Prefrontal Cortical Regulation of Drug Seeking in Animal Models of Drug Relapse

  • Heather C. Lasseter
  • Xiaohu Xie
  • Donna R. Ramirez
  • Rita A. FuchsEmail author
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 3)


Prefrontal cortical dysfunction is thought to underlie maladaptive behaviors displayed by chronic drug users, most notably the high propensity for relapse that severely impedes successful treatment of drug addiction. In animal models of drug relapse, exposure to drug-associated stimuli, small amounts of drug, and acute stressors powerfully reinstate drug seeking by critically engaging the prefrontal cortex, with the anterior cingulate, prelimbic, infralimbic, and orbitofrontal subregions making distinct contributions to drug seeking. Hence, from an addiction treatment perspective, it is necessary to fully explicate the involvement of the prefrontal cortex in drug relapse.


Anterior cingulate Drug seeking Extinction Infralimbic Orbitofrontal Prefrontal cortex Prelimbic Reinstatement 



Anterior cingulate cortex


Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid


Brain derived neurotrophic factor


Basolateral amygdala


Baclofen and muscimol


Bed nucleus of the stria terminalis


Central amygdaloid nucleus


Conditioned stimulus


Dorsal hippocampus


Dorsolateral caudate-putamen


Gamma-aminobutyric acid


Infralimbic cortex


Lateral tegmental nucleus


Nucleus accumbens


Core region of the nucleus accumbens


Shell region of the nucleus accumbens


Nucleus basalis of Mynert


Orbitofrontal cortex


Phospho-extracellular-related kinase


Prelimbic cortex


Regulator of G-protein signaling 4




Ventral hippocampus


Ventral pallidum


Ventral tegmental area


  1. Alvarez-Jaimes L, Polis I, Parsons LH (2008) Attenuation of cue-induced heroin-seeking behavior by cannabinoid CB1 antagonist infusions into the nucleus accumbens core and prefrontal cortex, but not basolateral amygdala. Neuropsychopharmacology 33(10):2483–2493CrossRefPubMedGoogle Scholar
  2. Bechara A, Damasio AR, Damasio H et al (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15CrossRefPubMedGoogle Scholar
  3. Berglind WJ, See RE, Fuchs RA et al (2007) A BDNF infusion into the medial prefrontal cortex suppresses cocaine seeking in rats. Eur J Neurosci 26(3):757–766CrossRefPubMedGoogle Scholar
  4. Bonson KR, Grant SJ, Contoreggi CS et al (2002) Neural systems and cue-induced cocaine craving. Neuropsychopharmacology 26:376–386CrossRefPubMedGoogle Scholar
  5. Breiter HC, Gollub RL, Weisskoff RM et al (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19(3):591–611CrossRefPubMedGoogle Scholar
  6. Capriles N, Rodaros D, Sorge RE et al (2003) A role for the prefrontal cortex in stress- and cocaine-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 169:66–74CrossRefGoogle Scholar
  7. Childress AR, Mozley PD, McElgin W et al (1999) Limbic activation during cue-elicited cocaine craving. Am J Psychiatry 156:11–18PubMedGoogle Scholar
  8. Ciccocioppo R, Sanna PP, Weiss F (2001) Cocaine-predictive stimulus induces drug-seeking and neural activation in limbic brain regions after multiple months of abstinence: reversal by D1 antagonists. Proc Natl Acad Sci USA 98(4):1976–1981CrossRefPubMedGoogle Scholar
  9. Crombag HS, Bossert JM, Koya E et al (2008) Context-induced relapse to drug seeking: a review. Philos Trans R Soc Lond B Biol Sci 363(1507):3233–3243Google Scholar
  10. Dayas CV, Liu X, Simms JA et al (2007) Distinct patterns of neural activation associated with ethanol seeking: effects of naltrexone. Biol Psychiatry 61(8):979–989CrossRefPubMedGoogle Scholar
  11. Ehrman RN, Robbins SJ, Childress AR et al (1992) Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology (Berl) 107(4):523–529CrossRefGoogle Scholar
  12. Erb S, Shaham Y, Stewart J (1996) Stress reinstatement cocaine-seeking after prolonged extinction and drug-free periods. Psychopharmacology (Berl) 128(4):408–412CrossRefGoogle Scholar
  13. Erb S, Hitchcott PK, Phil D et al (2000) Alpha-2 adrenergic receptor agonists block stress-induced reinstatement of cocaine seeking. Neuropsychopharmacology 23(2):138–150CrossRefPubMedGoogle Scholar
  14. Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154(2):261–274CrossRefPubMedGoogle Scholar
  15. Foltin RW, Haney M (2000) Conditioned effects of environmental stimuli paired with smoked cocaine in humans. Psychopharmacology (Berl) 149(1):24–33CrossRefGoogle Scholar
  16. Franklin TR, Druhan JP (2000) Expression of Fos-related antigens in the nucleus accumbens and associated regions following exposure to a cocaine-paired environment. Eur J Neurosci 12(6):2097–2106CrossRefPubMedGoogle Scholar
  17. Franklin TR, Acton PD, Maldjian JA et al (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry 51(2):134–142CrossRefPubMedGoogle Scholar
  18. Fuchs RA, Evans KA, Parker MC et al (2004a) Differential involvement of the core and shell subregions of the nucleus accumbens in conditioned cue-induced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 176(3–4):459–465CrossRefGoogle Scholar
  19. Fuchs RA, Evans KA, Parker MC et al (2004b) Differential involvement of the orbitofrontal cortex sub-regions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci 24(29):6600–6610CrossRefPubMedGoogle Scholar
  20. Fuchs RA, Evans KA, Ledford CC et al (2005) The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmocology 30:296–309CrossRefGoogle Scholar
  21. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26(13):3584–3588CrossRefPubMedGoogle Scholar
  22. Fuchs RA, Eaddy JL, Su Z et al (2007) Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Euro J Neurosci 26:487–498CrossRefGoogle Scholar
  23. Fuchs RA, Ramirez DR, Bell GH (2008) Nucleus accumbens shell and core involvement in drug context-induced reinstatement of cocaine-seeking in rats. Psychopharmacology (Berl) 200(4):545–556CrossRefGoogle Scholar
  24. Gallagher M, McMahan RW, Schoenbaum G (1999) Orbitofrontal cortex and representation of incentive value in associative learning. J Neurosci 19(15):6610–6614PubMedGoogle Scholar
  25. Garavan H, Pankiewicz J, Bloom A et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157:1789–1798CrossRefPubMedGoogle Scholar
  26. Grant S, London ED, Newlin DB et al (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045CrossRefPubMedGoogle Scholar
  27. Grimm JW, Hope BT, Wise RA et al (2001) Neuroadaptation. Incubation of cocaine craving after withdrawal. Nature 412(6843):141–142CrossRefPubMedGoogle Scholar
  28. Grimm JW, Shaham Y, Hope BT (2002) Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav Pharmacol 13:379–388PubMedGoogle Scholar
  29. Hamlin AS, Newby J, McNally GP (2007) The neural correlates and role of D1 dopamine receptors in renewal of extinguished alcohol-seeking. Neuroscience 146:525–536CrossRefPubMedGoogle Scholar
  30. Hamlin AS, Clemens KJ, McNally GP (2008) Renewal of extinguished cocaine-seeking. Neuroscience 151:659–670CrossRefPubMedGoogle Scholar
  31. Hearing MC, See RE, McGinty JF (2008) Relapse to cocaine-seeking increases activity-regulated gene expression in the striatum and cerebral cortex of rats following short or long periods of abstinence. Brain Struct funct 213:215–227CrossRefPubMedGoogle Scholar
  32. Hiranita T, Nawata Y, Sakimura K et al (2006) Suppression of methamphetamine-seeking by nicotinic agonists. Proc Natl Acad Sci USA 103(22):8523–8527CrossRefPubMedGoogle Scholar
  33. Jaffe JH, Cascella NG, Kumor KN et al (1989) Cocaine-induced cocaine craving. Psychopharmacology (Berl) 97(1):59–64CrossRefGoogle Scholar
  34. Kalivas PW, O’Brien C (2008) Drug addiction as a pathology of staged neuroplasticity. Neuropsychopharmacology 33(1):166–180CrossRefPubMedGoogle Scholar
  35. Koya E, Uejima JL, Wihbey KA et al (2008) Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology. doi: 10.1016/j.neuropharm.2008.04.022 PubMedGoogle Scholar
  36. Koya E, Spijker S, Voorn P et al (2006) Enhanced cortical and accumbal molecular reactivity associated with conditioned heroin, but not sucrose-seeking behaviour. J Neurochem 98(3):905–915Google Scholar
  37. LaLumiere RT, Kalivas PW (2008) Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 28(12):3170–3177CrossRefPubMedGoogle Scholar
  38. Lasseter HC, Ramirez DR, Xie X et al (2009) Involvement of the orbitofrontal cortex in contextinduced cocaine-seeking behaviors in rats. Eur J Neurosci. In pressGoogle Scholar
  39. London ED, Bonson KR, Ernst M et al (1999) Brain imaging studies of cocaine abuse: implications for medication development. Crit Rev Neurobiol 13(3):227–242PubMedGoogle Scholar
  40. Matochik JA, London ED, Eldreth DA et al (2003) Frontal cortical tissue composition in abstinent cocaine abusers: a magnetic resonance imaging study. Neuroimage 19(3):1095–1102CrossRefPubMedGoogle Scholar
  41. McFarland K, Kalivas PW (2001) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 21(21):8655–8663PubMedGoogle Scholar
  42. McFarland K, Lapish CC, Kalivas PW (2003) Prefrontal glutamate release into the core of the nucleus accumbens mediates cocaine-induced reinstatement of drug-seeking behavior. J Neurosci 23(8):3531–3537PubMedGoogle Scholar
  43. McFarland K, Davidge SB, Lapish CC et al (2004) Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J Neurosci 24(7):1551–1560CrossRefPubMedGoogle Scholar
  44. McLaughlin J, See RE (2003) Selective inactivation of the dorsomedial prefrontal cortex and the basolateral amygdala attenuates conditioned-cued reinstatement of extinguished cocaine-seeking in rats. Psychopharmacology (Berlin) 168(1–2):57–65CrossRefGoogle Scholar
  45. Neisewander JL, Baker DA, Fuchs RA et al (2000) Fos protein expression and cocaine-seeking in rats after exposure to a cocaine self-administration environment. J Neurosci 20(2):798–805PubMedGoogle Scholar
  46. Park KW, Bari AA, Jey AR et al (2002) Cocaine administered into the medial prefrontal cortex reinstates glutamate transmission in the nucleus accumbens. J Neurosci 22(7):2916–2925PubMedGoogle Scholar
  47. Peters J, LaLumiere RT, Kalivas PW (2008a) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053CrossRefPubMedGoogle Scholar
  48. Peters J, Vallone J, Laurendi K et al (2008b) Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology (Berl) 197(2):319–326CrossRefGoogle Scholar
  49. Rogers JL, Ghee S, See RE (2008) The neural circuitry underlying reinstatement of heroin-seeking behavior in an animal model of relapse. Neuroscience 151(2):579–588CrossRefPubMedGoogle Scholar
  50. Rohsenow DJ, Martin RA, Eaton CA et al (2007) Cocaine craving as a predictor of treatment attrition and outcomes after residential treatment for cocaine dependence. J Stud Alcohol Drugs 68(5):641–648PubMedGoogle Scholar
  51. Sanchez CJ, Bailie TM, Wu WR et al (2003) Manipulation of dopamine D1-like receptor activation in the rat medial prefrontal cortex alters stress- and cocaine-induced reinstatement of conditioned place preference behavior. Neuroscience 119:497–505CrossRefPubMedGoogle Scholar
  52. Schmidt ED, Voorn P, Binnekade R et al (2005a) Differential involvement of the prelimbic cortex and striatum in conditioned heroin and sucrose seeking following long-term extinction. Eur J Neurosci 22(9):2347–2356CrossRefPubMedGoogle Scholar
  53. Schmidt HD, Anderson SM, Famous KR et al (2005b) Anatomy and pharmacology of cocaine priming-induced reinstatement of drug seeking. Eur J Pharmacol 526(1–3):65–76CrossRefPubMedGoogle Scholar
  54. Schroeder BE, Kelley AE (2002) Conditioned Fos expression following morphine-paired contextual cue exposure is environment specific. Behav Neurosci 116(4):727–732CrossRefPubMedGoogle Scholar
  55. Schroeder BE, Holahan MR, Landry CF et al (2000) Morphine-associated environmental cues elicit conditioned gene expression. Synapse 37(2):146–158CrossRefPubMedGoogle Scholar
  56. Schroeder BE, Binzak JM, Kelley AE (2001) A common profile of prefrontal cortical activation following exposure to nicotine- or chocolate-associated contextual cues. Neuroscience 105(3):535–545CrossRefPubMedGoogle Scholar
  57. Schwendt M, Hearing MC, See RE et al (2007) Chronic cocaine reduces RGS4 mRNA in rat prefrontal cortex and dorsal striatum. Neuroreport 18(12):1261–1265CrossRefPubMedGoogle Scholar
  58. Self DW, Nestler EJ (1998) Relapse to drug-seeking: neural and molecular mechanisms. Drug Alcohol Depend 1(1–2):49–60CrossRefGoogle Scholar
  59. Self DW, Choi KH, Simmons D (2004) Extinction training regulates neuroadaptive responses to withdrawal from chronic cocaine self-administration. Learn Mem 11(5):648–657CrossRefPubMedGoogle Scholar
  60. Sesack SR, Deuth AY, Roth RH et al (1989) Topographic organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoaglutinin. J Comp Neurol 290:213–242CrossRefPubMedGoogle Scholar
  61. Shaham Y, Stewart J (1995) Stress reinstates heroin self-administration behavior in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology 119:334–341CrossRefPubMedGoogle Scholar
  62. Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Rev 33:13–33CrossRefPubMedGoogle Scholar
  63. Shaham Y, Shalev U, Lu L (2003) The reinstatement model of drug relapse: history, methodology, and major findings. Psychopharmacology (Berl) 168(1–2):3–20CrossRefGoogle Scholar
  64. Shalev U, Robarts P, Shaham Y et al (2003) Selective induction of c-Fos immunoreactivity in the prelimbic cortex during reinstatement of heroin seeking induced by acute food deprivation in rats. Behav Brain Res 145(1–2):79–88CrossRefPubMedGoogle Scholar
  65. Sinha R, Li CS (2007) Imaging stress- and cue-induced drug and alcohol craving: association with relapse and clinical implications. Drug Alcohol Rev 26(1):25–31CrossRefPubMedGoogle Scholar
  66. Sinha R, Catapano D, O’Mally S (1999) Stress-induced craving and stress responses in cocaine dependent individuals. Psychopharmacology 142:343–351CrossRefPubMedGoogle Scholar
  67. Sinha R, Lacadie C, Skudlarski P et al (2005) Neural activity associated with stress-induced cocaine craving: a functional magnetic resonance imaging study. Psychopharmacology (Berl) 183(2):171–180CrossRefGoogle Scholar
  68. Sun W, Rebec GV (2005) The role of prefrontal cortex D1-like and D2-like receptors in cocaine-seeking in rats. Psychopharmacology 177:315–323CrossRefPubMedGoogle Scholar
  69. Thomas MJ, Kalivas PW, Shaham Y (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154(2):327–342CrossRefPubMedGoogle Scholar
  70. Tran-Nguyen LT, Fuchs RA, Coffey GP (1988) Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala during cocaine withdrawal. Neuropsychopharmacology 19(1):48–59CrossRefGoogle Scholar
  71. Uylings HB, van Eden CG (1990) Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85:31–62CrossRefPubMedGoogle Scholar
  72. Van den Oever MC, Goriounova NA, Wan Li K et al (2008) Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking. Nat Neurosci [Epub ahead of print]Google Scholar
  73. Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10(3):318–325CrossRefPubMedGoogle Scholar
  74. Volkow ND, Fowler JS, Wang GJ, Goldstein RZ (2002) Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem 78(3):610–624CrossRefPubMedGoogle Scholar
  75. Zavala AR, Weber SM, Rice HJ et al (2003) Role of the prelimbic subregion of the medial prefrontal cortex in acquisition, extinction, and reinstatement of cocaine-conditioned place preference. Brain Res 990:157–164CrossRefPubMedGoogle Scholar
  76. Zavala AR, Biswas S, Harlan RE et al (2007) Fos and Glutamate AMPA receptor subunit coexpression associated with cue-elicited cocaine-seeking in abstinent rats. Neuroscience 145:438–452CrossRefPubMedGoogle Scholar
  77. Zavala AR, Osredkar T, Joyce JN et al (2008a) Upregulation of the Arc expression in the prefrontal cortex following cue-induced reinstatement of extinguished cocaine-seeking. Synapse 62:421–431CrossRefPubMedGoogle Scholar
  78. Zavala AR, Browning JR, Dickey ED et al (2008b) Region-specific involvement of AMPA/Kainate receptors in Fos protein expression induced by cocaine-conditioned cues. Eur J Neurosci 18:600–611Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Heather C. Lasseter
    • 1
  • Xiaohu Xie
    • 1
  • Donna R. Ramirez
    • 1
  • Rita A. Fuchs
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations