Genetic Resources of Watermelon

  • Amnon LeviEmail author
  • Robert Jarret
  • Shaker Kousik
  • W. Patrick Wechter
  • Padma Nimmakayala
  • Umesh K. Reddy
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)


As a result of many years of domestication and selection for desirable fruit quality, most of the modern dessert watermelon cultivars share a narrow genetic base. Africa is the center of origin and diversity of the genus Citrullus and is thus the focus of efforts to collect and conserve germplasm for enhancing dessert watermelons with resistance to diseases and pests. In addition to C. lanatus, accessions of several other species of Citrullus have been used as sources of disease and pest resistance. These are C. amarus (citron watermelon), which is native to southern Africa, C. mucosospermus (egusi watermelon) of sub-Saharan/western Africa origin, and C. colocynthis (colocynth) native to the deserts of northern Africa, the Middle East and Asia. Citrullus amarus, C. lanatus, and C. mucosospermus are readily intercrossed with one another and thus C. amarus and C. mucosospermus have at times been classified as subspecies or botanical varieties within C. lanatus. Genetic resources within Citrullus contain genes conferring resistance to a broad range of fungal diseases such as Fusarium wilt, anthracnose, gummy stem blight; oomycete diseases including Phytophthora capsici, powdery mildew, downy mildew; viruses such as the watermelon strain of Papaya ringspot virus, Zucchini yellow mosaic virus, and Squash vein yellowing virus (SqVYV); and insect pests such as root-knot nematodes, whiteflies, and mites. Watermelon germplasm collections are maintained in China, South Africa and Zimbabwe. The United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS), maintains a large collection of watermelon and related Citrullus spp. germplasm. The USDA/ARS/NPGS, Germplasm Resources Information Network (GRIN) contains general information on accessions held within the USDA/NPGS collection.


Citrullus, colocynth, Crop Wild Relative (CWR), genetic diversity, disease resistance, molecular markers 


  1. Achigan-Dako GE, Enoch G, Fanou N, Kouke A, Avohou H, Vodouhe RS, Ahanchede A. Evaluation agronomique de trois espèces de Egusi (Cucurbitaceae) utilisées dans l’alimentation au Bénin et élaboration d’un modèle de prédiction du rendement. Biotechnol Agron Soc Environ. 2006;10:121–9.Google Scholar
  2. Achigan-Dako EG, Avohou ES, Linsoussi C, Ahanchede A, Vodouhe RS, Blattner FR. Phenetic characterization of egusi-type (C. mucosospermus). Genet Resour Crop Evol. 2015;62:1159–79.Google Scholar
  3. Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 2001;508:438–42.PubMedGoogle Scholar
  4. Akusu MO, Kiin-Kabari DB. Comparative studies on the physicochemical and sensory properties of watermelon (Citrullus lanatus) and melon (Citrullus vulgaris) seed flours used in “egusi” soup preparation. J Food Res. 2015;4:1–6.Google Scholar
  5. Bailey LH. Three discussions in Cucurbitaceae. Gentes Herbarum. 1930;2:175–86.Google Scholar
  6. Bang H, Davis AR, Kim S, Laskover DI, King SR. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc Hort Sci. 2010;135:362–8.Google Scholar
  7. Ben-Naim Y, Cohen Y. Inheritance of resistance to powdery mildew race 1W in watermelon. Phytopathology. 2015;105:1446–57.PubMedGoogle Scholar
  8. Biles CL, Martyn RD, Wilson HD. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience. 1989;29:810–2.Google Scholar
  9. Boyhan G, Norton JD, Abrahams BR. Screening for resistance to anthracnose (race 2), gummy stem blight, and root knot nematode in watermelon germplasm. Cucurb Genet Coop Rep. 1994;17:106–10.Google Scholar
  10. Branham SE, Levi A, Farnham MW, Wechter WP. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. Theor Appl Genet. 2016; doi: 10.1007/s00122-016-2813-0.Google Scholar
  11. Burkill HM. The useful plants of west tropical Africa. 2nd ed. Kew: Royal Botanic Gardens; 1985.Google Scholar
  12. Bush A. Citron melon for cash and condiment. Econ Bot. 1978;32:182–4.Google Scholar
  13. Che KP, Wang CY, Wang YG, Jin DM, Wang B, Xu Y, Kang GB, Zhang HY. Genetic assessment of watermelon germplasm using the AFLP technique. HortScience. 2003;38:81–4.Google Scholar
  14. Chomicki G, Renner SS. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. 2015;205:526–32.Google Scholar
  15. Coffey JL, Simmons AL, Shepard BM, Tadmor Y, Levi A. Potential sources of whitefly (Hemiptera: Aleyrodidae) resistance in desert watermelon (Citrullus colocynthis) Germplasm. HortScience. 2015;50:13–7.Google Scholar
  16. Dahl Jensen B, Maïga Touré F, Ag Hamattal M, Aya Touré F, Dolo Nantoumé A. Watermelons in the Sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobot Res Appl. 2011;9:151–62.Google Scholar
  17. Dane F, Lang P. Sequence variation at cpDNA regions of watermelons and related wild species: implications for evolution of Citrullus haplotypes. Am J Bot. 2004;91:1922–9.PubMedGoogle Scholar
  18. Dane F, Liu J. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol. 2007;54:1255–65.Google Scholar
  19. Dane F, Hawkins LK, Norton JD, Kwon YS, Om YH. New resistance to race 2 of Fusarium oxysporum f.sp. niveum in watermelon. Cucurb Genet Coop Rep. 1998;21:37–9.Google Scholar
  20. Davis AR, Levi A, Tetteh A, Wehner T, Russo V, Pitrat M. Evaluation of watermelon and related species for resistance to race 1W Powdery Mildew. J Am Soc Hort Sci. 2007;132:790–5.Google Scholar
  21. de Silva ML, Queiros MA, Ferreira MAJF, Busco GSC. Morphological and molecular characterization of watermelon. Hortic Bras. 2006;24:405–9.Google Scholar
  22. De Winter B. Notes on African plants. Cucurbitaceae. A new species of Citrullus (Benincaseae) from the Namib Desert, Namibia. Bothalia. 1990;20:209–11.Google Scholar
  23. El Mekki MMD. Effect of variety and some cultural practices on yield, quality, cracking and blossom end rot of watermelon (Citrullus lanatus). MSc Thesis. University of Gezira, Faculty of Agricultural Science, Sudan; 1991.Google Scholar
  24. El Mekki MMD. Blossum-end rot (BER) and cracking in watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai. Cucurb Genet Coop Rep. 1992;15:69–70.Google Scholar
  25. Elbekkay M, Laarayedh L, Lamari R, Hamza H, Ferchichi A. Characterization of several local cultivars of watermelon collected from arid region in Tunisia. J Arid Land Stud. 2009;19:2005–8.Google Scholar
  26. Fursa TB. K sistematike roda Citrullus Schrad. (On the taxonomy of genus Citrullus Schrad.). Botanicheskii Zh. 1972;57:31–41.Google Scholar
  27. Fursa TB. Novyi vid arbuza Citrullus mucosospermus (Fursa) Fursa (a new species of watermelon Citrullus mucosospermus (Fursa) Fursa.). Trudy Po Prikladnoi Botanike. Genetike i Selektsii. 1983;81:108–12.Google Scholar
  28. Gama RNCS, Santos CAF, de Dias CS, Souza FF. Molecular characterization of watermelon cultivars using microsatellite markers. Hortic Bras. 2013;31:522–7.Google Scholar
  29. Gbotto AA, Koffi KK, Fouha Bi ND, Doubi BIST, Tro HH, Baudooin J-P, Zoro Bi IA. Morphological diversity in oleaginous watermelon (Citrullus mucosospermus) from Nangui Abrogoua University germplasm collection. Afr J Biotechnol. 2016;15:917–29.Google Scholar
  30. Gichimu BM, Owuor BO, Mwai GN, Dida MM. Morphological characterization of some wild and cultivated watermelon (Citrullus spp.) accessions in Kenya. J Agric Biol Sci. 2009;4:10–8.Google Scholar
  31. Gillaspie AG, Wright JM. Evaluation of Citrullus sp. germplasm for resistance to watermelon mosaic virus 2. Plant Dis. 1993;77:352–4.Google Scholar
  32. Goda M. Diversity of local genetic resources of watermelon Citrullus lanatus (Thunb.) Matsum. and Nakai, in Sudan. MSc Thesis, Swedish Biodiversity Center, No. 35; 2007.Google Scholar
  33. Guner N. Papaya ringspot virus watermelon strain and Zucchini yellow mosaic virus resistance in watermelon. PhD Dissertation, Department of Horticultural Science, North Carolina State University, Raleigh; 2004. p. 257.Google Scholar
  34. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang H, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–8.PubMedGoogle Scholar
  35. Gusmini G, Wehner T. Foundations of yield improvement in watermelon. Crop Sci. 2005a;45:141–6.Google Scholar
  36. Gusmini G, Wehner T. Qualitative inheritance of rind pattern and flesh color in watermelon. J Hered. 2005b;97:177–85.Google Scholar
  37. Gusmini G, Wehner T, Jarret B. Inheritance of egusi seed type in watermelon. J Hered. 2004;95:268–70.PubMedGoogle Scholar
  38. Gusmini G, Song R, Wehner T. New sources of resistance to gummy stem blight in watermelon. Crop Sci. 2005;45:582–8.Google Scholar
  39. Hakimi F, El Madidi S. Variability of agro-morphological traits in some Moroccan watermelon landraces (Citrullus lanatus Thunb. Matsum & Nakai). Int J Curr Sci. 2015;17:90–6.Google Scholar
  40. Huh YC, Om YH, Lee JM. Utilization of Citrullus germplasm with resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Hortic. 2002;588:127–32.Google Scholar
  41. Huh YC, Solmaz I, Sari N. Morphological characterization of Korean and Turkish watermelon germplasm. Cucurbitaceae 2008. In: Pitrat M, editor. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 327–33.Google Scholar
  42. Hussain AI, Rathmore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad. (Bitter apple fruit): a review of its phyochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol. 2014;8:54–66.Google Scholar
  43. Hwang J, Kang J, Son B, Kim K, Park Y. Genetic diversity in watermelon cultivars and related species based on AFLPs and EST-SSRs. Notulae Botanicae Horti Agrobotanici. 2011a;39:285–92.Google Scholar
  44. Hwang JH, Ahn SG, Oh JY, Choi YW, Kang JS, Park YH. Functional characterization of watermelon (Citrullus lanatus) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci Hortic. 2011b;130:715–24.Google Scholar
  45. Idehen EO, Kehinde OB, Ariyo OJ. Numerical analysis of variation among Nigerian accessions of ‘egusi’ melon (Citrullus lanatus (Thunb.) Matsum. & Nakai). J Am Sci. 2007;3:7–15.Google Scholar
  46. Jarret RL, Newman M. Phylogenetic relationships among species of Citrullus and the placement of C. rehmii De Winter as determined by internal transcribed spacer (ITS) sequence heterogeneity. Genet Resour Crop Evol. 2000;47:215–22.Google Scholar
  47. Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK. Simple sequence repeats in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Genome. 1997;40:433–41.PubMedGoogle Scholar
  48. Jeffrey C. Cucurbitaceae. In: Milne-Redhead E, Polhill RM, editors. Flora of Tropical East Africa. Published under the Authority of the Minister for Overseas Development. London: Crown Agents for Oversea Governments and Administration; 1967.Google Scholar
  49. Jeffrey C. Cucurbitaceae. In: Hanelt P, editor. Mansfeld’s encyclopedia of agricultural and horticultural crops, vol. 3. Berlin: Springer; 2001. p. 1510–57.Google Scholar
  50. Jensen BD, Toure FM, Hamattal MA, Toure FA, Nantoume AD. Watermelons in the sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou region of Mali. Ethnobot Res Appl. 2011;9:151–62.Google Scholar
  51. Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A. Response of wild watermelon to drought stress: accumulation of an AtgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol. 2000;41:864–73.PubMedGoogle Scholar
  52. Kihara H. Triploid watermelons. Proc Am Soc Hort Sci. 1951;58:217–30.Google Scholar
  53. Kousik CS, Shepard BM, Hassell R, Levi A, Simmons AM. Potential sources of resistance to broad mites (Polyphagotarsonemus latus) in watermelon germplasm. HortScience. 2007;42:1539–46.Google Scholar
  54. Kousik CS, Adkins S, Turechek WW, Roberts PD. Sources of resistance in U.S. plant introductions (PI) to watermelon vine decline caused by Squash Vein Yellowing Virus. HortScience. 2009;44:256–62.Google Scholar
  55. Kousik CS, Ikerd J, Wechter WP, Harrison H, Levi A. Resistance to Phytophthora fruit rot of watermelon caused by Phytophthora capsici in U.S. Plant Introductions. HortScience. 2012a;47:1682–9.Google Scholar
  56. Kousik CS, Adkins S, Turechek WW, Webster C, Roberts PD. 392291-VDR, a watermelon germplasm line with resistance to Squash vein yellowing virus (SqVYV)-caused watermelon vine decline (WVD). HortScience. 2012b;47:1805–7.Google Scholar
  57. Kousik CS, Ling K, Adkins ST, Webster CG, Turechek W. Phytophthora fruit rot-resistant watermelon germplasm lines: USVL489-PFR, USVL782-PFR, USVL203-PFR, and USVL020-PFR. HortScience. 2014;49:101–4.Google Scholar
  58. Krasteva L. Watermelon genetic resources in Bulgaria. Acta Hortic. 2000;510:253–6.Google Scholar
  59. Kwon YS. Use of EST-SSR markers for genetic characterization of commercial watermelon varieties and hybrid seed purity testing. Seed Sci Technol. 2013;41:245–56.Google Scholar
  60. Kwon YS, Park EK, Lee WS, Yi SI, Bae KM, An JS, Kim HY. Genetic assessment of watermelon (Citrullus lanatus) varieties using SSR markers developed from Cucurbit species. Korean J Genet. 2007;29:137–46.Google Scholar
  61. Kwon YS, Oh YH, Yi SI, Kim HY, An JM, Yang SG, OK SH, Shin JS. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes Genom. 2010;32:115–22.Google Scholar
  62. Laghetti G, Hammer K. The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. & Nakai subsp. lanatus var. citroides (Bailey) Mansf. Ex Greb.) a traditional and neglected crop. Genet Resour Crop Evol. 2007;54:913–6.Google Scholar
  63. Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, Massey L, Levi A. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet. 2014;127:2105–15.PubMedGoogle Scholar
  64. Larcher W. Plants under stress. In:Physiological plant ecology. Berlin: Springer; 1995. p. 321–448.Google Scholar
  65. Lee SJ, Shin JS, Park KW, Hong YP. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thunb.) Mansf.] germplasm. Theor Appl Genet. 1996;92:719–25.PubMedGoogle Scholar
  66. Levi A, Thomas CE. Polymorphisms among chloroplast and mitochondrial genomes of Citrullus species and subspecies. Genet Resour Crop Evol. 2005;52:609–17.Google Scholar
  67. Levi A, Thomas CE. DNA markers from different linkage regions of watermelon genome useful in differentiating among closely related watermelon genotypes. HortScience. 2007;42:210–4.Google Scholar
  68. Levi A, Thomas CE, Keinath AP, Wehner TC. Estimation of genetic diversity among Citrullus accessions using RAPD markers. Acta Hortic. 2000;510:385–90.Google Scholar
  69. Levi A, Thomas CE, Keinath AP, Wehner TC. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol. 2001a;48:559–66.Google Scholar
  70. Levi A, Thomas CE, Wehner TC, Zhang X. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience. 2001b;36:1096–101.Google Scholar
  71. Levi A, Thomas CE, Joobeur T, Zhang X, Davis A. A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides x C. lanatus var. lanatus) x C. colocynthis. Theor Appl Genet. 2002;105:555–63.PubMedGoogle Scholar
  72. Levi A, Thomas CE, Newman M, Reddy OUK, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hort Sci. 2004;129:553–8.Google Scholar
  73. Levi A, Thomas CE, Thies JA, Simmons AM, Ling K, Harrison Jr HF. Novel watermelon breeding lines containing chloroplast and mitochondrial genomes derived from the desert species Citrullus colocynthis. HortScience. 2006;41:463–4.Google Scholar
  74. Levi A, Wechter P, Davis A. EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genet Res. 2008;7:16–32.Google Scholar
  75. Levi A, Hernandez L, Thimmapuram J, Donthu R, Wright C, Ali C, Wechter WP, Reddy U, Mikel M. Sequencing the genome of the heirloom watermelon cultivar Charleston Gray. XX Plant and Animal Genome Conference, San Diego; 2011a. p. P047.Google Scholar
  76. Levi A, Wechter WP, Massey LM, Carter L, Hopkins D. Genetic linkage map of Citrullus lanatus var. citroides chromosomal segments introgressed into the watermelon cultivar Crimson Sweet (Citrullus lanatus var. lanatus) genome. Am J Plant Sci. 2011b;2:93–110.Google Scholar
  77. Levi A, Thies JA, Wechter WP, Harrison HF, Simmons AL, Reddy UK, Nimmakayala P, Fei Z. High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol. 2013;60:427–40.Google Scholar
  78. Levi A, Coffey J, Massey L, Guner N, Oren E, Tadmor Y, Ling K. Resistance to papaya ringspot virus-watermelon strain (PRSV-W) in the desert watermelon Citrullus colocynthis. HortScience. 2016;51:4–7.Google Scholar
  79. Levi A, Simmons A, Massey L, Coffey J, Wechter PW, Jarret RL, Tadmor Y, Nimmakayala P, Reddy UK. Genetic Diversity in Citrullus colocynthis and its relationship with C. lanatus and C. ecirrhosus as determined using high frequency oligonucleotide–targeting active gene (HFO–TAG) markers. J Am Soc Hortic Sci. 2017 (in press).Google Scholar
  80. Maggs-Kolling GL, Christiansen JL. Variability in Namibian landraces of watermelon (Citrullus lanatus). Euphytica. 2003;132:251–8.Google Scholar
  81. Maggs-Kolling GL, Madsen S, Christiansen JL. A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genetic Resour Crop Evol. 2000;47:385–93.Google Scholar
  82. Maynard DN. An introduction to the watermelon. In: Maynard DN, editor. Watermelon characteristics, production and marketing. Alexandria: ASHS Press; 2001. p. 9–20.Google Scholar
  83. Mayr E. Change of genetic environment and evolution. In: Huxley J, editor. Evolution as a process. London: George Allen & Unwin; 1954.Google Scholar
  84. McGregor C. Citrullus lanatus germplasm of Southern Africa. Isr J Plant Sci. 2012;60:403–14.Google Scholar
  85. Meeuse ADJ. The Cucurbitaceae of southern Africa. Bothalia. 1962;8:1–111.Google Scholar
  86. Minsart LA, Zoro Bi IA, Dje Y, Baudoin JP, Jacquemart AL, Bertin P. Set up of simple sequence repeat markers and first investigation of the genetic diversity of West-African watermelon (Citrullus lanatus ssp. vulgaris oleaginous type). Genet Resour Crop Evol. 2011;58:805–14.Google Scholar
  87. Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Faith M, Nybom H. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas. 2010;147:142–53.PubMedGoogle Scholar
  88. Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Andersen SB, Nybom H. Genetic diversity among and within (Citrullus lanatus) landraces in Southern Africa. J Hortic Sci Biotechnol. 2011;86:353–8.Google Scholar
  89. Mujaju C, Sehic J, Nybom H. Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am J Plant Sci. 2013;4:1448.Google Scholar
  90. Munyenyembe P. Conservation of plant genetic resources of southern Africa: prospects and challenges. The 36th Session of the Food and Agricultural Organization (FAO) of the United Nations Conference, Rome; 2009.Google Scholar
  91. Nagy J. Description of the important cultivated watermelon varieties (In Hungarian). In: Nagy J, editor. Melon and watermelon. Budapest: Szaktudas Kiado Haz Rt.; 2005. p. 114–31.Google Scholar
  92. Nantoumé AD, Traore S, Christiansen JL, Andersen SB, Jensen BD. Traditional uses and cultivation of indigenous watermelons (Citrullus lanatus) in Mali. Int J Biodivers Conserv. 2012;4:461–71.Google Scholar
  93. Nantoumé AD, Andersen S, Jensen B. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite markers. Genet Resour Crop Evol. 2013;2129–2141Google Scholar
  94. Navot N, Zamir D. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol. 1987;156:61–7.Google Scholar
  95. Netzer D, Martyn RD. PI-296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f. sp. niveum. Plant Dis. 1989;73:518.Google Scholar
  96. Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Reddy UK. Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genet Res. 2010;8:16–25.Google Scholar
  97. Nimmakayala P, Vajja G, Gist RA, Tomason YR, Levi A, Reddy UK. Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation-specific polymorphisms across the genealogies. Euphytica. 2011;177:79–89.Google Scholar
  98. Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing used to characterize genome-wide diversity, linkage disequilibrium and selection sweep for worldwide cultivated watermelon. BMC Genomics. 2014;15:767.PubMedPubMedCentralGoogle Scholar
  99. Oyulu C. A quantitative and qualitative study of seed type in ‘Egusi’ (Colocynthis citrullus L.). Trop Sci. 1977;19:55–62.Google Scholar
  100. Paris HS. Origin and emergence of the sweet dessert watermelon Citrullus lanatus. Ann Bot. 2015;116:133–48.PubMedPubMedCentralGoogle Scholar
  101. Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis or archaeological specimens. Veg Hist Archaeobotany. 2016;25:405–14.Google Scholar
  102. Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, McGregor C. Mapping of the egusi seed trait locus (eg) and quantitative trait loci associated with seed oil percentage in watermelon. J Am Soc Hort Sci. 2012;137:311–5.Google Scholar
  103. Reddy UK, Aryal N, Islam-Faridi N, Tomason Y, Levi A, Nimmakayala P. Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol. 2013; doi: 10.1007/s10722-013-9976-1.Google Scholar
  104. Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, Reddy R, Tomason YR, Levi A, Wehner TC, Nimmakayala P. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2014a; doi: 10.1093/jhered/esu077.PubMedPubMedCentralGoogle Scholar
  105. Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, Vajja G, Reddy R, Abburi L, Wehner TC, Ronin Y, Korol A. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3: Genes|Genomes|Genetics. 2014b; doi: 10.1534/g3.114.012815.Google Scholar
  106. Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33.PubMedPubMedCentralGoogle Scholar
  107. Ren Y, Zhang J, Guo S, He H, Sun H, Tian S, Gong G, Zhang H, Xu Y. A tonoplast sugar transporter mediates sugar accumulation in dessert watermelon (Citrullus lanatus) fruit. XXV plant animal genome conference, San Diego; 2017.
  108. Renner SS, Chomicki G, Greuter W. (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon. 2014;63:941–2.Google Scholar
  109. Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160:315–21.PubMedGoogle Scholar
  110. Robinson RW, Decker-Walters DS. Cucurbits. Oxon: CAB International Publishing; 1997.Google Scholar
  111. Sain RS, Joshi P. Pollen fertility of interspecific F1 hybrids in genus Citrullus (Cucurbitaceae). Curr Sci. 2003;85:431–4.Google Scholar
  112. Sain RS, Joshi P, Divakara Sastry EV. Cytogenetic analysis of interspecific hybrids in genus Citrullus (Cucurbitaceae). Euphytica. 2002;128:205–10.Google Scholar
  113. Sari N, Solmaz I, Yetisir H, Unlu H. Watermelon genetic resources in Turkey and their characteristics. Acta Hortic. 2006;731:433–8.Google Scholar
  114. Sari N, Tan A, Yanmaz R, Yetisir H, Balkaya A, Solmaz I, Aykas L. General status of cucurbit genetic resources in Turkey. In: Pitrat M, editor. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 21–32.Google Scholar
  115. Shimotsuma M. Cytogenetic and evolutionary studies in the genus Citrullus. Seiken Ziho. 1963;15:23–4.Google Scholar
  116. Solmaz I, Sari N. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet Resour Crop Evol. 2009;56:173–88.Google Scholar
  117. Solmaz I, Sari N, Aka-Kacar Y, Yalcin-Mendi NY. The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet Resour Crop Evol. 2010;57:763–71.Google Scholar
  118. Solmaz I, Sari N, Kartal E, Yetisir H. Seed characteristics and seed-fruit correlation of Turkish watermelon germplasm. In: Sari N, Solmaz I, Aras N, editors. Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Antalya: University of Cukurova, ZiraatFakultesi. 2012. p. 340–5.Google Scholar
  119. Solmaz I, Aka Kacar Y, Sari N, Simsek O. Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turk J Agric For. 2016;40:407–19.Google Scholar
  120. Sowell G. An additional source of resistance to gummy stem blight in watermelon. Plant Dis Rep. 1975;59:413–5.Google Scholar
  121. Sowell G, Pointer GR. Gummy stem blight resistance in introduced watermelons. Plant Dis Rep. 1962;46:883–5.Google Scholar
  122. Sowell GJ, Rhodes BB, Norton JD. New sources of resistance to watermelon anthracnose. J Am Soc Hort Sci. 1980;105:197–9.Google Scholar
  123. Strange EB, Guner N, Pesic-Van Esbroeck Z, Wehner TC. Screening the watermelon germplasm collection for resistance to Papaya Ringspot Virus Type-W. Crop Sci. 2002;32:1324–30.Google Scholar
  124. Szamosi C, Solmaz I, Sarı N. Seed characteristics of Hungarian and Turkish watermelon genotypes. Proceedings of the 3rd Turkish Seed Congress, Kapadokya; 25–28 June 2008. p. 149–154.Google Scholar
  125. Szamosi C, Solmaz I, Sari N, Barsony C. Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) genetic resources. Genet Resour Crop Evol. 2009;56:1091–105.Google Scholar
  126. Taylor FW. The potential for the commercial utilization of indigenous plants in Botswana. In: Wickens GE, Goodin JR, Fields DV, editors. Plants for arid lands. London: George Allen & Unwin; 1985. p. 232–41.Google Scholar
  127. Tetteh AY, Wehner TC, Davis AR. Identifying resistance to powdery mildew race 2W in the USDA-ARS watermelon germplasm collection. Crop Sci. 2010;50:933–9.Google Scholar
  128. Tetteh AY, Wehner TC, Davis AR. Inheritance of resistance to the new race of powdery mildew in watermelon. Crop Sci. 2013;53:880–7.Google Scholar
  129. Thies JA, Levi A. Resistance of watermelon germplasm to the peanut root-knot nematode. HortScience. 2003;38:1417–21.Google Scholar
  130. Thies JA, Levi A. Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. HortScience. 2007;42:1530–3.Google Scholar
  131. Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis. 2010;94:1195–9.Google Scholar
  132. Thies J, Ariss JJ, Hassell R, Buckner S, Levi A. Accessions of Citrullus lanatus var citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience. 2015;50:4–8.Google Scholar
  133. Uluturk ZI, Frary A, Doganlar S. Determination of genetic diversity in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) germplasm. Aust J Crop Sci. 2011;5:1832–6.Google Scholar
  134. United States Department of Agriculture, National Agricultural Statistics Service. 2009.
  135. Verma M, Arya L. Development of EST-SSRs in watermelon (Citrullus lanatus) and their transferability to Cucumis. J Hortic Sci Biotechnol. 2008;83:732–6.Google Scholar
  136. Wechter WP, Kousik CS, McMillan ML, Levi A. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience. 2012;47:334–8.Google Scholar
  137. Wehner T. Watermelon. In: Prohens J, Nuez F, editors. Vegetables I: asteraceae, brassicaceae, chenopodicaceae, and cucurbitaceae. New York: Springer; 2008. p. 381–418.Google Scholar
  138. Wehner TC, Barrett C. Vegetable cultivar descriptions for North America, lists 1-26 Combined. Am Soc Hortic Sci. 1996.
  139. Wehner TC, Shetty NV, Elmstrom GW. Breeding and seed production. In: Maynard DN, editor. Watermelons. Characteristics, production, and marketing. Alexandria: ASHS Press; 2001. p. 21–73.Google Scholar
  140. Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, Liu G, Yao X, Kilan A. Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genet Resour: Characterization Utili. 2016;14:226–33.Google Scholar
  141. Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 2008;49:226–41.PubMedGoogle Scholar
  142. Zamir D, Navot N, Rudich J. Enzyme polymorphism in Citrullus lanatus and C. colocynthis in Israel and Sinai. Plant Syst Evol. 1984;146:163–70.Google Scholar
  143. Zhang XP, Rhodes BB, Skorupska H. RAPD molecular markers in watermelon. Cucurb Genet Coop Rep. 1994;17:116–9.Google Scholar
  144. Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling K-S. Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience. 2011;46:1245–8.Google Scholar
  145. Zhang H, Fan J, Guo S, Ren Y, Gong G, Zhang J. Genetic diversity, population structure, and formation of a core collection of 1197 Citrullus accessions. HortScience. 2016a;51:23–9.Google Scholar
  146. Zhang J, Guo S, Ren Y, Zhang H, Gong G, Zhou M, Wand G, Zong M, He H, Liu F, Xu Y. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 2016b; doi: 10.1111/nph.14257.PubMedCentralGoogle Scholar
  147. Zhao R. A history of food culture in China. New York: SCPG Publishing Co; 2015.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amnon Levi
    • 1
    Email author
  • Robert Jarret
    • 2
  • Shaker Kousik
    • 1
  • W. Patrick Wechter
    • 1
  • Padma Nimmakayala
    • 3
  • Umesh K. Reddy
    • 3
  1. 1.USDA/ARS, U.S. Vegetable LaboratoryCharlestonUSA
  2. 2.USDA/ARS, Plant Genetic Resources UnitGriffinUSA
  3. 3.Gus R. Douglass Institute and Department of BiologyWest Virginia State UniversityInstituteUSA

Personalised recommendations