Advertisement

Genomic Analysis of Cucurbit Fruit Growth

  • Rebecca Grumet
  • Marivi Colle
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)

Abstract

Fruit development in cucurbit species follows the canonical progression of ovary development, fruit set, expansive fruit growth, and maturation and ripening. This commonality, however, belies tremendous morphological diversity. Variation in timing, amount, and orientation of cell division and cell expansion pre- and post-anthesis, as well as factors influencing carpel number, floral sex, photosynthetic capacity and trichome development all drive extreme variability in fruit size and shape. New genomic approaches utilizing recently assembled draft genomes for the four major cucurbit crop species (Cucumis sativus, Cucumis melo, Citrullus lanatus, Cucurbita spp), next generation high throughput sequencing, molecular mapping methods, transcriptomic analyses, gene cloning, and transgenic approaches are all contributing to an increased understanding of the key processes underlying cucurbit fruit development. Extensive quantitative trait locus (QTL) analyses have identified numerous QTL for features such as ovary length, width, and shape, and fruit length, width, shape, flesh thickness and cavity diameter. Most recently, multi-pronged approaches combining mapping, sequence, and transcriptional analyses have allowed for identification specific candidate genes influencing cucurbit fruit morphology.

Keywords

Cell division Cell expansion Cucurbitaceae Fruit development Fruit shape Fruit size Ovary QTL Transcriptome 

Literature Cited

  1. Ando K, Grumet R. Transcriptional profiling of rapidly growing cucumber fruit by 454-pyrosequencing analysis. J Am Soc Hortic Sci. 2010;135:291–302.Google Scholar
  2. Ando K, Carr KM, Grumet R. Transcriptome analysis of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genom. 2012;13:518.Google Scholar
  3. Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni JJ. Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol. 2005;138:267–75.Google Scholar
  4. Bo K, Ma Z, Chen J, Weng Y. Molecular mapping reveals structural rearrangement and quantitative trait loci underlying traits with local adaptation in semi wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet. 2015;128:25–39.PubMedGoogle Scholar
  5. Bohner J, Bangerth F. Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in fruit size. Physiol Plant. 1988;72:316–20.Google Scholar
  6. Boonkorkaew P, Hikosaka S, Sugiyama N. Effect of pollination on cell division, cell enlargement, and endogenous hormones in fruit development in a gynoecious cucumber. Sci Hortic. 2008;116:1–7.Google Scholar
  7. Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science. 2008;321:836–8.PubMedGoogle Scholar
  8. Boualem A, Troadec C, Kovalski I, Sari M, Perl-Treves R, Bendhamane A. A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS One. 2009;4:e6144.PubMedGoogle Scholar
  9. Boualem A, Troadec C, Camps C, Lemhemdi A, Mori H, Sari M-A, et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science. 2015;350:688–91.PubMedGoogle Scholar
  10. Chakrabarti M, Zhang N, Sauvage C, Munos S, Blanca J, Canizares J, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato. Proc Natl Acad Sci U S A. 2013;110:17125–30.PubMedGoogle Scholar
  11. Call AD, Wehner TC. Gene list 2010 for cucumber. Cucurbit Genet Coop Rpt. 2010–2011;33–34:69–103.Google Scholar
  12. Carabelli M, Turchi L, Ruzza V, Morelli G, Ruberti I. Homeodomain-leucine zipper II family of transcription factors to the limelight. Central regulators of plant development. Plant Signal Behav. 2013;8:e25447.PubMedGoogle Scholar
  13. Chen CH, Liu ML, Jiang L, Liu XF, Zhao JY, Yan SS, et al. Transcriptome profiling reveals role of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). J Exp Bot. 2014;65:4943–58.PubMedGoogle Scholar
  14. Cheng JT, Li X, Yao FZ, Shan N, Li YH, Zhang ZX, et al. Functional characterization and expression analysis of cucumber (Cucumis sativus L.) hexose transporters, involving carbohydrate partitioning and phloem unloading in sink tissues. Plant Sci. 2015;237:46–56.PubMedGoogle Scholar
  15. Cheniclet C, Rong WY, Causse M, Franger N, Bolling L, Carde J-P, et al. Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol. 2005;139:1984–94.PubMedGoogle Scholar
  16. Chusreeaeom K, Ariizumi T, Asamizu E, Okabe Y, Shirasawa K, Ezura H. A novel tomato mutant, Solanum lycopersicum elongated fruit1 (Slelf1), exhibits an elongated fruit shape caused by increased cell layers in the proximal region of the ovary. Mol Genet Genom. 2014;289:399–409.Google Scholar
  17. Colle M. Cucumber (Cucumis sativus) fruit development: factors influencing fruit size, shape and resistance to Phytophthora capsici. PhD Dissertation. East Lansing: Michigan State University; 2015.Google Scholar
  18. Cong B, Barrero LS, Tanksley SD. Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genet. 2008;40:800–4.PubMedGoogle Scholar
  19. Cui L, Li J, Zhang T, Guo Q, Xu J, Lou Q, Chen J. Identification and expression analysis of D- type cyclin genes in early developing fruit of cucumber (Cucumis sativus L.). Plant Mol Biol Rep. 2014;32:209–18.Google Scholar
  20. Dannenhoffer JM, Schulz A, Skaggs MI, Bostwick DE, Thompson GA. Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta. 1997;201:405–14.Google Scholar
  21. Davis AR, Webber C, Liu W, Perkins-Veazie P, Levi A, King S. Watermelon quality traits as affected by ploidy. HortScience. 2013;48:1113–8.Google Scholar
  22. Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, et al. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011;11:111. doi: 10.1186/1471-2229-11-111.
  23. Dijkhuizen A, Staub JE. QTL conditioning yield and fruit quality traits in cucumber (Cucumis sativus L.): effects of environment and genetic background. J New Seeds. 2002;4:1–30.Google Scholar
  24. Dinant S, Clark AM, Zhu YM, Vilaine F, Palauque JC, Kusiak C, et al. Diversity of the superfamily of phloem lectins (phloem protein 2) in angiosperms. Plant Physiol. 2003;131:114–28.PubMedGoogle Scholar
  25. Dittmar PJ, Monks DW, Schultheis JR. Use of commercially available pollenizers for optimizing triploid watermelon production. HortScience. 2010;45:541–5.Google Scholar
  26. Eduardo I, Arus P, Monforte AJ, Obando J, Fernandez-Trujillo JP, Martinez JA, et al. Estimating the genetic architecture of fruit quality triats in melon using a genomic library of near isogenic lines. J Am Soc Hort Sci. 2007;132:80–9.Google Scholar
  27. Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107:864–74.PubMedGoogle Scholar
  28. Fernandez-Silva I, Moreno E, Eduardo I, Arus P, Alvarez JM, Monforte AJ. On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered. 2009;100:229–35.PubMedGoogle Scholar
  29. Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín-Hernandez AM, et al. Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet. 2010;121:931–40.PubMedGoogle Scholar
  30. Freeman JH, Miller GA, Olson SM, Stall WM. Dipoloid watermelon pollenizer cultivars differ with respect to triploid watermelon yield. Horttechnol. 2007;17:518–22.Google Scholar
  31. Fu FQ, Mao WH, Shi K, Zhou YH, Asami T, Yu JQ. A role of brassinosteroids in early fruit development in cucumber. J Exp Bot. 2008;59:2299–308.PubMedGoogle Scholar
  32. Fu FQ, Mao WH, Shi K, Zhou YH, Yu JQ. Spatio-temporal changes in cell division, endoreduplication and expression of cell cycle-related genes in pollinated and plant growth substances-treated ovaries of cucumber. Plant Biol. 2010;12:98–107.PubMedGoogle Scholar
  33. Fuller CL, Leopold AC. Pollination and the timing of fruit-set in cucumbers. HortScience. 1975;10:617–8.Google Scholar
  34. Gama RNCS, Santos CAF, Dias RCS, Alves JCSF, Nogueira TO. Microsatellite markers linked to the locus of the watermelon fruit stripe pattern. Gene Cons. 2015;14:1–15.Google Scholar
  35. Ganguly A, Dixit R. Mechanisms for regulation of plant kinesins. Cur Opin Plant Biol. 2013;16:704–9.Google Scholar
  36. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109:11872–7.PubMedGoogle Scholar
  37. Gillaspy G, Ben-David H, Gruissem W. Fruits: a developmental perspective. Plant Cell. 1993;5:1439–51.PubMedGoogle Scholar
  38. Goffinet MC. Comparative ontogeny of male and female flowers of Cucumis sativus. In: Bates DM, Robinson RW, Jeffrey C, editors. Biology and utilization of the cucurbitaceae. New York: Cornell University Press; 1990. p. 288–304.Google Scholar
  39. Gonzalo MR, Monforte AJ. Genetic mapping of complex traits in cucurbits. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and genomics of the cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  40. Grumet R, Taft JA. Sex expression in cucurbits. In: Kole C, Wang YH, Behera TK, editors. Genetics, genomics and breeding in cucurbits. Boca Raton: Science Publishers Inc/Enfield NH and CRC Press (Taylor & Francis) Group; 2011. p. 353–75.Google Scholar
  41. Guerriero G, Hausman JF, Cai G. No stress! relax! mechanisms governing growth and shape in plant cells. Internat J Molec Sci. 2014;15:5094–114.Google Scholar
  42. Guner N, Wehner TC. The genes of watermelon. HortScience. 2004;39:1175–82.Google Scholar
  43. Guo M, Simmons CR. Cell number counts – the fw2.2 and CNR genes, and implications for controlling plant fruit and organ size. Plant Sci. 2011;181:1–7.PubMedGoogle Scholar
  44. Guo SG, Liu JG, Zheng Y, Huang MY, Zhang HY, Gong GY, et al. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genom. 2011;12:454. doi: 10.1186/1471-2164-12-454.Google Scholar
  45. Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genet. 2013;45:51–82.PubMedGoogle Scholar
  46. Gur A, Gonda I, Portnoy V, Tzuri G, Chayut N, Cohen S, et al. Genomic aspects of melon fruit quality. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and genomics of the cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  47. Hu DL, Richards P, Alexeev A. The growth of giant pumpkins: how extreme weight influences shape. Int J Non Linear Mech. 2011;46:637–47.Google Scholar
  48. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nature Genet. 2009;41:1275–81.PubMedGoogle Scholar
  49. Huang ZJ, van der Knaap E. Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theor Appl Genet. 2011;123:465–74.PubMedGoogle Scholar
  50. Huang ZJ, Van Houten J, Gonzalez G, Xiao H, van der Knapp E. Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Gen Genom. 2013;288:111–29.Google Scholar
  51. Higashi K, Hosoya K, Ezura H. Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit. J Exp Bot. 1999;50:1593–7.Google Scholar
  52. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. J Exp Bot. 2011;62:2465–83.PubMedGoogle Scholar
  53. Iezzoni AF, Peterson CR, Tolla GE. Genetic analysis of two perfect-flowered mutants in cucumber. J Am Soc Hort Sci. 1982;107:678–81.Google Scholar
  54. Inze D, De Veylder L. Cell cycle regulation in plant development. Ann Rev Genet. 2006;40:77–105.PubMedGoogle Scholar
  55. Jiang L, Yan S, Yang W, Li Y, Xiz Y, Xia M, et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L). Sci Rep. 2015;5:8031. doi: 10.1038/srep08031.PubMedGoogle Scholar
  56. Kennard WC, Poetter K, Dijkhuizen, Meglic V, Staub JE, Havey MJ. Linkages among RFLP, RAPD, isozyme, disease resistance and morphological markers in narrow and wide crossed of cucumber. Theor Appl Genet. 1994;89:42–8.Google Scholar
  57. Kennard WC, Havey MJ. Quantitative trait analysis of fruit quality in cucumber – QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet. 1995;91:53–61.PubMedGoogle Scholar
  58. Kim H, Han D, Kang J, Choi Y, Levi A, Lee GP, et al. Sequence-characterized amplified polymorphism markers for selecting rind stripe pattern in watermelon (Citrullus lanatus L.). Hort Env Biotech. 2015;56:341–9.Google Scholar
  59. Ledenunff E, Sauton A, Dumas C. Effect of ovular receptivity on seed set and fruit development in cucumber (Cucumis sativus L.). Sex Plant Rep. 1993;6:139–46.Google Scholar
  60. Li J, Wu Z, Cui L, Zhang T, Guo Q, Xu J, et al. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L.). Plant Cell Physiol. 2014;55:1325–42.PubMedGoogle Scholar
  61. Li Q, Cao C, Zhang C, Zheng S, Wang Z, Wang L, et al. The identification of Cucumis sativus Glabrous 1 (CsGL1) required for the formation of trichomes uncovers a novel function for the homeodomain-leucine zipper 1 gene. J Exp Bot. 2015;66:2515–26.PubMedGoogle Scholar
  62. Li XX, Hayata Y, Osajima Y. P-CPA increases the endogenous IAA content of parthenocarpic muskmelon fruit. Plant Growth Reg. 2002;37:99–103.Google Scholar
  63. Li XX, Kobayashi F, Ikeura H, Hayata Y. Chlorophenoxyacetic acid and chloropyridylphenylurea accelerate translocation of photoassimilates to parthenocarpic and seeded fruits of muskmelon (Cucumis melo). J Plant Physiol. 2011;168:920–6.PubMedGoogle Scholar
  64. Li Y, Wen C, Weng Y. Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet. 2013;126:2187–96.PubMedGoogle Scholar
  65. Liesche J, Schulz A. Modeling the parameters for plasmodesmal sugar filtering in active symplasmic phloem loaders. Front Plant Sci. 2013;4:207. doi: 10.3389/fpls.2013.00207.PubMedGoogle Scholar
  66. Liu JP, Van Eck J, Cong B, Tanksley SD. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A. 2002;99:13302–6.PubMedGoogle Scholar
  67. Malladi A, Hirst P. Increase in fruit size of a spontaneous mutant of ‘Gala’ apple (Malus x domestica Borkh.) is facilitated by altered cell production and enhanced cell size. J Exp Bot. 2010;61:3003–13.PubMedGoogle Scholar
  68. Manzano S, Martinez C, Megias Z, Gomez P, Garrido D, Jamilena M. The role of ethylene and brassinosteroids in the control of sex expression and flower development in Cucurbita pepo. Plant Growth Reg. 2011;65:213–21.Google Scholar
  69. Marcelis LFM. Effects of assimilate supply on the growth of individual cucumber fruits. Physiol Plant. 1993;87:313–20.Google Scholar
  70. Marcelis LFM, Hofman-Eijer LRB. Effect of temperature on the growth of individual cucumber fruits. Physiol Plant. 1993;87:321–8.Google Scholar
  71. Martin A, Troadec C, Boualem A, Mazen R, Fernandez R, Morin H, et al. A transposon induced epigenetic change leads to sex determination in melon. Nature. 2009;461:1135–9.PubMedGoogle Scholar
  72. Martinez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M. Involvement of ethylene biosynthesis and signaling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 2013;13:139. doi: 10.1186/1471-2229-13-139.PubMedGoogle Scholar
  73. Martinez C, Manzano S, Megias Z, Garrido D, Pico B, Jamilena M. Sources of parthenocarpy for zucchini breeding: relationship with ethylene production and sensitivity. Euphytica. 2014;200:349–62.Google Scholar
  74. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L. Aquaporins in plants. Physiol Rev. 2015;95:1321–58.PubMedGoogle Scholar
  75. McAtee P, Karim S, Schaffer R, Karine K. A dynamic interplay between phytohormones is required for fruit development, maturation and ripening. Front Plant Sci. 2013;4:79. doi: 10.3389/fpls.2013.00079.PubMedGoogle Scholar
  76. McGregor CE, Waters V. Flowering patterns of pollenizer and triploid watermelon cultivars. HortScience. 2014;49:714–21.Google Scholar
  77. Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;182:167–76.Google Scholar
  78. Monforte AJ, Diaz A, Cano-Delgado A, van der Knapp E. The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot. 2014;65:4625–37.PubMedGoogle Scholar
  79. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet. 2004;108:750–8.PubMedGoogle Scholar
  80. Munos S, Ranc N, Botton E, Berard A, Rolland S, Duffe P, et al. Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol. 2011;156:22244–54.Google Scholar
  81. Nakata Y, Taniguchi G, Takazaki S, Ode-Uda N, Miyahara K, Ohshima Y. Comparative analysis of cells and proteins of pumpkin plants for the control of fruit size. J Biosci Bioeng. 2012;114:334–41.PubMedGoogle Scholar
  82. Nerson H. Effects of fruit shape and plant density on seed yield and quality of squash. Sci Hort. 2005;105:293–304.Google Scholar
  83. Okello RCO, Heuvelink E, de Visser PHB, Struik PC, Marcelis LFM. What drives fruit growth? Funct Plant Biol. 2015;42:817–27.Google Scholar
  84. Papadopoulou E, Little HA, Hammar SA, Grumet R. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex Plant Repro. 2005;18:131–42.Google Scholar
  85. Paris HS. Genetic control of irregular striping, a new phenotype in Cucurbita pepo. Euphytica. 2003;129:119–26.Google Scholar
  86. Paris HS. Genes for ‘reverse’ fruit striping in squash (Cucurbita pepo). J Hered. 2009;100:371–9.PubMedGoogle Scholar
  87. Paris HS, Brown RN. Gene list for Cucurbita species, 2004. Cucurbit Genet Coop Rpt. 2004;27:77–96.Google Scholar
  88. Paris HS. Genetic resources of pumpkins and squash, Cucurbita spp. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and Genomics of the Cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  89. Perin C, Hagen L, Giovinazzo N, Besombes D, Dogimont C, Pitrat M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom. 2002;266:933–41.Google Scholar
  90. Perl-Treves R. Male to female conversion along the cucumber shoot: approaches to study sex genes and floral development in Cucumis sativus. In: Ainsworth CC, editor. Sex determination in plants. Oxford: BIOS Scientific; 1999. p. 189–215.Google Scholar
  91. Peterson CE, Owens KW, Rowe PR. Wisconsin 998 muskmelon germplasm. HortScience. 1983;18:116.Google Scholar
  92. Pitrat M. Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnol. 2013;30:273–8.Google Scholar
  93. Pitrat M. Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and Genomics of the Cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  94. Qi J, Liu X, Shen D, Miao H, Xie B, Li X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45:1510–5.PubMedGoogle Scholar
  95. Ramamurthy RK, Waters BM. Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica. 2015;204:163–77.Google Scholar
  96. Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, et al. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2015;106:166–76. doi: 10.1093/jhered/esu077.PubMedGoogle Scholar
  97. Ren Y, McGregor C, Zhang Y, Gong GY, Zhang HY, Guo SG, et al. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33. doi: 10.1186/1471-2229-14-33.PubMedGoogle Scholar
  98. Rennie EA, Turgeon R. A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A. 2009;106:14162–7.PubMedGoogle Scholar
  99. Robinson RW, Decker-Walters DS. Cucurbits. Wallingford: CAB International; 1997.Google Scholar
  100. Rodriguez GR, Munos S, Anderson C, Sim SC, Michel A, Causse M, et al. Distribution of SUN, OVATE, LC and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol. 2011;156:275–85.PubMedGoogle Scholar
  101. Rodriguez-Mega E, Pineyro-Nelson A, Gutierrez C, Grcia-Ponce B, Sanchez MD, Zluhan-Martinez E, et al. Role of transcriptional regulation in the evolution of plant phenotype: a dynamic systems approach. Dev Dyn. 2015;244:1074–95.Google Scholar
  102. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang WW, et al. Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet. 2012;125:1603–18.PubMedGoogle Scholar
  103. Savage JA, Haines DF, Holbrook NM. The making of giant pumpkins: how selective breeding changed the phloem of Cucurbita maxima from source to sink. Plant Cell Env. 2015;38:1543–54.Google Scholar
  104. Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L) using random-amplified polymorphic DNA markers. Molec Breed. 1997;3:257–68.Google Scholar
  105. Shi J, Wang J, Li R, Li D, Xu F, Sun Q, et al. Expression patterns of genes encoding plasma membrane aquaporins during fruit development in cucumber (Cucumis sativus L.). Plant Physiol Biochem. 2015;96:329–36.PubMedGoogle Scholar
  106. Sinnott EW. A developmental analysis of inherited shape differences in cucurbit fruits. Amer Nat. 1936;70:245–54.Google Scholar
  107. Sinnott EW. A developmental analysis of the relation between cell size and fruit size in cucurbits. Amer J Bot. 1939;26:179–89.Google Scholar
  108. Sugiyama K, Kami D, Muro T. Genotypic differences of parthenocarpic fruit induction in watermelon using bottle gourd (Lagenaria siceraria (Molina) Standl.) pollen. Hort Res. 2015;14:7–15.Google Scholar
  109. Sun Z, Staub JE, Chung SM, Lower RL. Identification and comparative analysis of quantitative trait loci associated with parthenocarpy in processing cucumber. Plant Breed. 2006;125:281–7.Google Scholar
  110. Switzenberg JA, Little HA, Hammar SA, Grumet R. Floral primordia-targeted ACS (1-aminocyclopropane-1-carboxylate synthase) expression in transgenic Cucumis melo implicates fine tuning of ethylene production mediating unisexual flower development. Planta. 2014;240:797–808.PubMedGoogle Scholar
  111. Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC::etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015;24:497–507.PubMedGoogle Scholar
  112. Tan J, Tao Q, Niu H, Zhang Z, Li D, Gong Z, et al. A novel allele of monoecious (m) locus is responsible for elongated fruit shape and perfect flowers in cucumber (Cucumis sativus L.). Theor Appl Genet. 2015;128:2483–93.PubMedGoogle Scholar
  113. Tanaka T, Wimol S, Mizutani T. Inheritance of fruit shape and seed size of watermelon. J Jap Soc Hortic Sci. 1995;64:543–8.Google Scholar
  114. Tanksley SD. The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell. 2004;16:S181–9.PubMedGoogle Scholar
  115. Tatum TC, Nunez L, Kushad MM, Rayburn AL. Genome size variation in pumpkin (Cucurbita sp.). Anna Appl Biol. 2006;149:141–51.Google Scholar
  116. Trebitsh T, Staub JE, Oneill SD. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the Female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 1997;113:987–95.PubMedGoogle Scholar
  117. Turgeon R. Phloem biology of the Cucurbitaceae. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and genomics of the cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  118. van der Knapp E, Chakrabarti M, Chu YH, Clevenger JP, Illa-Brenguer E, Huang ZJ, et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Front Plant Sci. 2014;5:227. doi: 10.3389/fpls.2014.00227.Google Scholar
  119. Varga A, Bruinsma J. Dependence of ovary growth on ovule development in Cucumis sativus. Physiol Plant. 1990;80:43–50.Google Scholar
  120. Wall JR. Correlated inheritance of sex expression and fruit shape in Cucumis. Euphytica. 1967;16:199–208.Google Scholar
  121. Wang SC, Chang Y, Guo JJ, Zeng QN, Ellis BE, Chen JG. Arabidopsis OVATE family proteins, a novel transcriptional repressor family, controls multiple aspects of plant growth and development. PLoS One. 2011;6:e23896.PubMedGoogle Scholar
  122. Wechter WP, Levi A, Harris KR, Davis AR, Fei Z, Katzir N, et al. Gene expression in developing watermelon fruit. BMC Genom. 2008;9:275.Google Scholar
  123. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, et al. A SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragments (SLAF) sequencing. BMC Genom. 2014;15:1158. doi: 10.1186/1471-2164-15-1158.Google Scholar
  124. Weng YQ, Colle M, Wang YH, Yang LM, Rubinstein M, Sherman A, et al. QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet. 2015;128:1747–63.Google Scholar
  125. Weng Y, Lietzow CD, Zhu H, Pandey S, Havey MJ. QTL mapping of parthenocarpic fruit set in North American processing cucumber. Theor Appl Genet. 2016;129(12):2387–2401.Google Scholar
  126. Wu S, Clevenger JP, Sun L, Visa S, Kamiya Y, Jikumaru Y, et al. The control of tomato fruit elongation orchestrated by sun, ovate, and fs8.1 in a wild relative of tomato. Plant Sci. 2015;238:95–104.PubMedGoogle Scholar
  127. Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E. SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol. 2011;157:1175–86.PubMedGoogle Scholar
  128. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008;319:1527–30.PubMedGoogle Scholar
  129. Xiao QB, Loy JB. Inheritance and characterization of a glabrous trait in summer squash. J Am Soc Hort Sci. 2007;132:327–33.Google Scholar
  130. Xiao H, Radovich C, Welty N, Hsu J, Li D, Meulia T, et al. Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biol. 2009;9:49.PubMedGoogle Scholar
  131. Xu C, Liberatore KL, MacAlister CA, Huang ZJ, Chu YH, Jiang K, et al. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nature Genet. 2015a;47:784–92.PubMedGoogle Scholar
  132. Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X. QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep. 2015b;5:15829. doi: 10.1038/srep15829.PubMedGoogle Scholar
  133. Yan LY, Lou LN, Li XL, Feng ZH, Lou QF, Chen JF. Evaluation of parthenocarpy in cucumber germplasm. Acta Hort Sinica. 2009;36:975–82.Google Scholar
  134. Yan LY, Lou LN, Lou QF, Chen JF. Inheritance of parthenocarpy in gynoecious cucumber. Acta Hort Sinica. 2008;35:1441–6.Google Scholar
  135. Yang HB, Park SW, Park Y, Lee GP, Kang SC, Kim YK. Linkage analysis of the three loci determining rind color and stripe pattern in watermelon. Korean J Hort Sci Tech. 2015;33:559–65.Google Scholar
  136. Yang X, Zhang W, He H, Nie J, Bie B, Zhao J, et al. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protien that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.). Plant J. 2014;78:1034–46.PubMedGoogle Scholar
  137. Yang XY, Wang Y, Jiang WJ, Liu XL, Zhang XM, Yu HJ, et al. Characterization and expression profiling of cucumber kinesin genes during early fruit development: revealing the role of kinases in exponential cell production and enlargement in cucumber fruit. J Exp Bot. 2013;64:4541–57.PubMedGoogle Scholar
  138. Yano R, Ezura H. Fruit ripening in melon. In: Grumet R, Katzir N, Garcia-Mas J, editors. Genetics and genomics of the cucurbitaceae. Springer Intl Pub AG; 2016.Google Scholar
  139. Young JO. Histological comparison of cucumber fruits developing parthenocarpically and following pollination. Bot Gazette. 1943;105:69–79.Google Scholar
  140. Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, et al. Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica. 2008a;164:473–91.Google Scholar
  141. Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, et al. Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breed. 2008b;127:180–8.Google Scholar
  142. Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O. Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A. 2010;107:13532–7.PubMedGoogle Scholar
  143. Zhang ZP, Deng YK, Song XX, Miao MM. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in fruit-fruit inhibition of cucumber. J Plant Physiol. 2015;177:110–20.PubMedGoogle Scholar
  144. Zhou Q, Mio H, Li S, Zhang SP, Wang Y, Weng YQ, et al. A sequencing-based linkage map of cucumber. Molec Plant. 2015;8:961–3.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of HorticultureMichigan State UniversityEast LansingUSA

Personalised recommendations