Skip to main content

Threading Microarrays into Novel Applications

  • Chapter
  • First Online:
Heat Shock Proteins in Human Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 21))

  • 346 Accesses

Abstract

Introduction HSP90 is known as a stabilizer of the proteome and is required for many newly synthesized proteins and introducing damaged proteins back into the refolding chaperone cycle. Due to its key position and interaction with several hundreds of proteins in a cell, it is a target for noxious cells and a responsive sensitive biomarker for cellular stress. Cellular stress is when unfolded proteins are formed by, e.g. mutational events, changes in the osmolality, or redox status. One challenge is to monitor and discriminate the cellular answers to relevant and reliable signals. The aim of this narrative review is to provide an overview of currently available microarray applications using HSP90 as the target.

Methods Pubmed search was performed for available studies on microarray-oriented techniques.

Results Different strategies have been used to measure the presence of HSP90, e.g., immunologically, by turnover, or binding activities. Protein microarrays have a broad application range. As a highly miniaturized assay system they are used to study protein-ligand or protein-protein interaction and used to measure the presence of a target as a diagnostic tool. Q-Dots have interesting electrical and optical properties. The exploitation of its optoelectronic properties for sensing plays a momentous role in the biomolecular diagnostic assay for HSP90.

Conclusions Target-oriented trawling of natural product compound libraries can help to identify novel compounds that inactivate the HSP90 function or increase the affinity for the natural ligand or client or help to restore the activity. HSP90 is a biomarker used in future as a stress marker for disease treatments, observing endurance status of athlete or life style management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-N-allylamino-17-demethoxygeldanamycin

Aarsd1:

muscle specific cochaperone (alanyl-tRNA synthetase domain-containing 1)

AIF:

apopotosis inducing factor

Apaf1:

apoptotic protease activating factor 1

CdSe:

cadmium selenide

CgA:

chromogranin A

CTD:

c-terminal domain

Cy5:

Cyanin 5

IgA:

Immunoglobulin A

MD:

middle domain

NTD:

N-terminal domain

PMA:

protein microarray

PPI:

protein-protein interaction

PU-H71:

6-amino-8-[(6-iodo-1,3-benzodioxol-5-yl)thio]-N-(1-methylethyl)-9H-purine-9-propanamine

Q-dots:

quantum dots

SPR:

surface plasma resonance

ZnS:

zinc sulfide

References

  1. Angenendt P, Glökler J, Murphy D et al (2002) Toward optimized antibody microarrays: a comparison of current microarray support materials. Anal Biochem 309:253–260

    CAS  PubMed  Google Scholar 

  2. Arruda DL, Wilson WC, Nguyen C (2009) Microelectrical sensors as emerging platforms for protein biomarker detection in point-of-care diagnostics. Expert Rev Mol Diagn 9:749–755

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Arya H (2005) Quantum dots in bio-imaging: revolution by the small. Biochem Biophys Res Commun 329:1173–1177

    CAS  PubMed  Google Scholar 

  4. Belaya I, Suwa M, Chen T (2018) Long-term exercise protects against cellular stresses in aged mice. Oxidative Med Cell Longev 2018:2894247

    Google Scholar 

  5. Bilan R, Fleury F, Nabiev I et al (2015) Quantum dot surface chemistry and functionalization for cell targeting and imaging. Bioconjug Chem 26:609–624

    CAS  PubMed  Google Scholar 

  6. Bilan R, Nabiev I, Sukhanova A (2016) Quantum dot-based nanotools for bioimaging, diagnostics, and drug delivery. Chembiochem 17:2103–2114

    CAS  PubMed  Google Scholar 

  7. Campanella C, Pace A, Caruso BC et al (2018) Heat shock proteins in Alzheimer’s disease: role and targeting. Int J Mol Sci 19:pii: E2603

    Google Scholar 

  8. Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 27:3040–3054

    PubMed  Google Scholar 

  9. Cretich M, Damin F, Chiari M (2014) Protein microarray technology: how far off is routine diagnostics? Analyst 139:528–542

    CAS  PubMed  Google Scholar 

  10. Delmotte P, Delmotte-Plaque J (1953) A new antifungal substance of fungal origin. Nature 171:344

    CAS  PubMed  Google Scholar 

  11. Echeverría PC, Bernthaler A, Dupuis P (2011) An interaction network predicted from public data as a discovery tool: application to the Hsp90 molecular chaperone machine. PLoS One 6:e26044

    PubMed  PubMed Central  Google Scholar 

  12. Echeverría PC, Briand PA, Picard D (2016) A remodeled Hsp90 molecular chaperone ensemble with the novel cochaperone Aarsd1 is required for muscle differentiation. Mol Cell Biol 36:1310–1321

    PubMed  PubMed Central  Google Scholar 

  13. Franke J, Eichner S, Zeilinger C et al (2013) Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep 30:1299–1323

    CAS  PubMed  Google Scholar 

  14. Fu Y, Xu X, Huang D et al (2017) Plasma heat shock protein 90 alpha as a biomarker for the diagnosis of liver cancer: an official, large-scale, and multicenter clinical trial. EBioMedicine 24:56–63

    PubMed  PubMed Central  Google Scholar 

  15. Geller R, Pechmann S, Acevedo A et al (2018) Hsp90 shapes protein and RNA evolution to balance trade-offs between protein stability and aggregation. Nat Commun 9:1781

    PubMed  PubMed Central  Google Scholar 

  16. Grenert JP, Sullivan WP, Fadden P et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    CAS  PubMed  Google Scholar 

  17. Gupta S, Manubhai KP, Kulkarni V et al (2016) An overview of innovations and industrial solutions in Protein Microarray Technology. Proteomics 16:1297–1308

    CAS  PubMed  Google Scholar 

  18. Holt LJ, Büssow K, Walter G et al (2000) By-passing selection: direct screening for antibody-antigen interactions using protein arrays. Nucleic Acids Res 28:E72

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu S, Xie Z, Qian J et al (2011) Functional protein microarray technology. Wiley Interdiscip Rev Syst Biol Med:1–19

    Google Scholar 

  20. Jäättelä M, Wissing D, Bauer PA (1992) Major heat shock protein HSP70 protects tumor cells from tumor necrosis factor cytotoxicity. EMBO J 11:3507–3512

    PubMed  PubMed Central  Google Scholar 

  21. Jäättelä M, Wissing D, Kokholm K (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17:6124–6134

    PubMed  PubMed Central  Google Scholar 

  22. Jego G, Hazoumé A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285

    CAS  PubMed  Google Scholar 

  23. Joshi S, Wang T, Araujo TLS et al (2018) Adapting to stress – chaperome networks in cancer. Nat Rev Cancer 18:562–575

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kampinga HH, Hageman J, Vos MJ et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    CAS  PubMed  Google Scholar 

  25. Karagöz GE, Rüdiger SG (2015) Hsp90 interaction with clients. Trends Biochem Sci 40:117–125

    PubMed  Google Scholar 

  26. Kellmann M, Bertollo M, Bosquet L et al (2018) Recovery and performance in sport: consensus statement. Int J Sports Physiol Perform 13:240–245

    PubMed  Google Scholar 

  27. Khandelwal A, Kent CN, Balch M et al (2018) Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 9:425

    PubMed  PubMed Central  Google Scholar 

  28. Kim Y, Khalil AA, Kabapy NF et al (2011) Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta Rev Cancer 1816:89–104

    Google Scholar 

  29. Kinfe HH (2019) Versatility of glycals in synthetic organic chemistry: coupling reactions, diversity oriented synthesis and natural product synthesis. Org Biomol Chem 17:4153–4182

    CAS  PubMed  Google Scholar 

  30. Klein HU, McCabe C, Gjoneska E et al (2019) Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in aging and Alzheimer’s human brains. Nat Neurosci 22:37–46

    CAS  PubMed  Google Scholar 

  31. Lang BJ, Guerrero-Giménez ME, Prince TL et al (2019) Heat shock proteins are essential components in transformation and tumor progression: cancer cell intrinsic pathways and beyond. Int J Mol Sci 20:pii: E4507

    Google Scholar 

  32. Lee EC, Fragala MS, Kavouras SA et al (2017) Biomarkers in sports and exercise: tracking health, performance, and recovery in athletes. J Strength Cond Res 31:2920–2937

    PubMed  PubMed Central  Google Scholar 

  33. Li L, Wang L, You QD et al (2019) Heat shock protein 90 inhibitors: an update on achievements, challenges, and future directions. J Med Chem 12. (in press)

    Google Scholar 

  34. Lindquist S (2009) Protein folding sculpting evolutionary change. Cold Spring Harb Symp Quant Biol 74:103–108

    CAS  PubMed  Google Scholar 

  35. Lueking A, Cahill DJ, Müllner S (2005) Protein biochips: a new and versatile platform technology for molecular medicine. Drug Discov Today 10:789–794

    CAS  PubMed  Google Scholar 

  36. Mattoussi H, Mauro M, Goldman ER et al (2000) Self-assembly of CdSe−ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122(49):12142–12150

    CAS  Google Scholar 

  37. Millson SH, Chua CS, Roe SM et al (2011) Features of the Streptomyces hygroscopicus HtpG reveal how partial geldanamycin resistance can arise with mutation to the ATP binding pocket of a eukaryotic Hsp90. FASEB J 25:3828–3837

    CAS  PubMed  Google Scholar 

  38. Mishra P, Flynn JM, Starr TN et al (2016) Systematic mutant analyses elucidate general and client-specific aspects of HSP90 function. Cell Rep 15:588–598

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mohammadi Ostad-Kalayeh S, Hrupins V, Helmsen S et al (2017) Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors. Bioorg Med Chem 25:6345–6352

    CAS  PubMed  Google Scholar 

  40. Mohammadi-Ostad-Kalayeh S, Stahl F, Scheper T et al (2018) Heat shock proteins revisited: using a mutasynthetically generated reblastatin library to compare the inhibition of human and leishmania Hsp90s. Chembiochem 19:562–574

    CAS  PubMed  Google Scholar 

  41. Murillo-Solano C, Dong C, Sanchez CG et al (2017) Identification and characterization of the antiplasmodial activity of Hsp90 inhibitors. Malar J 16:292

    PubMed  PubMed Central  Google Scholar 

  42. Neckers L, Blagg B, Haystead T et al (2018) Methods to validate Hsp90 inhibitor specificity, to identify off-target effects, and to rethink approaches for further clinical development. Cell Stress Chaperones 23:467–482

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nimse SB, Sonawane MD, Song KS et al (2016) Biomarker detection technologies and future directions. Analyst 141:740–755

    CAS  PubMed  Google Scholar 

  44. Palma LC, Ferreira LFGR, Petersen ALOA et al (2019) A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Sci Rep 9:4756

    Google Scholar 

  45. Park YH, Seo JH, Park JH et al (2017) Hsp70 acetylation prevents caspase-dependent/independent apoptosis and autophagic cell death in cancer cells. Int J Oncol 51:573–578

    CAS  PubMed  Google Scholar 

  46. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184

    CAS  PubMed  Google Scholar 

  47. Pflegerl K, Hahn R, Schallaun E et al (2001) Quantification of plasma-derived blood coagulation factor VIII by real-time biosensor measurements. J Chromatogr B Biomed Sci Appl 752:335–347

    CAS  PubMed  Google Scholar 

  48. Picard D, Khursheed B, Garabedian MJ et al (1990) Reduced levels of Hsp90 compromise steroid receptor action in vivo. Nature 348:166–168

    CAS  PubMed  Google Scholar 

  49. Piper PW, Millson SH (2012) Spotlight on the microbes that produce heat shock protein 90-targeting antibiotics. Open Biol 2:120138

    PubMed  PubMed Central  Google Scholar 

  50. Posfai D, Eubanks AL, Keim AI et al (2018) Identification of Hsp90 inhibitors with anti-plasmodium activity. Antimicrob Agents Chemother 62:e01799–e01717

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Qin C, Tao L, Phang YH et al (2015) The assessment of the readiness of molecular biomarker-based mobile health technologies for healthcare applications. Sci Rep 5:17854

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Radli M, Rüdiger SGD (2018) Dancing with the Diva: Hsp90-client interactions. J Mol Biol 430:3029–3040

    CAS  PubMed  Google Scholar 

  53. Raman S, Singh M, Tatu U et al (2015) First structural view of a peptide interacting with the nucleotide binding domain of heat shock protein 90. Sci Rep 5:17015

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Rodina A, Wang T, Yan P et al (2016) The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 538:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosenzweig R, Nillegoda NB, Mayer MP et al (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    CAS  PubMed  Google Scholar 

  56. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    CAS  PubMed  Google Scholar 

  57. Sang Q, Liu X, Wang L et al (2018) Curcumin protects an SH-SY5Y cell model of Parkinson’s disease against toxic injury by regulating HSP90. Cell Physiol Biochem 51:681–691

    CAS  PubMed  Google Scholar 

  58. Schax E, Walter JG, Märzhäuser H et al (2014) Microarray-based screening of heat shock protein inhibitors. J Biotechnol 180:1–9

    CAS  PubMed  Google Scholar 

  59. Schinn SM, Broadbent A, Bradley WT et al (2016) Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. New Biotechnol 33:480–487

    CAS  Google Scholar 

  60. Schopf FH, Biebl MM, Buchner J (2017) The HSP90 chaperone machinery. Nat Rev Mol Cell Biol 18:345–360

    CAS  PubMed  Google Scholar 

  61. Sharma R, Mohammadi-Ostad-Kalayeh S, Stahl F et al (2017) Two new labdane diterpenoids and one new β lactam compound from the aerial part of Roylea cinerea. Phytochem Lett 19:101–107

    CAS  Google Scholar 

  62. Starr TN, Flynn JM, Mishra P et al (2018) Pervasive contingency and entrenchment in a billion years of HSP90 evolution. Proc Natl Acad Sci U S A 115:4453–4458

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Takatsu T, Ohtsuki M, Muramatsu A et al (2000) Enokita R, Kurakata SI. Reblastatin, a novel benzenoid ansamycin-type cell cycle inhibitor. J Antibiot (Tokyo) 53:1310–1312

    CAS  Google Scholar 

  64. Tassone G, Mangani S, Botta M et al (2018) Probing the role of Arg97 in Heat shock protein 90 N-terminal domain from the parasite Leishmania braziliensis through site-directed mutagenesis on the human counterpart. Biochim Biophys Acta, Proteins Proteomics 1866:1190–1198

    CAS  PubMed  Google Scholar 

  65. Thorpe RT, Atkinson G, Drust B et al (2017) Monitoring fatigue status in elite team-sport athletes: implications for practice. Int J Sports Physiol Perform 12:S227–S234

    PubMed  Google Scholar 

  66. Torres Acosta JA, Michlmayr H, Shams M et al (2019) Zearalenone and ß-Zearalenol but not their glucosides inhibit heat shock protein 90 ATPase activity. Front Pharmacol 10:1160

    PubMed  PubMed Central  Google Scholar 

  67. Tuck MK, Chan DW, Chia D et al (2009) Standard operating procedures for serum and plasma collection: early detection research network consensus statement standard operating procedure integration working group. J Proteome Res 8:113–117

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Turbyville TJ, Wijeratne EM, Liu MX et al (2006) Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. J Nat Prod 69:178–184

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ueda T, Tamura T, Hamachi I (2019) Development of a cell-based ligand-screening system for identifying Hsp90 inhibitors. Biochemistry 59:179–182

    PubMed  Google Scholar 

  70. Verba KA, Wang RY, Arakawa A et al (2016) Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science 352:1542–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wade M, Li YC, Wahl GM (2013) Protein microarray technology. Nat Rev Cancer 13:83–96

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang S, Xu Y, Maine EA et al (2008) Functional characterization of the biosynthesis of radicicol, an Hsp90 inhibitor resorcylic acid lactone from Chaetomium chiversii. Chem Biol 15:1328–1338

    CAS  PubMed  Google Scholar 

  73. Wang T, Rodina A, Dunphy MP et al (2019) Chaperome heterogeneity and its implications for cancer study and treatment. J Biol Chem 294:2162–2179

    CAS  PubMed  Google Scholar 

  74. Wu J, Liu T, Rios Z et al (2017) Heat shock proteins and cancer. Trends Pharmacol Sci 38:226–256

    CAS  PubMed  Google Scholar 

  75. Wuest F, Bouvet V, Mai B et al (2012) Fluorine- and rhenium-containing geldanamycin derivatives as leads for the development of molecular probes for imaging Hsp90. Org Biomol Chem 10:6724–6731

    CAS  PubMed  Google Scholar 

  76. Xu Y, Wallace MA, Fitzgerald MC (2016) Thermodynamic analysis of the geldanamycin-Hsp90 interaction in a whole cell lysate using a mass spectrometry-based proteomics approach. J Am Soc Mass Spectrom:1670–1676

    Google Scholar 

  77. Yelleswarapu V, Buser JR, Haber M et al (2019) Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. Proc Natl Acad Sci U S A 116:4489–4495

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yin M, Jiang M, Ren Z et al (2017) The complete genome sequence of Streptomyces autolyticus CGMCC 0516, the producer of geldanamycin, autolytimycin, reblastatin and elaiophylin. J Biotechnol 252:27–31

    CAS  PubMed  Google Scholar 

  79. Yue Q, Stahl F, Plettenburg O et al (2018) The noncompetitive effect of gambogic acid displaces fluorescence-labeled ATP but requires ATP for binding to Hsp90/HtpG. Biochemistry 57:2601–2605

    CAS  PubMed  Google Scholar 

Download references

Acknowlegements

Funding: AK financed by Exposè scholarship from the Graduate Academy Leibniz University Hannover.

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Human

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Zeilinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kishore, A., Zeilinger, C. (2020). Threading Microarrays into Novel Applications. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Human Diseases. Heat Shock Proteins, vol 21. Springer, Cham. https://doi.org/10.1007/7515_2020_7

Download citation

Publish with us

Policies and ethics