Advertisement

Drosophila as a Model Organism for the Study of Neuropsychiatric Disorders

  • Cahir J. O’KaneEmail author
Chapter
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 7)

Abstract

The fruitfly Drosophila offers a model system in which powerful genetic tools can be applied to understanding the neurobiological bases of a range of complex behaviors. The Drosophila and human lineages diverged several hundred million years ago, and despite their obvious differences, flies and humans share many fundamental cellular and neurobiological processes. The similarities include fundamental mechanisms of neuronal signaling, a conserved underlying brain architecture and the main classes of neurotransmitter system. Drosophila also have a sophisticated behavioral repertoire that includes extensive abilities to adapt to experience and other circumstances, and is therefore susceptible to the same kinds of insults that can cause neuropsychiatric disorders in humans. Given the different physiologies, lifestyles, and cognitive abilities of flies and humans, many higher order behavioral features of the human disorders cannot be modeled readily in flies. However, an increasing understanding of the genetics of human neuropsychiatric disorders is suggesting parallels with underlying neurobiological mechanisms in flies, thus providing important insights into the possible mechanisms of these poorly understood disorders.

Keywords

Addiction Aggression Autism Courtship Dopamine Drosophila Learning Memory Neuropeptides Schizophrenia Serotonin Sleep 

Abbreviations

ARM

Anesthesia-resistant memory

BBB

Blood–brain barrier

cAMP

Cyclic AMP

DAT

Dopamine transporter

GABA

Gamma-aminobutyric acid

LNs

Lateral neurons

NMJ

Neuromuscular junction

NPF

Neuropeptide F

NPY

Neuropeptide Y

PACAP

Pituitary adenylate cyclase-activating protein

PKA

cAMP-dependent protein kinase

SERT

Serotonin transporter

SSRI

Selective serotonin reuptake inhibitor

VMAT

Vesicular monoamine transporter

References

  1. Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Revs Genetics 9:341–356CrossRefGoogle Scholar
  2. Agosto J, Choi JC, Parisky KM et al (2008) Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11:354–359PubMedCrossRefGoogle Scholar
  3. Andretic R, Chaney S, Hirsh J (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285:1066–1068PubMedCrossRefGoogle Scholar
  4. Ashton K, Wagoner AP, Carrillo R, Gibson G (2001) Quantitative trait loci for the monoamine-related traits heart rate and headless behavior in Drosophila melanogaster. Genetics 157:283–294PubMedGoogle Scholar
  5. Bainton RJ, Tsai LT, Singh CM et al (2000) Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr Biol 10:187–194PubMedCrossRefGoogle Scholar
  6. Ballas N, Lioy DT, Grunseich C, Mandel G (2009) Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nat Neurosci 12:311–317PubMedCrossRefGoogle Scholar
  7. Berger KH, Heberlein U, Moore MS (2004) Rapid and chronic: two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin Exp Res 28:1469–1480PubMedCrossRefGoogle Scholar
  8. Bhandar P, Kendler KS, Bettinger JC et al (2009) An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin Exp Res 33:1794–1805CrossRefGoogle Scholar
  9. Bourtchuladze R, Frenguelli B, Blendy J et al (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68PubMedCrossRefGoogle Scholar
  10. Buckingham SD, Biggin PC, Sattelle BM et al (2005) Insect GABA receptors: splicing, editing and targeting by antiparasitics and insecticides. Mol Pharmacol 68:942–951PubMedCrossRefGoogle Scholar
  11. Bushey D, Tononi G, Cirelli C (2009) The Drosophila fragile X mental retardation gene regulates sleep need. J Neurosci 29:1948–1961PubMedCrossRefGoogle Scholar
  12. Campusano JM, Su H, Jiang SA et al (2007) nAChR-mediated calcium response and plasticity in Drosophila Kenyon cells. Dev Neurobiol 67:1520–1532PubMedCrossRefGoogle Scholar
  13. Cattaert D, Birman S (2001) Blockade of the central generator of locomotor rhythm by noncompetitive NMDA receptor antagonists in Drosophila larvae. J Neurobiol 48:58–73PubMedCrossRefGoogle Scholar
  14. Chabaud M-A, Isabel G, Kaiser L, Preat T (2009) Social facilitation of long-lasting memory retrieval in Drosophila. Curr Biol 19:1654–1659PubMedCrossRefGoogle Scholar
  15. Chang S, Bray SM, Li Z et al (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263PubMedCrossRefGoogle Scholar
  16. Chen S, Lee AY, Bowens NM et al (2002) Fighting fruit flies: a model system for the study of aggression. Proc Natl Acad Sci USA 99:5664–5668PubMedCrossRefGoogle Scholar
  17. Chen J, Zhang Y, Shen P (2008) A protein kinase C activity localized to neuropeptide Y-like neurons mediates ethanol intoxication in Drosophila melanogaster. Neuroscience 156:42–47PubMedCrossRefGoogle Scholar
  18. Chubb JE, Bradshaw NJ, Soares DC et al (2008) The DISC locus in psychiatric illness. Mol Psychiat 13:36–64CrossRefGoogle Scholar
  19. Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 99:13675–13680PubMedCrossRefGoogle Scholar
  20. Chung BY, Kilman VL, Keath JR et al (2009) The GABAA receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19:386–390PubMedCrossRefGoogle Scholar
  21. Clyne JD, Miesenböck G (2008) Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133:354–363PubMedCrossRefGoogle Scholar
  22. Cowmeadow RB, Krishnan HR, Atkinson NS (2005) The slowpoke gene is necessary for rapid ethanol tolerance in Drosophila. Alcohol Clin Exp Res 29:1777–1786PubMedCrossRefGoogle Scholar
  23. Cowmeadow RB, Krishnan HR, Ghezzi A et al (2006) Ethanol tolerance caused by slowpoke induction in Drosophila. Alcohol Clin Exp Res 30:745–753PubMedCrossRefGoogle Scholar
  24. Craddock N, Sklar P (2009) Genetics of bipolar disorder: a successful start to a long journey. Trends Genet 25:99–105PubMedCrossRefGoogle Scholar
  25. Daneman R, Barres BA (2005) The blood-brain barrier – lessons from moody flies. Cell 123:9–12PubMedCrossRefGoogle Scholar
  26. Demchyshyn LL, Pristupa ZB, Sugamori KS et al (1994) Cloning, expression, and localization of a chloride-facilitated, cocaine-sensitive serotonin transporter from Drosophila melanogaster. Proc Natl Acad Sci USA 91:5158–5162PubMedCrossRefGoogle Scholar
  27. DeZazzo J, Xia S, Christensen J, Velinzon K, Tully T (1999) Developmental expression of an amn + transgene rescues the mutant memory defect of amnesiac adults. J Neurosci 19:8740–8746PubMedGoogle Scholar
  28. Dickman DK, Davis GW (2009) The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326:1127–1131PubMedCrossRefGoogle Scholar
  29. Dickson BJ (2008) Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904–909PubMedCrossRefGoogle Scholar
  30. Dolezelova E, Nothacker H-P, Civelli O et al (2007) A Drosophila adenosine receptor activates cAMP and calcium signaling. Insect Biochem Mol Biol 37:318–329PubMedCrossRefGoogle Scholar
  31. Eaton K, Sallee FR, Sah R (2007) Relevance of neuropeptide Y (NPY) in psychiatry. Curr Top Med Chem 7:1645–1659PubMedCrossRefGoogle Scholar
  32. Enell L, Hamasaka Y, Kolodziejczyk A, Nässel D (2007) gamma-Aminobutyric acid (GABA) signaling components in Drosophila: immunocytochemical localization of GABA(B) receptors in relation to the GABA(A) receptor subunit RDL and a vesicular GABA transporter. J Comp Neurol 505:18–31PubMedCrossRefGoogle Scholar
  33. Fergestad T, Olson L, Patel KP et al (2008) Neuropathology in Drosophila mutants with increased seizure susceptibility. Genetics 178:947–956PubMedCrossRefGoogle Scholar
  34. Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10:1160–1167PubMedCrossRefGoogle Scholar
  35. Freeman MR, Doherty J (2006) Glial cell biology in Drosophila and vertebrates. Trends Neurosci 29:82–90PubMedCrossRefGoogle Scholar
  36. Gatto CL, Broadie K (2009) Temporal requirements of the fragile X mental retardation protein in modulating circadian clock circuit synaptic architecture. Front Neural Circuits 3:8PubMedCrossRefGoogle Scholar
  37. Gilestro GF, Toning G, Cirelli C (2009) Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324:109–112PubMedCrossRefGoogle Scholar
  38. Glessner JT, Wang K, Cai G et al (2009) Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–574PubMedCrossRefGoogle Scholar
  39. Gogos JA, Santha M, Takacz Z et al (1999) The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet 21:434–439PubMedCrossRefGoogle Scholar
  40. Gondo Y, Murata T, Makino S, Fukumura R, Ishitsuka Y (2011) Mouse mutagenesis and disease models for neuropsychiatric disorders. In: Current topics in behavioral neurosciences. Springer, Heidelberg. doi:  10.1007/7854_2010_106
  41. Gothelf D, Eliez S, Thompson T et al (2005) COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nat Neurosci 8:1500–1502PubMedCrossRefGoogle Scholar
  42. Greer CL, Grygoruk A, Patton DE et al (2005) A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. J Neurobiol 64:239–258PubMedCrossRefGoogle Scholar
  43. Greer PL, Hanayama R, Bloodgood BL et al (2010) The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 140:704–716PubMedCrossRefGoogle Scholar
  44. Harbison ST, Sehgal A (2008) Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 178:2341–2360PubMedCrossRefGoogle Scholar
  45. Hauser F, Cazzamali G, Williamson M et al (2006) A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19PubMedCrossRefGoogle Scholar
  46. Hawkins RD (1984) A cellular mechanism of classical conditioning in Aplysia. J Exp Biol 112:13–128Google Scholar
  47. Heberlein U, Tsai LT-Y, Kapfhamer D, Lasek AW (2009) Drosophila, a genetic model system to study cocaine-related behaviors: A review with focus on LIM-only proteins. Neuropharmacology 56:97–106PubMedCrossRefGoogle Scholar
  48. Heidbreder C (2011) Advances in animal models of drug addiction. In: Current topics in behavioural neuroscience. Springer, Heidelberg. doi:  10.1007/7854_2010_107
  49. Hendricks JC, Finn SM, Panckeri KA et al (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138PubMedCrossRefGoogle Scholar
  50. Hewes RS, Taghert PH (2001) Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 11:1126–1142PubMedCrossRefGoogle Scholar
  51. Hoyer SC, Eckart A, Herrel A, Zars T, Fischer SA, Hardie SL, Heisenberg M (2008) Octopamine in male aggression in Drosophila. Curr Biol 18:159–167PubMedCrossRefGoogle Scholar
  52. Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304:1024–1027PubMedCrossRefGoogle Scholar
  53. Joiner WJ, Crocker A, White BH, Sehgal A (2006) Sleep in Drosophila is regulated by adult mushroom bodies. Nature 441:757–760PubMedCrossRefGoogle Scholar
  54. Karayiorgou M, Morris MA, Morrow B et al (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92:7612–7616PubMedCrossRefGoogle Scholar
  55. Kauer J, Malenka RC (2007) Synaptic plasticity and addiction. Nat Rev Neurosci 8:844–858PubMedCrossRefGoogle Scholar
  56. Kent C, Azanchi R, Smith B et al (2008) Social context influences chemical communication in D melanogaster males. Curr Biol 18:1384–1389PubMedCrossRefGoogle Scholar
  57. Koh K, Joiner WJ, Wu MN et al (2008) Identification of sleepless, a sleep-promoting factor. Science 321:372–376PubMedCrossRefGoogle Scholar
  58. Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. In: Current topics in behavioural neuroscience. Springer, Heidelberg. doi:  10.1007/7854_2010_108
  59. Krupp JJ, Kent C, Billeter J-C et al (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18:1373–1383PubMedCrossRefGoogle Scholar
  60. Kume K, Kume S, Park SK et al (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384PubMedCrossRefGoogle Scholar
  61. Lee H-G, Kim Y-C, Dunning JS, Han K-A (2008) Recurring ethanol exposure induces disinhibited courtship in Drosophila. PLoS ONE 3(1):e1391PubMedCrossRefGoogle Scholar
  62. Lefranc A, Jeune B, Thomas-Orillard M, Danchin E (2001) Non-independence of individuals in a population of Drosophila melanogaster: effects on spatial distribution and dispersal. C R Acad Sci Paris Life Sci 324:219–227CrossRefGoogle Scholar
  63. Leonardo ED, Hen R (2006) Genetics of affective and anxiety disorders. Annu Rev Psychol 57:117–137PubMedCrossRefGoogle Scholar
  64. Li H, Chaney S, Roberts IJ et al (2000) Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr Biol 10:211–214PubMedCrossRefGoogle Scholar
  65. Li C, Zhao X, Cao X et al (2008) The Drosophila homolog of jwa is required for ethanol tolerance. Alcohol Alcohol 43:529–536PubMedCrossRefGoogle Scholar
  66. Littleton JT, Ganetzky B (2000) Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron 26:35–43PubMedCrossRefGoogle Scholar
  67. Liu W, Guo F, Lu B, Guo A (2008) Amnesiac regulates sleep onset and maintenance in Drosophila melanogaster. Biochem Biophys Res Commun 372:798–803PubMedCrossRefGoogle Scholar
  68. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuitry. Neuron 57:634–660PubMedCrossRefGoogle Scholar
  69. Maas JW Jr, Vogt SK, Chan GCK et al (2005) Calcium-stimulated adenylyl cyclases are critical modulators of neuronal ethanol sensitivity. J Neurosci 25:4118–4126PubMedCrossRefGoogle Scholar
  70. Manev H, Uz T (2006) Clock genes: influencing and being influenced by psychoactive drugs. Trends Pharm Sci 27:186–189PubMedCrossRefGoogle Scholar
  71. Mao Z, Davis RL (2009) Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Front Neural Circuits 3:1CrossRefGoogle Scholar
  72. McClung C, Hirsh J (1998) Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Curr Biol 8:109–112PubMedCrossRefGoogle Scholar
  73. McGuire SE, Deshazer M, Davis RL (2005) Thirty years of olfactory learning and memory research in Drosophila melanogaster. Prog Neurobiol 76:328–347PubMedCrossRefGoogle Scholar
  74. McMahon FJ, Akula N, Schulze TG et al (2010) Meta-analysis of genome-wide association data identifies a risk locus for major mood disorders on 3p21.1. Nat Genet 42:128–132PubMedCrossRefGoogle Scholar
  75. McMonagle P, Hutchinson M, Lawlor B (2006) Hereditary spastic paraparesis and psychosis. Eur J Neurol 13:874–879PubMedCrossRefGoogle Scholar
  76. McPartland J, Di Marzo V, De Petrocellis L et al (2001) Cannabinoid receptors are absent in insects. J Comp Neurol 436:423–429PubMedCrossRefGoogle Scholar
  77. McPartland JM, Matias I, Di Marzo V, Glass M (2006) Evolutionary origins of the endocannabinoid system. Gene 370:64–74PubMedCrossRefGoogle Scholar
  78. Mery F, Varela SAM, Danchin E et al (2009) Public versus personal information for mate copying in an invertebrate. Curr Biol 19:730–734PubMedCrossRefGoogle Scholar
  79. Millar JK, Pikard BS, Mackie S et al (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310:1187–1191PubMedCrossRefGoogle Scholar
  80. Moore MS, DeZazzo J, Luk AY et al (1998) Ethanol intoxication in Drosophila: genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007PubMedCrossRefGoogle Scholar
  81. Morozova TV, Anholt RRH, Mackay TFC (2006) Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol 7:R95PubMedCrossRefGoogle Scholar
  82. Morozova TV, Anholt RRH, Mackay TFC (2007) Phenotypic and transcriptional response to selection for alcohol sensitivity in Drosophila melanogaster. Genome Biol 8:R231PubMedCrossRefGoogle Scholar
  83. Morozova TV, Ayroles JF, Jordan KW et al (2009) Alcohol sensitivity in Drosophila: Translational potential of systems genetics. Genetics 183:733–745PubMedCrossRefGoogle Scholar
  84. Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24PubMedCrossRefGoogle Scholar
  85. Nilsen SP, Chan YB, Huber R, Kravitz EA (2004) Gender-selective patterns of aggressive behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 101:12342–12347PubMedCrossRefGoogle Scholar
  86. O’Tuathaigh CMP, Desbonnet L, Moran PM, Kirby BP, Waddington JL (2011) Molecular genetic models related to schizophrenia and psychotic illness: heuristics and challenges. In: Current topics in behavioral neurosciences. Springer, Heidelberg. doi:  10.1007/7854_2010_111
  87. Olsen SR, Wilson RI (2008) Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 31:512–520PubMedCrossRefGoogle Scholar
  88. Parisky KM, Agosto J, Pulver SR et al (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60:672–682PubMedCrossRefGoogle Scholar
  89. Petersen CI, DeFelice LJ (1999) Ionic interactions in the Drosophila serotonin transporter identify it as a serotonin channel. Nat Neurosci 2:605–610PubMedCrossRefGoogle Scholar
  90. Reaper CM, Fanelli F, Buckingham SD et al (1998) Antagonist profile and molecular dynamic situation of a Drosophila melanogaster muscarinic acetylcholine receptor. Receptors Channels 5:331–345PubMedGoogle Scholar
  91. Reichert H (2005) A tripartite organization of the urbilaterian brain: developmental genetic evidence from Drosophila. Brain Res Bull 66:491–494PubMedCrossRefGoogle Scholar
  92. Rideout EJ, Dornan AJ, Neville MC et al (2010) Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat Neurosci 13:458–467PubMedCrossRefGoogle Scholar
  93. Riemensperger T, Völler T, Stock P et al (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15:1953–1960PubMedCrossRefGoogle Scholar
  94. Rival T, Soustelle L, Strambi C et al (2004) Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr Biol 14:599–605PubMedCrossRefGoogle Scholar
  95. Rodan AR, Kiger JA Jr, Heberlein U (2002) Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J Neurosci 22:9490–9501PubMedGoogle Scholar
  96. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477PubMedCrossRefGoogle Scholar
  97. Romero-Calderón R, Uhlenbrock G, Borycz J (2006) A glial variant of the monoamine transporter is required to store histamine in the Drosophila visual system. PLoS Genet 4:e1000245CrossRefGoogle Scholar
  98. Rose GM, Hopper A, De Vivo M, Tehim A (2005) Phosphodiesterase inhibitors for cognitive enhancement. Curr Pharm Des 11:3329–3334PubMedCrossRefGoogle Scholar
  99. Ross CA, Margolis RL, Reading SAJ et al (2006) Neurobiology of schizophrenia. Neuron 52:139–153PubMedCrossRefGoogle Scholar
  100. Rothenfluh A, Threlkeld RJ, Bainton RJ et al (2006) Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 127:199–211PubMedCrossRefGoogle Scholar
  101. Ryder PV, Faundez V (2009) Schizophrenia: the “BLOC” may be in the endosomes. Sci Signal 2(93):pe66Google Scholar
  102. Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Revs Neurosci 8:171–181CrossRefGoogle Scholar
  103. Schenk A, Bardoni B, Langmann C et al (2003) CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the Fragile X protein. Neuron 38:887–898CrossRefGoogle Scholar
  104. Scholz H, Ramond J, Singh CM, Heberlein U (2000) Functional ethanol tolerance in Drosophila. Neuron 28:261–271PubMedCrossRefGoogle Scholar
  105. Scholz H, Franz M, Heberlein U (2005) The hangover gene defines a stress pathway required for ethanol tolerance development. Nature 436:845–847PubMedCrossRefGoogle Scholar
  106. Schroll C, Riemensperger T, Bucher D et al (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol 16:1741–1747PubMedCrossRefGoogle Scholar
  107. Schwaerzel M, Monastirioti M, Scholz H et al (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502PubMedGoogle Scholar
  108. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837PubMedCrossRefGoogle Scholar
  109. Shayan AJ, Brodin L, Ottersen OP et al (2000) Neurotransmitter levels and synaptic strength at the Drosophila larval neuromuscular junction are not altered by mutation in the sluggish-A gene, which encodes proline oxidase and affect adult locomotion. J Neurogenet 14:165–192PubMedCrossRefGoogle Scholar
  110. Sheeba V, Fogle KJ, Kaneko M et al (2008) Large ventral lateral neurons modulate arousal and sleep in Drosophila. Curr Biol 18:1537–1545PubMedCrossRefGoogle Scholar
  111. Silva AJ, Kogan JH, Frankland PW, Kida S (1998) CREB and memory. Annu Rev Neurosci 21:127–148PubMedCrossRefGoogle Scholar
  112. Sinakevitch I, Grau Y, Strausfeld NJ, Birman S (2010) Dynamics of glutamatergic signaling in the mushroom body of young adult Drosophila. Neural Dev 5:10PubMedCrossRefGoogle Scholar
  113. Sitaraman D, Zars M, LaFerriere H et al (2008) Serotonin is necessary for place memory in Drosophila. Proc Natl Acad Sci USA 105:5579–5584PubMedCrossRefGoogle Scholar
  114. Sjulson L, Miesenböck G (2008) Photocontrol of neuronal activity: biophysical mechanisms and performance in vivo. Chem Rev 108:1588–1602PubMedCrossRefGoogle Scholar
  115. Stefansson H, Rujescu D, Cichon S et al (2008) Large recurrent microdeletions associated with schizophrenia. Nature 455:232–237PubMedCrossRefGoogle Scholar
  116. Stefansson H, Ophoff RA, Steinberg S et al (2009) Common variants conferring risk of schizophrenia. Nature 460:744–748PubMedGoogle Scholar
  117. Stork T, Thomas S, Rodriques F et al (2009) Drosophila neurexin IV stabilizes neuron-glia interactions at the CNS midline by binding to Wrapper. Development 136:1251–1261PubMedCrossRefGoogle Scholar
  118. Straub RE, Jiang Y, MacLean CJ et al (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71:337–348PubMedCrossRefGoogle Scholar
  119. Sweeney ST, Davis GW (2002) Unrestricted synaptic growth in spinster – a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36:403–416PubMedCrossRefGoogle Scholar
  120. Sweeney ST, Broadie K, Keane J et al (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351PubMedCrossRefGoogle Scholar
  121. Tanaka NK, Ito K, Stopfer M (2009) Odor-evoked neural oscillations in Drosophila are mediated by widely branching interneurons. J Neurosci 29:8595–8603PubMedCrossRefGoogle Scholar
  122. Tavaziole SF, Alvarez VA, Ridenour DA et al (2005) Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nat Neurosci 8:1727–1734CrossRefGoogle Scholar
  123. Tessmar-Raible C (2007) The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. Sem Cell Dev Biol 18:492–501CrossRefGoogle Scholar
  124. The International Schizophrenia Consortium (2008) Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455:237–241CrossRefGoogle Scholar
  125. The International Schizophrenia Consortium (2009) Common polygenic variation contributes to schizophrenia and bipolar disorder. Nature 460:748–752Google Scholar
  126. Tinette S, Zhang L, Robichon A (2004) Cooperation between Drosophila flies in searching behavior. Genes Brain Behav 3:39–50PubMedCrossRefGoogle Scholar
  127. Tsai LT-Y, Bainton RJ, Blau J, Heberlein U (2004) Lmo mutants reveal a novel role for circadian pacemaker neurons in cocaine-induced behaviors. PLoS Biol 2(12):e408PubMedCrossRefGoogle Scholar
  128. Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47PubMedCrossRefGoogle Scholar
  129. Urizar NL, Yang Z, Edenberg HJ, Davis RL (2007) Drosophila Homer is required in a small set of neurons including the ellipsoid body for normal ethanol sensitivity and tolerance. J Neurosci 27:4541–4551PubMedCrossRefGoogle Scholar
  130. Vargas MA, Luo N, Yamaguchi A, Kapahi P (2010) A role for S6 kinase and serotonin in postmating dietery switch and balance of nutrients in D. melanogaster. Curr Biol 20(11):1006–1011PubMedCrossRefGoogle Scholar
  131. Vosshall LB (2007) Into the mind of a fly. Nature 450:193–197PubMedCrossRefGoogle Scholar
  132. Walsh T, McClellan JM, McCarthy SE et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320:539–545PubMedCrossRefGoogle Scholar
  133. Wang X, Shaw WR, Tsang HTH et al (2007) Drosophila spichthyin inhibits BMP signaling and regulates synaptic growth and axonal microtubules. Nat Neurosci 10:177–185PubMedCrossRefGoogle Scholar
  134. Wang K, Zhang H, Ma D (2009a) Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459:528–532PubMedCrossRefGoogle Scholar
  135. Wang Y, Ghezzi A, Yin JC, Atkinson NS (2009b) CREB regulation of BK channel expression underlies rapid drug tolerance. Genes Brain Behav 8:369–376PubMedCrossRefGoogle Scholar
  136. Weiss LA, Arking DE, The Gene Discovery Project of Johns Hopkins and the Autism Consortium (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461:802–811Google Scholar
  137. Wen T, Parrish CA, Xu D et al (2005) Drosophila neuropeptide F and its receptor NPFR1 define a signaling pathway that acutely modulates alcohol sensitivity. Proc Natl Acad Sci USA 102:2141–2146PubMedCrossRefGoogle Scholar
  138. Wheeler SR, Banerjee S, Blauth K et al (2009) Neurexin IV and Wrapper interactions mediate Drosophila midline glial migration and axonal ensheathment. Development 136:1147–1157PubMedCrossRefGoogle Scholar
  139. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079PubMedCrossRefGoogle Scholar
  140. Wu MN, Ho K, Crocker A et al (2009) The effects of caffeine on sleep in Drosophila require PKA activity but not the adenosine receptor. J Neurosci 29:11029–11037PubMedCrossRefGoogle Scholar
  141. Wucherpfennig T, Wilsch-Bräuninger M, González-Gaitán M (2003) Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release. J Cell Biol 161:609–624Google Scholar
  142. Xu J, Li M, Shen P (2010) A G-protein-coupled neuropeptide Y-like receptor suppresses behavioral and sensory responses to multiple stressful responses in Drosophila. J Neurosci 30:2504–2512PubMedCrossRefGoogle Scholar
  143. Yuan Q, Joiner WJ, Sehgal A (2006) A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol 16:1051–1062PubMedCrossRefGoogle Scholar
  144. Yuan C, O’Connell RJ, Wilson A et al (2008) Acute alcohol tolerance is intrinsic to the BKCa protein, but is modulated by the lipid environment. J Biol Chem 283:5090–5098PubMedCrossRefGoogle Scholar
  145. Yurkovic A, Wang O, Basu AC, Kravitz EA (2006) Learning and memory associated with aggression in Drosophila melanogaster. Proc Natl Acad Sci USA 103:17519–17524PubMedCrossRefGoogle Scholar
  146. Zarnescu DC, Shan G, Warren ST, Jin P (2005) Come FLY with us: towards understanding fragile X syndrome. Genes Brain Behav 4:385–392PubMedCrossRefGoogle Scholar
  147. Zhang D, Kuromi H, Kidokoro Y (1999) Activation of metabotropic glutamate receptors enhances synaptic transmission at the Drosophila neuromuscular junction. Neuropharmacology 38:645–657PubMedCrossRefGoogle Scholar
  148. Zhou C, Rao Y, Rao Y (2008) A subset of octopaminergic neurons are important for Drosophila aggression. Nat Neurosci 11:1059–1067PubMedCrossRefGoogle Scholar
  149. Zlatic M, Li F, Strigini M, Grueber W, Bate M (2009) Positional cues in the Drosophila nerve cord: semaphorins pattern the dorsoventral axis. PLoS Biol 7(6):e1000135PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of GeneticsUniversity of CambridgeCambridgeUK

Personalised recommendations