubMedGoogle Scholar
  19. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ, Venturi P, Jones LA, Lewis SW, Sham PC, Gottesman II, Farmer AE, McGuffin P, Reveley AM, Murray RM (1999) Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 56:162–168PubMedGoogle Scholar
  20. Chan AO, Rashid A (2006) CpG island methylation in precursors of gastrointestinal malignancies. Curr Mol Med 6:401–408PubMedGoogle Scholar
  21. Chen T, Ueda Y, Dodge JE, Wang Z, Li E (2003) Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23:5594–5605PubMedPubMedCentralGoogle Scholar
  22. Cheung P, Allis CD, Sassone-Corsi P (2000a) Signaling to chromatin through histone modifications. Cell 103:263–271PubMedGoogle Scholar
  23. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000b) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915PubMedGoogle Scholar
  24. Cheung HW, Ching YP, Nicholls JM, Ling MT, Wong YC, Hui N, Cheung A, Tsao SW, Wang Q, Yeun PW, Lo KW, Jin DY, Wang X (2005) Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog 43:237–245PubMedGoogle Scholar
  25. Choi JK, Howe LJ (2009) Histone acetylation: truth of consequences? Biochem Cell Biol 87:139–150PubMedGoogle Scholar
  26. Connor CM, Akbarian S (2008) DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics 3:55–58PubMedGoogle Scholar
  27. Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393S–2400SPubMedGoogle Scholar
  28. Coyle JT (2004) The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 68:1507–1514PubMedGoogle Scholar
  29. Craddock N, Sklar P (2009) Genetics of bipolar disorder: successful start to a long journey. Trends Genet 25:99–105PubMedGoogle Scholar
  30. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S, Wu Y, He X, Powe NR, Feinberg AP (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755PubMedGoogle Scholar
  31. Dempster EL, Mill J, Craig IW, Collier DA (2006) The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression. BMC Med Genet 7:10PubMedPubMedCentralGoogle Scholar
  32. Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508PubMedGoogle Scholar
  33. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, Haefliger C, Horton R, Howe K, Jackson DK, Kunde J, Koenig C, Liddle J, Niblett D, Otto T, Pettett R, Seemann S, Thompson C, West T, Rogers J, Olek A, Berlin K, Beck S (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385PubMedPubMedCentralGoogle Scholar
  34. Eckstein F (2005) Small non-coding RNAs as magic bullets. Trends Biochem Sci 30:445–452PubMedGoogle Scholar
  35. Elias SG, Keinan-Boker L, Peeters PH, Van Gils CH, Kaaks R, Grobbee DE, Van Noord PA (2004) Long term consequences of the 1944-1945 Dutch famine on the insulin-like growth factor axis. Int J Cancer 108:628–630PubMedGoogle Scholar
  36. Etchegaray JP, Yang X, DeBruyne JP, Peters AH, Weaver DR, Jenuwein T, Reppert SM (2006) The polycomb group protein EZH2 is required for mammalian circadian clock function. J Biol Chem 281:21209–21215PubMedGoogle Scholar
  37. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058PubMedPubMedCentralGoogle Scholar
  38. Fu M, Rao M, Wang C, Sakamaki T, Wang J, Di Vizio D, Zhang X, Albanese C, Balk S, Chang C, Fan S, Rosen E, Palvimo JJ, Janne OA, Muratoglu S, Avantaggiati ML, Pestell RG (2003) Acetylation of androgen receptor enhances coactivator binding and promotes prostate cancer cell growth. Mol Cell Biol 23:8563–8575PubMedPubMedCentralGoogle Scholar
  39. Fu M, Wang C, Zhang X, Pestell RG (2004) Acetylation of nuclear receptors in cellular growth and apoptosis. Biochem Pharmacol 68:1199–1208PubMedGoogle Scholar
  40. Garinis GA, Patrinos GP, Spanakis NE, Menounos PG (2002) DNA hypermethylation: when tumour suppressor genes go silent. Hum Genet 111:115–127PubMedGoogle Scholar
  41. Genereux DP, Miner BE, Bergstrom CT, Laird CD (2005) A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc Natl Acad Sci USA 102:5802–5807PubMedPubMedCentralGoogle Scholar
  42. Gershon ES, Bunney WE Jr (1977) The question of X-linkage in bipolar manic-depressive illness. J Psychiatr Res 13:99–117PubMedGoogle Scholar
  43. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978PubMedPubMedCentralGoogle Scholar
  44. Grandin LD, Alloy LB, Abramson LY (2006) The social zeitgeber theory, circadian rhythms, and mood disorders: review and evaluation. Clin Psychol Rev 26:679–694PubMedGoogle Scholar
  45. Guidotti A, Ruzicka W, Grayson DR, Veldic M, Pinna G, Davis JM, Costa E (2007) S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. Neuroreport 18:57–60PubMedGoogle Scholar
  46. Guil S, Esteller M (2009) DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 41:87–95PubMedGoogle Scholar
  47. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23PubMedGoogle Scholar
  48. Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679PubMedPubMedCentralGoogle Scholar
  49. Hamshere ML, Schulze TG, Schumacher J, Corvin A, Owen MJ, Jamra RA, Propping P, Maier W, Orozco y Diaz G, Mayoral F, Rivas F, Jones I, Jones L, Kirov G, Gill M, Holmans PA, Nothen MM, Cichon S, Rietschel M, Craddock N (2009) Mood-incongruent psychosis in bipolar disorder: conditional linkage analysis shows genome-wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disord 11:610–620PubMedGoogle Scholar
  50. Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829PubMedPubMedCentralGoogle Scholar
  51. Hermann A, Goyal R, Jeltsch A (2004) The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem 279:48350–48359PubMedGoogle Scholar
  52. Ingrosso D, Cimmino A, Perna AF, Masella L, De Santo NG, De Bonis ML, Vacca M, D'Esposito M, D'Urso M, Galletti P, Zappia V (2003) Folate treatment and unbalanced methylation and changes of allelic expression induced by hyperhomocysteinaemia in patients with uraemia. Lancet 361:1693–1699PubMedGoogle Scholar
  53. Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedGoogle Scholar
  54. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080PubMedGoogle Scholar
  55. Jonathan Ryves W, Dalton EC, Harwood AJ, Williams RS (2005) GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid. Bipolar Disord 7:260–265PubMedPubMedCentralGoogle Scholar
  56. Kaminsky Z, Wang SC, Petronis A (2006) Complex disease, gender and epigenetics. Ann Med 38:530–544PubMedGoogle Scholar
  57. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245PubMedGoogle Scholar
  58. Kato T, Winokur G, Coryell W, Keller MB, Endicott J, Rice J (1996) Parent-of-origin effect in transmission of bipolar disorder. Am J Med Genet 67:546–550PubMedGoogle Scholar
  59. Kennedy N, Boydell J, Kalidindi S, Fearon P, Jones PB, van Os J, Murray RM (2005) Gender differences in incidence and age at onset of mania and bipolar disorder over a 35-year period in Camberwell, England. Am J Psychiatry 162:257–262PubMedGoogle Scholar
  60. Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA (1996a) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 92:91–100PubMedGoogle Scholar
  61. Keverne EB, Martel FL, Nevison CM (1996b) Primate brain evolution: genetic and functional considerations. Proc Biol Sci 263:689–696PubMedGoogle Scholar
  62. Kieseppa T, Partonen T, Haukka J, Kaprio J, Lonnqvist J (2004) High concordance of bipolar I disorder in a nationwide sample of twins. Am J Psychiatry 161:1814–1821PubMedGoogle Scholar
  63. Kinyamu HK, Archer TK (2004) Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim Biophys Acta 1677:30–45PubMedGoogle Scholar
  64. Klar AJ, Ivanova AV, Dalgaard JZ, Bonaduce MJ, Grewal SI (1998) Multiple epigenetic events regulate mating-type switching of fission yeast. Novartis Found Symp 214:87–99; discussion 99–103Google Scholar
  65. Klimasauskas S, Kumar S, Roberts RJ, Cheng X (1994) HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369PubMedGoogle Scholar
  66. Knoll JH, Nicholls RD, Magenis RE, Glatt K, Graham JM Jr, Kaplan L, Lalande M (1990) Angelman syndrome: three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet 47:149–155PubMedPubMedCentralGoogle Scholar
  67. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2: R271–R277Google Scholar
  68. Kornberg JR, Brown JL, Sadovnick AD, Remick RA, Keck PE Jr, McElroy SL, Rapaport MH, Thompson PM, Kaul JB, Vrabel CM, Schommer SC, Wilson T, Pizzuco D, Jameson S, Schibuk L, Kelsoe JR (2000) Evaluating the parent-of-origin effect in bipolar affective disorder. Is a more penetrant subtype transmitted paternally? J Affect Disord 59:183–192PubMedGoogle Scholar
  69. Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324:929–930PubMedPubMedCentralGoogle Scholar
  70. Kringlen E (1991) Adoption studies in functional psychosis. Eur Arch Psychiatry Clin Neurosci 240:307–313PubMedGoogle Scholar
  71. Kulig E, Camper SA, Kuecker S, Jin L, Lloyd RV (1998) Remodeling of Hyperplastic Pituitaries in Hypothyroid us-Subunit Knockout Mice After Thyroxine and 1713-Estradiol Treatment: Role of Apoptosis. Endocr Pathol 9:261–274PubMedGoogle Scholar
  72. Kuratomi G, Iwamoto K, Bundo M, Kusumi I, Kato N, Iwata N, Ozaki N, Kato T (2008) Aberrant DNA methylation associated with bipolar disorder identified from discordant monozygotic twins. Mol Psychiatry 13:429–441PubMedGoogle Scholar
  73. Kyle UG, Pichard C (2006) The Dutch Famine of 1944-1945: a pathophysiological model of long-term consequences of wasting disease. Curr Opin Clin Nutr Metab Care 9:388–394PubMedGoogle Scholar
  74. Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298PubMedGoogle Scholar
  75. Lachner M, Sengupta R, Schotta G, Jenuwein T (2004) Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. Cold Spring Harb Symp Quant Biol 69:209–218PubMedGoogle Scholar
  76. Lambert D, Gill M (2002) Evaluation of parent-of-origin effect in bipolar affective disorder relating to susceptibility loci on chromosome 18. Bipolar Disord 4(Suppl 1):31–32PubMedGoogle Scholar
  77. Lan TH, Beaty TH, DePaulo JR, McInnis MG (2007) Parent-of-origin effect in the segregation analysis of bipolar affective disorder families. Psychiatr Genet 17:93–101PubMedGoogle Scholar
  78. Lenox RH, Gould TD, Manji HK (2002) Endophenotypes in bipolar disorder. Am J Med Genet 114:391–406PubMedGoogle Scholar
  79. Liu PY, Wang C, Swerdloff RS (2005) Male sex matters. Clin Endocrinol (Oxf) 63:601–602Google Scholar
  80. Loat CS, Asbury K, Galsworthy MJ, Plomin R, Craig IW (2004) X inactivation as a source of behavioural differences in monozygotic female twins. Twin Res 7:54–61PubMedGoogle Scholar
  81. Mahon PB, Payne JL, MacKinnon DF, Mondimore FM, Goes FS, Schweizer B, Jancic D, Coryell WH, Holmans PA, Shi J, Knowles JA, Scheftner WA, Weissman MM, Levinson DF, DePaulo JR Jr, Zandi PP, Potash JB (2009) Genome-wide linkage and follow-up association study of postpartum mood symptoms. Am J Psychiatry 166:1229–1237PubMedPubMedCentralGoogle Scholar
  82. Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5:150–157PubMedGoogle Scholar
  83. Marchion DC, Bicaku E, Daud AI, Sullivan DM, Munster PN (2005) Valproic acid alters chromatin structure by regulation of chromatin modulation proteins. Cancer Res 65:3815–3822PubMedGoogle Scholar
  84. McColl G, Killilea DW, Hubbard AE, Vantipalli MC, Melov S, Lithgow GJ (2008) Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J Biol Chem 283:350–357PubMedPubMedCentralGoogle Scholar
  85. McGrath CL, Glatt SJ, Sklar P, Le-Niculescu H, Kuczenski R, Doyle AE, Biederman J, Mick E, Faraone SV, Niculescu AB, Tsuang MT (2009) Evidence for genetic association of RORB with bipolar disorder. BMC Psychiatry 9:70PubMedPubMedCentralGoogle Scholar
  86. McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 60:497–502PubMedGoogle Scholar
  87. Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 82:696–711PubMedPubMedCentralGoogle Scholar
  88. Mishima T, Akagi I, Miyashita M, Ishibashi O, Mizuguchi Y, Tajiri T, Takizawa T (2009) Study of MicroRNA expression profiles of esophageal cancer. J Nippon Med Sch 76:43PubMedGoogle Scholar
  89. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7:45–49PubMedGoogle Scholar
  90. Morris KV (2005) siRNA-mediated transcriptional gene silencing: the potential mechanism and a possible role in the histone code. Cell Mol Life Sci 62:3057–3066PubMedGoogle Scholar
  91. Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Schork NJ, Kelsoe JR (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B:234–241PubMedPubMedCentralGoogle Scholar
  92. Numachi Y, Yoshida S, Yamashita M, Fujiyama K, Naka M, Matsuoka H, Sato M, Sora I (2004) Psychostimulant alters expression of DNA methyltransferase mRNA in the rat brain. Ann N Y Acad Sci 1025:102–109PubMedGoogle Scholar
  93. O'Brien WT, Klein PS (2009) Validating GSK3 as an in vivo target of lithium action. Biochem Soc Trans 37:1133–1138PubMedPubMedCentralGoogle Scholar
  94. Ogden CA, Rich ME, Schork NJ, Paulus MP, Geyer MA, Lohr JB, Kuczenski R, Niculescu AB (2004) Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol Psychiatry 9:1007–1029PubMedGoogle Scholar
  95. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedGoogle Scholar
  96. Ostrer H (1999) Sex-based differences in gene transmission and gene expression. Lupus 8:365–369PubMedGoogle Scholar
  97. Palo OM, Soronen P, Silander K, Varilo T, Tuononen K, Kieseppa T, Partonen T, Lonnqvist J, Paunio T, Peltonen L (2010) Identification of susceptibility loci at 7q31 and 9p13 for bipolar disorder in an isolated population. Am J Med Genet B Neuropsychiatr Genet 153B:723–735PubMedGoogle Scholar
  98. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD, Popendikyte V (2003) Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 29:169–178PubMedGoogle Scholar
  99. Pfeifer GP, Steigerwald SD, Hansen RS, Gartler SM, Riggs AD (1990) Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc Natl Acad Sci USA 87:8252–8256PubMedPubMedCentralGoogle Scholar
  100. Plenge RM, Stevenson RA, Lubs HA, Schwartz CE, Willard HF (2002) Skewed X-chromosome inactivation is a common feature of X-linked mental retardation disorders. Am J Hum Genet 71:168–173PubMedPubMedCentralGoogle Scholar
  101. Prickaerts J, Moechars D, Cryns K, Lenaerts I, van Craenendonck H, Goris I, Daneels G, Bouwknecht JA, Steckler T (2006) Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci 26:9022–9029PubMedGoogle Scholar
  102. Rakyan V, Whitelaw E (2003) Transgenerational epigenetic inheritance. Curr Biol 13:R6PubMedGoogle Scholar
  103. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351PubMedGoogle Scholar
  104. Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093PubMedGoogle Scholar
  105. Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676PubMedGoogle Scholar
  106. Riggs AD, Xiong Z, Wang L, LeBon JM (1998) Methylation dynamics, epigenetic fidelity and X chromosome structure. Novartis Found Symp 214:214–225; discussion 225–232Google Scholar
  107. Rosa A, Picchioni MM, Kalidindi S, Loat CS, Knight J, Toulopoulou T, Vonk R, van der Schot AC, Nolen W, Kahn RS, McGuffin P, Murray RM, Craig IW (2008) Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. Am J Med Genet B Neuropsychiatr Genet 147B:459–462PubMedGoogle Scholar
  108. Rosell R, Wei J, Taron M (2009) Circulating MicroRNA Signatures of Tumor-Derived Exosomes for Early Diagnosis of Non-Small-Cell Lung Cancer. Clin Lung Cancer 10:8–9PubMedGoogle Scholar
  109. Roybal K, Theobold D, Graham A, DiNieri JA, Russo SJ, Krishnan V, Chakravarty S, Peevey J, Oehrlein N, Birnbaum S, Vitaterna MH, Orsulak P, Takahashi JS, Nestler EJ, Carlezon WA Jr, McClung CA (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104:6406–6411PubMedPubMedCentralGoogle Scholar
  110. Saluz HP, Jiricny J, Jost JP (1986) Genomic sequencing reveals a positive correlation between the kinetics of strand-specific DNA demethylation of the overlapping estradiol/glucocorticoid-receptor binding sites and the rate of avian vitellogenin mRNA synthesis. Proc Natl Acad Sci USA 83:7167–7171PubMedPubMedCentralGoogle Scholar
  111. Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140PubMedGoogle Scholar
  112. Schouws SN, Comijs HC, Stek ML, Dekker J, Oostervink F, Naarding P, van der Velde I, Beekman AT (2009) Cognitive impairment in early and late bipolar disorder. Am J Geriatr Psychiatry 17:508–515PubMedGoogle Scholar
  113. Schueler MG, Higgins AW, Nagaraja R, Tentler D, Dahl N, Gustashaw K, Willard HF (2000) Large-insert clone/STS contigs in Xq11-q12, spanning deletions in patients with androgen insensitivity and mental retardation. Genomics 66:104–109PubMedGoogle Scholar
  114. Seeman MV (1997) Psychopathology in women and men: focus on female hormones. Am J Psychiatry 154:1641–1647PubMedGoogle Scholar
  115. Sit D (2004) Women and bipolar disorder across the life span. J Am Med Womens Assoc 59:91–100PubMedPubMedCentralGoogle Scholar
  116. Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569PubMedPubMedCentralGoogle Scholar
  117. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 294:557–562PubMedGoogle Scholar
  118. Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C, Clark CD, McInnis MG, Simpson SG, Breschel TS, Vishio E, Riskin K, Feilotter H, Chen E, Shen S, Folstein S, Meyers DA, Botstein D, Marr TG, DePaulo JR (1995) Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 57:1384–1394PubMedPubMedCentralGoogle Scholar
  119. Suter CM, Martin DI, Ward RL (2004) Germline epimutation of MLH1 in individuals with multiple cancers. Nat Genet 36:497–501PubMedGoogle Scholar
  120. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedPubMedCentralGoogle Scholar
  121. Taylor L, Faraone SV, Tsuang MT (2002) Family, twin, and adoption studies of bipolar disease. Curr Psychiatry Rep 4:130–133PubMedGoogle Scholar
  122. Tochigi M, Iwamoto K, Bundo M, Komori A, Sasaki T, Kato N, Kato T (2008) Methylation status of the reelin promoter region in the brain of schizophrenic patients. Biol Psychiatry 63:530–533PubMedGoogle Scholar
  123. Tsuang MT, Faraone SV (1994) The genetic epidemiology of schizophrenia. Compr Ther 20:130–135PubMedGoogle Scholar
  124. Tufarelli C, Stanley JA, Garrick D, Sharpe JA, Ayyub H, Wood WG, Higgs DR (2003) Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nat Genet 34:157–165PubMedGoogle Scholar
  125. Underwood SL, Christoforou A, Thomson PA, Wray NR, Tenesa A, Whittaker J, Adams RA, Le Hellard S, Morris SW, Blackwood DH, Muir WJ, Porteous DJ, Evans KL (2006) Association analysis of the chromosome 4p-located G protein-coupled receptor 78 (GPR78) gene in bipolar affective disorder and schizophrenia. Mol Psychiatry 11:384–394PubMedGoogle Scholar
  126. Varley KE, Mutch DG, Edmonston TB, Goodfellow PJ, Mitra RD (2009) Intra-tumor heterogeneity of MLH1 promoter methylation revealed by deep single molecule bisulfite sequencing. Nucleic Acids Res 37:4603–4612PubMedPubMedCentralGoogle Scholar
  127. Vertino PM, Sekowski JA, Coll JM, Applegren N, Han S, Hickey RJ, Malkas LH (2002) DNMT1 is a component of a multiprotein DNA replication complex. Cell Cycle 1:416–423PubMedGoogle Scholar
  128. Voisine C, Varma H, Walker N, Bates EA, Stockwell BR, Hart AC (2007) Identification of potential therapeutic drugs for huntington's disease using Caenorhabditis elegans. PLoS One 2:e504PubMedPubMedCentralGoogle Scholar
  129. Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132PubMedGoogle Scholar
  130. Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187–190PubMedGoogle Scholar
  131. Waterland RA (2003) Do maternal methyl supplements in mice affect DNA methylation of offspring? J Nutr 133:238; author reply 239Google Scholar
  132. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854PubMedGoogle Scholar
  133. Weksberg R, Shuman C, Caluseriu O, Smith AC, Fei YL, Nishikawa J, Stockley TL, Best L, Chitayat D, Olney A, Ives E, Schneider A, Bestor TH, Li M, Sadowski P, Squire J (2002) Discordant KCNQ1OT1 imprinting in sets of monozygotic twins discordant for Beckwith-Wiedemann syndrome. Hum Mol Genet 11:1317–1325PubMedGoogle Scholar
  134. Weksberg R, Shuman C, Beckwith JB (2010) Beckwith-Wiedemann syndrome. Eur J Hum Genet 18:8–14PubMedPubMedCentralGoogle Scholar
  135. Wolff GL, Kodell RL, Moore SR, Cooney CA (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12:949–957PubMedGoogle Scholar
  136. Xu MQ, Sun WS, Liu BX, Feng GY, Yu L, Yang L, He G, Sham P, Susser E, St Clair D, He L (2009) Prenatal malnutrition and adult schizophrenia: further evidence from the 1959-1961 Chinese famine. Schizophr Bull 35:568–576PubMedPubMedCentralGoogle Scholar
  137. Yokomori N, Kobayashi R, Moore R, Sueyoshi T, Negishi M (1995) A DNA methylation site in the male-specific P450 (Cyp 2d-9) promoter and binding of the heteromeric transcription factor GABP. Mol Cell Biol 15:5355–5362PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.The Krembil Family Epigenetics LaboratoryCentre for Addiction and Mental HealthTorontoCanada
  2. 2.The Krembil Family Epigentics LaboratoryCenter for Addiction and Mental HealthTorontoCanada
  3. 3.Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada

Personalised recommendations