Stress and the Neuroendocrinology of Anxiety Disorders

  • Pêgo J. M 
  • Sousa J. C 
  • Almeida OFX 
  • Sousa N 
Part of the Current Topics in Behavioral Neurosciences book series (CTBN, volume 2)


Stress is a risk factor for depressive and anxiety disorders. Changes in lifestyle patterns that are associated with increased stress therefore place a greater burden on mental health. Stress challenges the organism’s homeostatic mechanisms, triggering a cascade of events that should, normally, maintain or allow a return to equilibrium. Stressful events are perceived by sensory systems in the brain, facilitating evaluation and comparison of the existing and previous stimuli as well as the activation of hormones responsible for energy mobilization. The limbic system coordinates the release of corticosteroids, the primary stress hormones, by modulating activation of the hypothalamic paraventricular nucleus (PVN). The amygdala, a limbic structure related to emotional behavior, has a putative role in the evaluation of emotional events and formation of fearful memories; it is also a target of the neurochemical and hormonal mediators of stress. Clinical and experimental data have correlated changes in the structure/function of the amygdala with emotional disorders such as anxiety. In this chapter we review the neuroendocrinology of the stress response, focusing on the role of the limbic system in its establishment and supplementing that information with new experimental data that demonstrates the relationship between stress and anxiety disorders; we also discuss the structural changes that occur in the amygdala after stress.


Anxiety Bed Nucleus of the Stria Terminalis Rat Stress Animal Models Amygdala Corticosteroids 


  1. Abercrombie ED, Jacobs BL (1987) Single-unit response of noradrenergic neurons in the locus coeruleus of freely moving cats. I. Acutely presented stressful and nonstressful stimuli. J Neurosci 7(9):2837–2843PubMedGoogle Scholar
  2. Akirav I, Maroun M (2007) The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 30873Google Scholar
  3. Alheid GF (2003) Extended amygdala and basal forebrain. Ann N Y Acad Sci 985:185–205PubMedCrossRefGoogle Scholar
  4. Alheid GF, Heimer L (1988) New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27(1):1–39PubMedCrossRefGoogle Scholar
  5. Alonso J, Lepine JP (2007) Overview of key data from the European Study of the Epidemiology of Mental Disorders (ESEMeD). J Clin Psychiatry 68(Suppl 2):3–9PubMedGoogle Scholar
  6. American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders (DSM-IV), 4th edn. American Psychiatric Association, Washington, DCGoogle Scholar
  7. Anisman H, Matheson K (2005) Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 29(4–5):525–546PubMedCrossRefGoogle Scholar
  8. Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB (1999) The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160(1):1–12PubMedCrossRefGoogle Scholar
  9. Baker DG, West SA, Nicholson WE, Ekhator NN, Kasckow JW, Hill KK, Bruce AB, Orth DN, Geracioti TD Jr (1999) Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am.J.Psychiatry 156:585–588PubMedGoogle Scholar
  10. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE et al (2000) Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 24(4):410–414PubMedCrossRefGoogle Scholar
  11. Bekker MH, van Mens-Verhulst J (2007) Anxiety disorders: sex differences in prevalence, degree, and background, but gender-neutral treatment. Gend Med 4(Suppl B):S178–S193PubMedCrossRefGoogle Scholar
  12. Bessa JM, Oliveira M, Cerqueira JJ, Almeida OF, Sousa N (2005) Age-related qualitative shift in emotional behaviour: paradoxical findings after re-exposure of rats in the elevated-plus maze. Behav Brain Res 162(1):135–142PubMedCrossRefGoogle Scholar
  13. Bishop SJ (2007) Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn Sci 11(7):307–316PubMedCrossRefGoogle Scholar
  14. Bourin M, Petit-Demouliere B, Dhonnchadha BN, Hascoet M (2007) Animal models of anxiety in mice. Fundam Clin Pharmacol 21(6):567–574PubMedCrossRefGoogle Scholar
  15. Boyle MP, Kolber BJ, Vogt SK, Wozniak DF, Muglia LJ (2006) Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness. J Neurosci 26(7):1971–1978PubMedCrossRefGoogle Scholar
  16. Bremner JD, Licinio J, Darnell A, Krystal JH, Owens MJ, Southwick SM, Nemeroff CB, Charney DS (1997) Elevated CSF corticotropin-releasing factor concentrations in posttraumatic stress disorder. Am J Psychiatry 154:624–629PubMedGoogle Scholar
  17. Brown JS, Kalish HI, Farber IE (1951) Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. J Exp Psychol 41(5):317–328PubMedCrossRefGoogle Scholar
  18. Bucy PC, Kluver H (1955) An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J Comp Neurol 103(2):151–251PubMedCrossRefGoogle Scholar
  19. Burdach K (1819–1822) Vom baue und leben des gehirns und röckenmarks, Dyk, LeipzigGoogle Scholar
  20. Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324(2):180–194PubMedCrossRefGoogle Scholar
  21. Carpenter LL, Carvalho JP, Tyrka AR, Wier LM, Mello AF, Mello MF, Anderson GM, Wilkinson CW, Price LH (2007) Decreased adrenocorticotropic hormone and cortisol responses to stress in healthy adults reporting significant childhood maltreatment. Biol Psychiatry 62(10):1080–1087PubMedCrossRefGoogle Scholar
  22. Cerqueira JJ, Catania C, Sotiropoulos I, Schubert M, Kalisch R, Almeida OF et al (2005a) Corticosteroid status influences the volume of the rat cingulate cortex - a magnetic resonance imaging study. J Psychiatr Res 39(5):451–460PubMedCrossRefGoogle Scholar
  23. Cerqueira JJ, Pego JM, Taipa R, Bessa JM, Almeida OF, Sousa N (2005b) Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. J Neurosci 25(34):7792–7800PubMedCrossRefGoogle Scholar
  24. Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007a) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27(11):2781–2787PubMedCrossRefGoogle Scholar
  25. Cerqueira JJ, Taipa R, Uylings HB, Almeida OF, Sousa N (2007b) Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. Cereb Cortex 17(9):1998–2006PubMedCrossRefGoogle Scholar
  26. Cerqueira JJ, Almeida OF, Sousa N (2008) The stressed prefrontal cortex. Left? Right!. Brain Behav Immun 22(5):630–638PubMedCrossRefGoogle Scholar
  27. Chalmers DT, Lovenberg TW, De Souza EB (1995) Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 15(10):6340–6350PubMedGoogle Scholar
  28. Chan RK, Brown ER, Ericsson A, Kovacs KJ, Sawchenko PE (1993) A comparison of two immediate-early genes, c-fos and NGFI-B, as markers for functional activation in stress-related neuroendocrine circuitry. J Neurosci 13(12):5126–5138PubMedGoogle Scholar
  29. Charney DS, Deutch AY, Krystal JH, Southwick SW, Davis M (1993) Psychobiologic mechanisms of posttraumatic stress disorder. Arch Gen Psychiatry 50(4):295–305PubMedCrossRefGoogle Scholar
  30. Chen R, Lewis KA, Perrin MH, Vale WW (1993) Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci USA 90(19):8967–8971PubMedCrossRefGoogle Scholar
  31. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP (2007) Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J Neurosci 27(8):2025–2034PubMedCrossRefGoogle Scholar
  32. Chrousos GP, Kino T (2007) Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress 10(2):213–219PubMedCrossRefGoogle Scholar
  33. Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22(3):959–969PubMedGoogle Scholar
  34. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH et al (2000) Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 24(4):403–409PubMedCrossRefGoogle Scholar
  35. Cullinan WE, Herman JP, Watson SJ (1993) Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332(1):1–20PubMedCrossRefGoogle Scholar
  36. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2):477–505PubMedCrossRefGoogle Scholar
  37. Dagnino-Subiabre A, Terreros G, Carmona-Fontaine C, Zepeda R, Orellana JA, Diaz-Veliz G et al (2005) Chronic stress impairs acoustic conditioning more than visual conditioning in rats: morphological and behavioural evidence. Neuroscience 135(4):1067–1074PubMedCrossRefGoogle Scholar
  38. Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23(2):71–77PubMedCrossRefGoogle Scholar
  39. Davies DC, Martinez-Garcia F, Lanuza E, Novejarque A (2002) Striato-amygdaloid transition area lesions reduce the duration of tonic immobility in the lizard Podarcis hispanica. Brain Res Bull 57(3–4):537–541PubMedCrossRefGoogle Scholar
  40. Davis M (1986) Pharmacological and anatomical analysis of fear conditioning using the fear-potentiated startle paradigm. Behav Neurosci 100(6):814–824PubMedCrossRefGoogle Scholar
  41. Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375PubMedCrossRefGoogle Scholar
  42. Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44(12):1239–1247PubMedCrossRefGoogle Scholar
  43. Davis M (2006) Neural systems involved in fear and anxiety measured with fear-potentiated startle. Am Psychol 61(8):741–756PubMedCrossRefGoogle Scholar
  44. Davis M, Walker DL, Lee Y (1997) Amygdala and bed nucleus of the stria terminalis: differential roles in fear and anxiety measured with the acoustic startle reflex. Philos Trans R Soc Lond B Biol Sci 352(1362):1675–1687PubMedCrossRefGoogle Scholar
  45. de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6(6):463–475PubMedCrossRefGoogle Scholar
  46. De Olmos JS, Beltramino CA, Alheid G (2004) Amygdala and extended amygdala of the rat: a cytoarchitectonical, fibroarchitectonical and chemoarchitectonical survey. In: Paxinos G (ed) The rat nervous system, 3rd edn. Elsevier, AmsterdamGoogle Scholar
  47. Dong HW, Swanson LW (2004) Organization of axonal projections from the anterolateral area of the bed nuclei of the stria terminalis. J Comp Neurol 468(2):277–298PubMedCrossRefGoogle Scholar
  48. Dong HW, Swanson LW (2006a) Projections from bed nuclei of the stria terminalis, anteromedial area: cerebral hemisphere integration of neuroendocrine, autonomic, and behavioral aspects of energy balance. J Comp Neurol 494(1):142–178PubMedCrossRefGoogle Scholar
  49. Dong HW, Swanson LW (2006b) Projections from bed nuclei of the stria terminalis, dorsomedial nucleus: implications for cerebral hemisphere integration of neuroendocrine, autonomic, and drinking responses. J Comp Neurol 494(1):75–107PubMedCrossRefGoogle Scholar
  50. Dong HW, Swanson LW (2006c) Projections from bed nuclei of the stria terminalis, magnocellular nucleus: implications for cerebral hemisphere regulation of micturition, defecation, and penile erection. J Comp Neurol 494(1):108–141PubMedCrossRefGoogle Scholar
  51. Dong HW, Petrovich GD, Swanson LW (2001) Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res Brain Res Rev 38(1–2):192–246PubMedCrossRefGoogle Scholar
  52. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59(12):1136–1143PubMedCrossRefGoogle Scholar
  53. Dunn JD (1987) Plasma corticosterone responses to electrical stimulation of the bed nucleus of the stria terminalis. Brain Res 407(2):327–331PubMedCrossRefGoogle Scholar
  54. Dunn AJ, File SE (1987) Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Horm Behav 21(2):193–202PubMedCrossRefGoogle Scholar
  55. Duvarci S, Pare D (2007) Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J Neurosci 27(16):4482–4491PubMedCrossRefGoogle Scholar
  56. Eisenberg M, Dudai Y (2004) Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don’t die. Eur J Neurosci 20(12):3397–3403PubMedCrossRefGoogle Scholar
  57. Espejo EP, Hammen CL, Connolly NP, Brennan PA, Najman JM, Bor W (2007) Stress sensitization and adolescent depressive severity as a function of childhood adversity: a link to anxiety disorders. J Abnorm Child Psychol 35(2):287–299PubMedCrossRefGoogle Scholar
  58. Feldman S, Conforti N, Melamed E (1987) Paraventricular nucleus serotonin mediates neurally stimulated adrenocortical secretion. Brain Res Bull 18(2):165–168PubMedCrossRefGoogle Scholar
  59. Figueiredo HF, Bodie BL, Tauchi M, Dolgas CM, Herman JP (2003) Stress integration after acute and chronic predator stress: differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144(12):5249–5258PubMedCrossRefGoogle Scholar
  60. File SE (1996) Recent developments in anxiety, stress, and depression. Pharmacol Biochem Behav 54(1):3–12PubMedCrossRefGoogle Scholar
  61. File SE, Johnston AL, Baldwin HA (1988) Anxiolytic and anxiogenic drugs: changes in behaviour and endocrine responses. Stress Med 4(4):221–230CrossRefGoogle Scholar
  62. Fuchs E, Fliugge G (2006) Experimental animal models for the simulation of depression and anxiety. Dialogues Clin Neurosci 8(3):323–333PubMedGoogle Scholar
  63. Gann DS, Ward DG, Baertschi AJ, Carlson DE, Maran JW (1977) Neural control of ACTH release in response to hemorrhage. Ann N Y Acad Sci 297:477–497PubMedCrossRefGoogle Scholar
  64. Gewirtz JC, McNish KA, Davis M (1998) Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fear-potentiated startle. Prog Neuropsychopharmacol Biol Psychiatry 22(4):625–648PubMedCrossRefGoogle Scholar
  65. Gliner JA (1972) Predictable vs. unpredictable shock: preference behavior and stomach ulceration. Physiol Behav 9(5):693–698PubMedCrossRefGoogle Scholar
  66. Goddard GV (1964) Functions of the amygdala. Psychol Bull 62:89–109PubMedCrossRefGoogle Scholar
  67. Greaves-Lord K, Ferdinand RF, Oldehinkel AJ, Sondeijker FE, Ormel J, Verhulst FC (2007) Higher cortisol awakening response in young adolescents with persistent anxiety problems. Acta Psychiatr Scand 116(2):137–144PubMedCrossRefGoogle Scholar
  68. Gum AM, Cheavens JS (2008) Psychiatric comorbidity and depression in older adults. Curr Psychiatry Rep 10(1):23–29PubMedCrossRefGoogle Scholar
  69. Heinrichs SC, Koob GF (2004) Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 311(2):427–440PubMedCrossRefGoogle Scholar
  70. Heinrichs SC, Lapsansky J, Lovenberg TW, De Souza EB, Chalmers DT (1997) Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul Pept 71(1):15–21PubMedCrossRefGoogle Scholar
  71. Hammen C (2005) Stress and Depression. Annu Rev Clin Psychol 1:293–319Google Scholar
  72. Herman JP, Cullinan WE, Watson SJ (1994) Involvement of the bed nucleus of the stria terminalis in tonic regulation of paraventricular hypothalamic CRH and AVP mRNA expression. J Neuroendocrinol 6(4):433–442PubMedCrossRefGoogle Scholar
  73. Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84Google Scholar
  74. Herman JP, Figueiredo H, Mueller NK, Ulrich-Lai Y, Ostrander MM, Choi DC et al (2003) Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness. Front Neuroendocrinol 24(3):151–180PubMedCrossRefGoogle Scholar
  75. Herman JP, Ostrander MM, Mueller NK, Figueiredo H (2005) Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 29(8):1201–1213PubMedCrossRefGoogle Scholar
  76. Hermann B, Landgraf R, Keck ME, Wigger A, Morrow AL, Strohle A (2000) Pharmacological characterisation of cortical gamma-aminobutyric acid type A (GABAA) receptors in two Wistar rat lines selectively bred for high and low anxiety-related behaviour. World J Biol Psychiatry 1(3):137–143PubMedCrossRefGoogle Scholar
  77. Hettema JM, Neale MC, Kendler KS (2001) A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 158(10):1568–1578PubMedCrossRefGoogle Scholar
  78. Hettema JM, Prescott CA, Myers JM, Neale MC, Kendler KS (2005) The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch Gen Psychiatry 62(2):182–189PubMedCrossRefGoogle Scholar
  79. Imhof JT, Coelho ZM, Schmitt ML, Morato GS, Carobrez AP (1993) Influence of gender and age on performance of rats in the elevated plus maze apparatus. Behav Brain Res 56(2):177–180PubMedCrossRefGoogle Scholar
  80. Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35(5):337–481CrossRefGoogle Scholar
  81. Ju G, Swanson LW (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: I. Cytoarchitecture. J Comp Neurol 280(4):587–602PubMedCrossRefGoogle Scholar
  82. Ju G, Swanson LW, Simerly RB (1989) Studies on the cellular architecture of the bed nuclei of the stria terminalis in the rat: II. Chemoarchitecture. J Comp Neurol 280(4):603–621PubMedCrossRefGoogle Scholar
  83. Keck ME, Sartori SB, Welt T, Muller MB, Ohl F, Holsboer F et al (2005) Differences in serotonergic neurotransmission between rats displaying high or low anxiety/depression-like behaviour: effects of chronic paroxetine treatment. J Neurochem 92(5):1170–1179PubMedCrossRefGoogle Scholar
  84. Kessler MS, Murgatroyd C, Bunck M, Czibere L, Frank E, Jacob W et al (2007a) Diabetes insipidus and, partially, low anxiety-related behaviour are linked to a SNP-associated vasopressin deficit in LAB mice. Eur J Neurosci 26(10):2857–2864PubMedCrossRefGoogle Scholar
  85. Kessler RC, Amminger GP, Aguilar-Gaxiola S, Alonso J, Lee S, Ustun TB (2007b) Age of onset of mental disorders: a review of recent literature. Curr Opin Psychiatry 20(4):359–364PubMedCrossRefGoogle Scholar
  86. Koch M (1999) The neurobiology of startle. Prog Neurobiol 59(2):107–128PubMedCrossRefGoogle Scholar
  87. Lancel M, Muller-Preuss P, Wigger A, Landgraf R, Holsboer F (2002) The CRH1 receptor antagonist R121919 attenuates stress-elicited sleep disturbances in rats, particularly in those with high innate anxiety. J Psychiatr Res 36(4):197–208PubMedCrossRefGoogle Scholar
  88. Lau SH, Rivier J, Vale W, Kaiser ET, Kezdy FJ (1983) Surface properties of an amphiphilic peptide hormone and of its analog: corticotropin-releasing factor and sauvagine. Proc Natl Acad Sci USA 80(23):7070–7074PubMedCrossRefGoogle Scholar
  89. LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  90. LeDoux J (2007) The amygdala. Curr Biol 17(20):R868–R874PubMedCrossRefGoogle Scholar
  91. Lee Y, Davis M (1997a) Role of the hippocampus, the bed nucleus of the stria terminalis, and the amygdala in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6434–6446PubMedGoogle Scholar
  92. Lee Y, Davis M (1997b) Role of the septum in the excitatory effect of corticotropin-releasing hormone on the acoustic startle reflex. J Neurosci 17(16):6424–6433PubMedGoogle Scholar
  93. Lee Y, Schulkin J, Davis M (1994) Effect of corticosterone on the enhancement of the acoustic startle reflex by corticotropin releasing factor (CRF). Brain Res 666(1):93–98PubMedCrossRefGoogle Scholar
  94. Lenze EJ, Wetherell JL (2009) Bringing the bedside to the bench, and then to the community: a prospectus for intervention research in late-life anxiety disorders. Int J Geriatr Psychiatry 24(1):1–14PubMedCrossRefGoogle Scholar
  95. Liberzon I, Lopez JF, Flagel SB, Vazquez DM, Young EA (1999) Differential regulation of hippocampal glucocorticoid receptors mRNA and fast feedback: relevance to post-traumatic stress disorder. J Neuroendocrinol 11(1):11–17PubMedCrossRefGoogle Scholar
  96. Liebsch G, Landgraf R, Gerstberger R, Probst JC, Wotjak CT, Engelmann M et al (1995) Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul Pept 59(2):229–239PubMedCrossRefGoogle Scholar
  97. Liebsch G, Linthorst AC, Neumann ID, Reul JM, Holsboer F, Landgraf R (1998a) Behavioral, physiological, and neuroendocrine stress responses and differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- and low-anxiety-related behavior. Neuropsychopharmacology 19(5):381–396PubMedCrossRefGoogle Scholar
  98. Liebsch G, Montkowski A, Holsboer F, Landgraf R (1998b) Behavioural profiles of two Wistar rat lines selectively bred for high or low anxiety-related behaviour. Behav Brain Res 94(2):301–310PubMedCrossRefGoogle Scholar
  99. Liebsch G, Landgraf R, Engelmann M, Lorscher P, Holsboer F (1999) Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J Psychiatr Res 33(2):153–163PubMedCrossRefGoogle Scholar
  100. Lister RG (1990) Ethologically-based animal models of anxiety disorders. Pharmacol Ther 46(3):321–340PubMedCrossRefGoogle Scholar
  101. Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W, Chalmers DT, De Souza EB et al (1995) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci USA 92(3):836–840PubMedCrossRefGoogle Scholar
  102. Maier SF, Amat J, Baratta MV, Paul E, Watkins LR (2006) Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci 8(4):397–406PubMedGoogle Scholar
  103. Mathew SJ, Price RB, Charney DS (2008) Recent advances in the neurobiology of anxiety disorders: implications for novel therapeutics. Am J Med Genet C Semin Med Genet 148(2):89–98Google Scholar
  104. Mayer EA, Fanselow MS (2003) Dissecting the components of the central response to stress. Nat Neurosci 6(10):1011–1012PubMedCrossRefGoogle Scholar
  105. McEwen BS (2003) Mood disorders and allostatic load. Biol Psychiatry 54(3):200–207PubMedCrossRefGoogle Scholar
  106. McEwen BS (2004) Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci 1032:1–7PubMedCrossRefGoogle Scholar
  107. McEwen BS (2005) Glucocorticoids, depression, and mood disorders: structural remodeling in the brain. Metabolism 54(5 Suppl 1):20–23PubMedCrossRefGoogle Scholar
  108. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904PubMedCrossRefGoogle Scholar
  109. McLaughlin KJ, Gomez JL, Baran SE, Conrad CD (2007) The effects of chronic stress on hippocampal morphology and function: an evaluation of chronic restraint paradigms. Brain Res 1161:56–64PubMedCrossRefGoogle Scholar
  110. Merikangas KR, Kalaydjian A (2007) Magnitude and impact of comorbidity of mental disorders from epidemiologic surveys. Curr Opin Psychiatry 20(4):353–358PubMedCrossRefGoogle Scholar
  111. Mesquita AR, Pego JM, Summavielle T, Maciel P, Almeida OF, Sousa N (2007) Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147(4):1022–1033PubMedCrossRefGoogle Scholar
  112. Miracle AD, Brace MF, Huyck KD, Singler SA, Wellman CL (2006) Chronic stress impairs recall of extinction of conditioned fear. Neurobiol Learn Mem 85(3):213–218PubMedCrossRefGoogle Scholar
  113. Mitev YA, Darwish M, Wolf SS, Holsboer F, Almeida OF, Patchev VK (2003) Gender differences in the regulation of 3 alpha-hydroxysteroid dehydrogenase in rat brain and sensitivity to neurosteroid-mediated stress protection. Neuroscience 120(2):541–549PubMedCrossRefGoogle Scholar
  114. Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102(26):9371–9376PubMedCrossRefGoogle Scholar
  115. Mizoguchi K, Ishige A, Aburada M, Tabira T (2003) Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119(3):887–897PubMedCrossRefGoogle Scholar
  116. Moffitt TE, Caspi A, Harrington H, Milne BJ, Melchior M, Goldberg D, Poulton R (2007) Generalized anxiety disorder and depression: childhood risk factors in a birth cohort followed to age 32. Psychol Med 37(3):441–452PubMedCrossRefGoogle Scholar
  117. Moussavi S, Chatterji S, Verdes E, Tandon A, Patel V, Ustun B (2007) Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet 370(9590):851–858PubMedCrossRefGoogle Scholar
  118. Musselman DL, Nemeroff CB (2000) Depression really does hurt your heart: stress, depression, and cardiovascular disease. Prog Brain Res 122:43–59PubMedCrossRefGoogle Scholar
  119. Nakamori T, Morimoto A, Murakami N (1993) Effect of a central CRF antagonist on cardiovascular and thermoregulatory responses induced by stress or IL-1 beta. Am J Physiol 265(4 Pt 2):R834–R839PubMedGoogle Scholar
  120. Neumann ID, Wigger A, Liebsch G, Holsboer F, Landgraf R (1998) Increased basal activity of the hypothalamo-pituitary-adrenal axis during pregnancy in rats bred for high anxiety-related behaviour. Psychoneuroendocrinology 23(5):449–463PubMedCrossRefGoogle Scholar
  121. Pêgo JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OF, Sousa N (2008) Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur J Neurosci 27(6):1503–1516PubMedCrossRefGoogle Scholar
  122. Pêgo JM, Morgado P, Cerqueira JJ, Almeida OF, Sousa N (2006) Mismatch between anxiety status and morphometric parameters in the amygdala and bed nucleus of the stria terminalis. Behav Brain Res 173(2):320–325PubMedCrossRefGoogle Scholar
  123. Petrovich GD, Canteras NS, Swanson LW (2001) Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res Brain Res Rev 38(1–2):247–289PubMedCrossRefGoogle Scholar
  124. Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285PubMedCrossRefGoogle Scholar
  125. Portavella M, Torres B, Salas C, Papini MR (2004) Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362(2):75–78PubMedCrossRefGoogle Scholar
  126. Prewitt CM, Herman JP (1998) Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. J Chem Neuroanat 15(3):173–185PubMedCrossRefGoogle Scholar
  127. Radulovic J, Ruhmann A, Liepold T, Spiess J (1999) Modulation of learning and anxiety by corticotropin-releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J Neurosci 19(12):5016–5025PubMedGoogle Scholar
  128. Reul JM, de Kloet ER (1985) Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117(6):2505–2511PubMedCrossRefGoogle Scholar
  129. Reul JM, de Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24(1):269–272PubMedCrossRefGoogle Scholar
  130. Reul JM, Holsboer F (2002) Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr Opin Pharmacol 2(1):23–33PubMedCrossRefGoogle Scholar
  131. Risbrough VB, Stein MB (2006) Role of corticotropin releasing factor in anxiety disorders: a translational research perspective. Horm Behav 50(4):550–561PubMedCrossRefGoogle Scholar
  132. Robinson E (1963) Effect of Amygdalectomy on Fear-Motivated Behavior in Rats. J Comp Physiol Psychol 56:814–820PubMedCrossRefGoogle Scholar
  133. Rosen JB, Fanselow MS, Young SL, Sitcoske M, Maren S (1998) Immediate-early gene expression in the amygdala following footshock stress and contextual fear conditioning. Brain Res 796(1–2):132–142PubMedCrossRefGoogle Scholar
  134. Rubinow MJ, Drogos LL, Juraska JM (2007) Age-related dendritic hypertrophy and sexual dimorphism in rat basolateral amygdala. Neurobiol Aging 30(1):137–146PubMedCrossRefGoogle Scholar
  135. Sapolsky RM (1999) Glucocorticoids, stress, and their adverse neurological effects: relevance to aging. Exp Gerontol 34(6):721–732PubMedCrossRefGoogle Scholar
  136. Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57(10):925–935PubMedCrossRefGoogle Scholar
  137. Sapolsky RM, Krey LC, McEwen BS (1986) The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev 7(3):284–301PubMedCrossRefGoogle Scholar
  138. Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21(1):55–89PubMedCrossRefGoogle Scholar
  139. Sawchenko PE, Swanson LW, Steinbusch HW, Verhofstad AA (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277(2):355–360PubMedCrossRefGoogle Scholar
  140. Shekhar A, McCann UD, Meaney MJ, Blanchard DC, Davis M, Frey KA et al (2001) Summary of a National Institute of Mental Health workshop: developing animal models of anxiety disorders. Psychopharmacology (Berl) 157(4):327–339CrossRefGoogle Scholar
  141. Shelton RC (2007) The molecular neurobiology of depression. Psychiatr Clin North Am 30(1):1–11PubMedCrossRefGoogle Scholar
  142. Sibille E, Pavlides C, Benke D, Toth M (2000) Genetic inactivation of the Serotonin(1A) receptor in mice results in downregulation of major GABA(A) receptor alpha subunits, reduction of GABA(A) receptor binding, and benzodiazepine-resistant anxiety. J Neurosci 20(8):2758–2765PubMedGoogle Scholar
  143. Skorzewska A, Bidzinski A, Lehner M, Turzynska D, Wislowska-Stanek A, Sobolewska A et al (2006) The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures. Pharmacol Biochem Behav 85(3):522–534PubMedCrossRefGoogle Scholar
  144. Skutella T, Probst JC, Renner U, Holsboer F, Behl C (1998) Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85(3):795–805PubMedCrossRefGoogle Scholar
  145. Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M (1991) Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res 544(1):26–32PubMedCrossRefGoogle Scholar
  146. Sorrells SF, Sapolsky RM (2007) An inflammatory review of glucocorticoid actions in the CNS. Brain Behav Immun 21(3):259–272PubMedCrossRefGoogle Scholar
  147. Sousa N, Almeida OF (2002) Corticosteroids: sculptors of the hippocampal formation. Rev Neurosci 13(1):59–84PubMedGoogle Scholar
  148. Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97(2):253–266PubMedCrossRefGoogle Scholar
  149. Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(Suppl 2):5–24PubMedGoogle Scholar
  150. Sousa N, Cerqueira JJ, Almeida OF (2008) Corticosteroid receptors and neuroplasticity. Brain Res Rev 57(2):561–570PubMedCrossRefGoogle Scholar
  151. Steckler T, Holsboer F (1999) Corticotropin-releasing hormone receptor subtypes and emotion. Biol Psychiatry 46(11):1480–1508PubMedCrossRefGoogle Scholar
  152. Swanson LW (1998) Brain Maps: Structure of the rat brain, 2nd edn. Elsevier, Amsterdam, p 267Google Scholar
  153. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21(8):323–331PubMedCrossRefGoogle Scholar
  154. Swerdlow NR, Geyer MA, Vale WW, Koob GF (1986) Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology (Berl) 88(2):147–152CrossRefGoogle Scholar
  155. Valdez GR, Zorrilla EP, Rivier J, Vale WW, Koob GF (2003) Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 980(2):206–212PubMedCrossRefGoogle Scholar
  156. Vesga-López O, Schneier FR, Wang S, Heimberg RG, Liu SM, Hasin DS, Blanco C (2008) Gender differences in generalized anxiety disorder: results from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC). J Clin Psychiatry 69:1606–1616Google Scholar
  157. Vyas A, Chattarji S (2004) Modulation of different states of anxiety-like behavior by chronic stress. Behav Neurosci 118(6):1450–1454PubMedCrossRefGoogle Scholar
  158. Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22(15):6810–6818PubMedGoogle Scholar
  159. Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965(1–2):290–294PubMedCrossRefGoogle Scholar
  160. Walker DL, Toufexis DJ, Davis M (2003) Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol 463(1–3):199–216PubMedCrossRefGoogle Scholar
  161. Weinstock M (2001) Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Prog Neurobiol 65(5):427–451PubMedCrossRefGoogle Scholar
  162. Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49(4):381–391PubMedCrossRefGoogle Scholar
  163. Whitnall MH (1993) Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol 40(5):573–629PubMedCrossRefGoogle Scholar
  164. Wigger A, Loerscher P, Weissenbacher P, Holsboer F, Landgraf R (2001) Cross-fostering and cross-breeding of HAB and LAB rats: a genetic rat model of anxiety. Behav Genet 31(4):371–382PubMedCrossRefGoogle Scholar
  165. Yang YL, Chao PK, Ro LS, Wo YY, Lu KT (2007) Glutamate NMDA receptors within the amygdala participate in the modulatory effect of glucocorticoids on extinction of conditioned fear in rats. Neuropsychopharmacology 32(5):1042–1051PubMedCrossRefGoogle Scholar
  166. Zhao Y, Valdez GR, Fekete EM, Rivier JE, Vale WW, Rice KC, Weiss F, Zorrilla EP (2007) Subtype-selective corticotropin-releasing factor receptor agonists exert contrasting, but not opposite, effects on anxiety-related behavior in rats. J Pharmacol Exp Ther 323:846–854PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Pêgo J. M 
    • 1
  • Sousa J. C 
    • 1
  • Almeida OFX 
    • 2
  • Sousa N 
    • 1
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.Max-Planck Institute of PsychiatryMunichGermany

Personalised recommendations