Skip to main content

Genetic Resources of Watermelon

  • Chapter
  • First Online:
Genetics and Genomics of Cucurbitaceae

Abstract

As a result of many years of domestication and selection for desirable fruit quality, most of the modern dessert watermelon cultivars share a narrow genetic base. Africa is the center of origin and diversity of the genus Citrullus and is thus the focus of efforts to collect and conserve germplasm for enhancing dessert watermelons with resistance to diseases and pests. In addition to C. lanatus, accessions of several other species of Citrullus have been used as sources of disease and pest resistance. These are C. amarus (citron watermelon), which is native to southern Africa, C. mucosospermus (egusi watermelon) of sub-Saharan/western Africa origin, and C. colocynthis (colocynth) native to the deserts of northern Africa, the Middle East and Asia. Citrullus amarus, C. lanatus, and C. mucosospermus are readily intercrossed with one another and thus C. amarus and C. mucosospermus have at times been classified as subspecies or botanical varieties within C. lanatus. Genetic resources within Citrullus contain genes conferring resistance to a broad range of fungal diseases such as Fusarium wilt, anthracnose, gummy stem blight; oomycete diseases including Phytophthora capsici, powdery mildew, downy mildew; viruses such as the watermelon strain of Papaya ringspot virus, Zucchini yellow mosaic virus, and Squash vein yellowing virus (SqVYV); and insect pests such as root-knot nematodes, whiteflies, and mites. Watermelon germplasm collections are maintained in China, South Africa and Zimbabwe. The United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Plant Germplasm System (NPGS), maintains a large collection of watermelon and related Citrullus spp. germplasm. The USDA/ARS/NPGS, Germplasm Resources Information Network (GRIN) http://www.ars-grin.gov/npgs contains general information on accessions held within the USDA/NPGS collection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achigan-Dako GE, Enoch G, Fanou N, Kouke A, Avohou H, Vodouhe RS, Ahanchede A. Evaluation agronomique de trois espèces de Egusi (Cucurbitaceae) utilisées dans l’alimentation au Bénin et élaboration d’un modèle de prédiction du rendement. Biotechnol Agron Soc Environ. 2006;10:121–9.

    Google Scholar 

  • Achigan-Dako EG, Avohou ES, Linsoussi C, Ahanchede A, Vodouhe RS, Blattner FR. Phenetic characterization of egusi-type (C. mucosospermus). Genet Resour Crop Evol. 2015;62:1159–79.

    Google Scholar 

  • Akashi K, Miyake C, Yokota A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 2001;508:438–42.

    CAS  PubMed  Google Scholar 

  • Akusu MO, Kiin-Kabari DB. Comparative studies on the physicochemical and sensory properties of watermelon (Citrullus lanatus) and melon (Citrullus vulgaris) seed flours used in “egusi” soup preparation. J Food Res. 2015;4:1–6.

    Google Scholar 

  • Bailey LH. Three discussions in Cucurbitaceae. Gentes Herbarum. 1930;2:175–86.

    Google Scholar 

  • Bang H, Davis AR, Kim S, Laskover DI, King SR. Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc Hort Sci. 2010;135:362–8.

    Google Scholar 

  • Ben-Naim Y, Cohen Y. Inheritance of resistance to powdery mildew race 1W in watermelon. Phytopathology. 2015;105:1446–57.

    CAS  PubMed  Google Scholar 

  • Biles CL, Martyn RD, Wilson HD. Isozymes and general proteins from various watermelon cultivars and tissue types. HortScience. 1989;29:810–2.

    Google Scholar 

  • Boyhan G, Norton JD, Abrahams BR. Screening for resistance to anthracnose (race 2), gummy stem blight, and root knot nematode in watermelon germplasm. Cucurb Genet Coop Rep. 1994;17:106–10.

    Google Scholar 

  • Branham SE, Levi A, Farnham MW, Wechter WP. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. Theor Appl Genet. 2016; doi:10.1007/s00122-016-2813-0.

    Google Scholar 

  • Burkill HM. The useful plants of west tropical Africa. 2nd ed. Kew: Royal Botanic Gardens; 1985.

    Google Scholar 

  • Bush A. Citron melon for cash and condiment. Econ Bot. 1978;32:182–4.

    Google Scholar 

  • Che KP, Wang CY, Wang YG, Jin DM, Wang B, Xu Y, Kang GB, Zhang HY. Genetic assessment of watermelon germplasm using the AFLP technique. HortScience. 2003;38:81–4.

    CAS  Google Scholar 

  • Chomicki G, Renner SS. Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol. 2015;205:526–32.

    Google Scholar 

  • Coffey JL, Simmons AL, Shepard BM, Tadmor Y, Levi A. Potential sources of whitefly (Hemiptera: Aleyrodidae) resistance in desert watermelon (Citrullus colocynthis) Germplasm. HortScience. 2015;50:13–7.

    Google Scholar 

  • Dahl Jensen B, Maïga Touré F, Ag Hamattal M, Aya Touré F, Dolo Nantoumé A. Watermelons in the Sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou Region of Mali. Ethnobot Res Appl. 2011;9:151–62.

    Google Scholar 

  • Dane F, Lang P. Sequence variation at cpDNA regions of watermelons and related wild species: implications for evolution of Citrullus haplotypes. Am J Bot. 2004;91:1922–9.

    CAS  PubMed  Google Scholar 

  • Dane F, Liu J. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol. 2007;54:1255–65.

    CAS  Google Scholar 

  • Dane F, Hawkins LK, Norton JD, Kwon YS, Om YH. New resistance to race 2 of Fusarium oxysporum f.sp. niveum in watermelon. Cucurb Genet Coop Rep. 1998;21:37–9.

    Google Scholar 

  • Davis AR, Levi A, Tetteh A, Wehner T, Russo V, Pitrat M. Evaluation of watermelon and related species for resistance to race 1W Powdery Mildew. J Am Soc Hort Sci. 2007;132:790–5.

    Google Scholar 

  • de Silva ML, Queiros MA, Ferreira MAJF, Busco GSC. Morphological and molecular characterization of watermelon. Hortic Bras. 2006;24:405–9.

    CAS  Google Scholar 

  • De Winter B. Notes on African plants. Cucurbitaceae. A new species of Citrullus (Benincaseae) from the Namib Desert, Namibia. Bothalia. 1990;20:209–11.

    Google Scholar 

  • El Mekki MMD. Effect of variety and some cultural practices on yield, quality, cracking and blossom end rot of watermelon (Citrullus lanatus). MSc Thesis. University of Gezira, Faculty of Agricultural Science, Sudan; 1991.

    Google Scholar 

  • El Mekki MMD. Blossum-end rot (BER) and cracking in watermelon Citrullus lanatus (Thunb.) Matsum. & Nakai. Cucurb Genet Coop Rep. 1992;15:69–70.

    Google Scholar 

  • Elbekkay M, Laarayedh L, Lamari R, Hamza H, Ferchichi A. Characterization of several local cultivars of watermelon collected from arid region in Tunisia. J Arid Land Stud. 2009;19:2005–8.

    Google Scholar 

  • Fursa TB. K sistematike roda Citrullus Schrad. (On the taxonomy of genus Citrullus Schrad.). Botanicheskii Zh. 1972;57:31–41.

    Google Scholar 

  • Fursa TB. Novyi vid arbuza Citrullus mucosospermus (Fursa) Fursa (a new species of watermelon Citrullus mucosospermus (Fursa) Fursa.). Trudy Po Prikladnoi Botanike. Genetike i Selektsii. 1983;81:108–12.

    Google Scholar 

  • Gama RNCS, Santos CAF, de Dias CS, Souza FF. Molecular characterization of watermelon cultivars using microsatellite markers. Hortic Bras. 2013;31:522–7.

    Google Scholar 

  • Gbotto AA, Koffi KK, Fouha Bi ND, Doubi BIST, Tro HH, Baudooin J-P, Zoro Bi IA. Morphological diversity in oleaginous watermelon (Citrullus mucosospermus) from Nangui Abrogoua University germplasm collection. Afr J Biotechnol. 2016;15:917–29.

    Google Scholar 

  • Gichimu BM, Owuor BO, Mwai GN, Dida MM. Morphological characterization of some wild and cultivated watermelon (Citrullus spp.) accessions in Kenya. J Agric Biol Sci. 2009;4:10–8.

    Google Scholar 

  • Gillaspie AG, Wright JM. Evaluation of Citrullus sp. germplasm for resistance to watermelon mosaic virus 2. Plant Dis. 1993;77:352–4.

    Google Scholar 

  • Goda M. Diversity of local genetic resources of watermelon Citrullus lanatus (Thunb.) Matsum. and Nakai, in Sudan. MSc Thesis, Swedish Biodiversity Center, No. 35; 2007.

    Google Scholar 

  • Guner N. Papaya ringspot virus watermelon strain and Zucchini yellow mosaic virus resistance in watermelon. PhD Dissertation, Department of Horticultural Science, North Carolina State University, Raleigh; 2004. p. 257.

    Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang H, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45:51–8.

    CAS  PubMed  Google Scholar 

  • Gusmini G, Wehner T. Foundations of yield improvement in watermelon. Crop Sci. 2005a;45:141–6.

    Google Scholar 

  • Gusmini G, Wehner T. Qualitative inheritance of rind pattern and flesh color in watermelon. J Hered. 2005b;97:177–85.

    Google Scholar 

  • Gusmini G, Wehner T, Jarret B. Inheritance of egusi seed type in watermelon. J Hered. 2004;95:268–70.

    CAS  PubMed  Google Scholar 

  • Gusmini G, Song R, Wehner T. New sources of resistance to gummy stem blight in watermelon. Crop Sci. 2005;45:582–8.

    Google Scholar 

  • Hakimi F, El Madidi S. Variability of agro-morphological traits in some Moroccan watermelon landraces (Citrullus lanatus Thunb. Matsum & Nakai). Int J Curr Sci. 2015;17:90–6.

    Google Scholar 

  • Huh YC, Om YH, Lee JM. Utilization of Citrullus germplasm with resistance to Fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Hortic. 2002;588:127–32.

    Google Scholar 

  • Huh YC, Solmaz I, Sari N. Morphological characterization of Korean and Turkish watermelon germplasm. Cucurbitaceae 2008. In: Pitrat M, editor. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 327–33.

    Google Scholar 

  • Hussain AI, Rathmore HA, Sattar MZ, Chatha SA, Sarker SD, Gilani AH. Citrullus colocynthis (L.) Schrad. (Bitter apple fruit): a review of its phyochemistry, pharmacology, traditional uses and nutritional potential. J Ethnopharmacol. 2014;8:54–66.

    Google Scholar 

  • Hwang J, Kang J, Son B, Kim K, Park Y. Genetic diversity in watermelon cultivars and related species based on AFLPs and EST-SSRs. Notulae Botanicae Horti Agrobotanici. 2011a;39:285–92.

    CAS  Google Scholar 

  • Hwang JH, Ahn SG, Oh JY, Choi YW, Kang JS, Park YH. Functional characterization of watermelon (Citrullus lanatus) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci Hortic. 2011b;130:715–24.

    CAS  Google Scholar 

  • Idehen EO, Kehinde OB, Ariyo OJ. Numerical analysis of variation among Nigerian accessions of ‘egusi’ melon (Citrullus lanatus (Thunb.) Matsum. & Nakai). J Am Sci. 2007;3:7–15.

    Google Scholar 

  • Jarret RL, Newman M. Phylogenetic relationships among species of Citrullus and the placement of C. rehmii De Winter as determined by internal transcribed spacer (ITS) sequence heterogeneity. Genet Resour Crop Evol. 2000;47:215–22.

    Google Scholar 

  • Jarret RL, Merrick LC, Holms T, Evans J, Aradhya MK. Simple sequence repeats in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]. Genome. 1997;40:433–41.

    CAS  PubMed  Google Scholar 

  • Jeffrey C. Cucurbitaceae. In: Milne-Redhead E, Polhill RM, editors. Flora of Tropical East Africa. Published under the Authority of the Minister for Overseas Development. London: Crown Agents for Oversea Governments and Administration; 1967.

    Google Scholar 

  • Jeffrey C. Cucurbitaceae. In: Hanelt P, editor. Mansfeld’s encyclopedia of agricultural and horticultural crops, vol. 3. Berlin: Springer; 2001. p. 1510–57.

    Google Scholar 

  • Jensen BD, Toure FM, Hamattal MA, Toure FA, Nantoume AD. Watermelons in the sand of Sahara: cultivation and use of indigenous landraces in the Tombouctou region of Mali. Ethnobot Res Appl. 2011;9:151–62.

    Google Scholar 

  • Kawasaki S, Miyake C, Kohchi T, Fujii S, Uchida M, Yokota A. Response of wild watermelon to drought stress: accumulation of an AtgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol. 2000;41:864–73.

    CAS  PubMed  Google Scholar 

  • Kihara H. Triploid watermelons. Proc Am Soc Hort Sci. 1951;58:217–30.

    Google Scholar 

  • Kousik CS, Shepard BM, Hassell R, Levi A, Simmons AM. Potential sources of resistance to broad mites (Polyphagotarsonemus latus) in watermelon germplasm. HortScience. 2007;42:1539–46.

    Google Scholar 

  • Kousik CS, Adkins S, Turechek WW, Roberts PD. Sources of resistance in U.S. plant introductions (PI) to watermelon vine decline caused by Squash Vein Yellowing Virus. HortScience. 2009;44:256–62.

    Google Scholar 

  • Kousik CS, Ikerd J, Wechter WP, Harrison H, Levi A. Resistance to Phytophthora fruit rot of watermelon caused by Phytophthora capsici in U.S. Plant Introductions. HortScience. 2012a;47:1682–9.

    Google Scholar 

  • Kousik CS, Adkins S, Turechek WW, Webster C, Roberts PD. 392291-VDR, a watermelon germplasm line with resistance to Squash vein yellowing virus (SqVYV)-caused watermelon vine decline (WVD). HortScience. 2012b;47:1805–7.

    Google Scholar 

  • Kousik CS, Ling K, Adkins ST, Webster CG, Turechek W. Phytophthora fruit rot-resistant watermelon germplasm lines: USVL489-PFR, USVL782-PFR, USVL203-PFR, and USVL020-PFR. HortScience. 2014;49:101–4.

    Google Scholar 

  • Krasteva L. Watermelon genetic resources in Bulgaria. Acta Hortic. 2000;510:253–6.

    Google Scholar 

  • Kwon YS. Use of EST-SSR markers for genetic characterization of commercial watermelon varieties and hybrid seed purity testing. Seed Sci Technol. 2013;41:245–56.

    Google Scholar 

  • Kwon YS, Park EK, Lee WS, Yi SI, Bae KM, An JS, Kim HY. Genetic assessment of watermelon (Citrullus lanatus) varieties using SSR markers developed from Cucurbit species. Korean J Genet. 2007;29:137–46.

    CAS  Google Scholar 

  • Kwon YS, Oh YH, Yi SI, Kim HY, An JM, Yang SG, OK SH, Shin JS. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes Genom. 2010;32:115–22.

    CAS  Google Scholar 

  • Laghetti G, Hammer K. The Corsican citron melon (Citrullus lanatus (Thunb.) Matsum. & Nakai subsp. lanatus var. citroides (Bailey) Mansf. Ex Greb.) a traditional and neglected crop. Genet Resour Crop Evol. 2007;54:913–6.

    Google Scholar 

  • Lambel S, Lanini B, Vivoda E, Fauve J, Wechter WP, Harris-Shultz KR, Massey L, Levi A. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery. Theor Appl Genet. 2014;127:2105–15.

    CAS  PubMed  Google Scholar 

  • Larcher W. Plants under stress. In:Physiological plant ecology. Berlin: Springer; 1995. p. 321–448.

    Google Scholar 

  • Lee SJ, Shin JS, Park KW, Hong YP. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thunb.) Mansf.] germplasm. Theor Appl Genet. 1996;92:719–25.

    CAS  PubMed  Google Scholar 

  • Levi A, Thomas CE. Polymorphisms among chloroplast and mitochondrial genomes of Citrullus species and subspecies. Genet Resour Crop Evol. 2005;52:609–17.

    CAS  Google Scholar 

  • Levi A, Thomas CE. DNA markers from different linkage regions of watermelon genome useful in differentiating among closely related watermelon genotypes. HortScience. 2007;42:210–4.

    CAS  Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC. Estimation of genetic diversity among Citrullus accessions using RAPD markers. Acta Hortic. 2000;510:385–90.

    Google Scholar 

  • Levi A, Thomas CE, Keinath AP, Wehner TC. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol. 2001a;48:559–66.

    Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience. 2001b;36:1096–101.

    CAS  Google Scholar 

  • Levi A, Thomas CE, Joobeur T, Zhang X, Davis A. A genetic linkage map for watermelon derived from a testcross population: (Citrullus lanatus var. citroides x C. lanatus var. lanatus) x C. colocynthis. Theor Appl Genet. 2002;105:555–63.

    CAS  PubMed  Google Scholar 

  • Levi A, Thomas CE, Newman M, Reddy OUK, Zhang X, Xu Y. ISSR and AFLP markers differ among American watermelon cultivars with limited genetic diversity. J Am Soc Hort Sci. 2004;129:553–8.

    CAS  Google Scholar 

  • Levi A, Thomas CE, Thies JA, Simmons AM, Ling K, Harrison Jr HF. Novel watermelon breeding lines containing chloroplast and mitochondrial genomes derived from the desert species Citrullus colocynthis. HortScience. 2006;41:463–4.

    CAS  Google Scholar 

  • Levi A, Wechter P, Davis A. EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genet Res. 2008;7:16–32.

    Google Scholar 

  • Levi A, Hernandez L, Thimmapuram J, Donthu R, Wright C, Ali C, Wechter WP, Reddy U, Mikel M. Sequencing the genome of the heirloom watermelon cultivar Charleston Gray. XX Plant and Animal Genome Conference, San Diego; 2011a. p. P047.

    Google Scholar 

  • Levi A, Wechter WP, Massey LM, Carter L, Hopkins D. Genetic linkage map of Citrullus lanatus var. citroides chromosomal segments introgressed into the watermelon cultivar Crimson Sweet (Citrullus lanatus var. lanatus) genome. Am J Plant Sci. 2011b;2:93–110.

    CAS  Google Scholar 

  • Levi A, Thies JA, Wechter WP, Harrison HF, Simmons AL, Reddy UK, Nimmakayala P, Fei Z. High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol. 2013;60:427–40.

    CAS  Google Scholar 

  • Levi A, Coffey J, Massey L, Guner N, Oren E, Tadmor Y, Ling K. Resistance to papaya ringspot virus-watermelon strain (PRSV-W) in the desert watermelon Citrullus colocynthis. HortScience. 2016;51:4–7.

    CAS  Google Scholar 

  • Levi A, Simmons A, Massey L, Coffey J, Wechter PW, Jarret RL, Tadmor Y, Nimmakayala P, Reddy UK. Genetic Diversity in Citrullus colocynthis and its relationship with C. lanatus and C. ecirrhosus as determined using high frequency oligonucleotide–targeting active gene (HFO–TAG) markers. J Am Soc Hortic Sci. 2017 (in press).

    Google Scholar 

  • Maggs-Kolling GL, Christiansen JL. Variability in Namibian landraces of watermelon (Citrullus lanatus). Euphytica. 2003;132:251–8.

    Google Scholar 

  • Maggs-Kolling GL, Madsen S, Christiansen JL. A phenetic analysis of morphological variation in Citrullus lanatus in Namibia. Genetic Resour Crop Evol. 2000;47:385–93.

    Google Scholar 

  • Maynard DN. An introduction to the watermelon. In: Maynard DN, editor. Watermelon characteristics, production and marketing. Alexandria: ASHS Press; 2001. p. 9–20.

    Google Scholar 

  • Mayr E. Change of genetic environment and evolution. In: Huxley J, editor. Evolution as a process. London: George Allen & Unwin; 1954.

    Google Scholar 

  • McGregor C. Citrullus lanatus germplasm of Southern Africa. Isr J Plant Sci. 2012;60:403–14.

    Google Scholar 

  • Meeuse ADJ. The Cucurbitaceae of southern Africa. Bothalia. 1962;8:1–111.

    Google Scholar 

  • Minsart LA, Zoro Bi IA, Dje Y, Baudoin JP, Jacquemart AL, Bertin P. Set up of simple sequence repeat markers and first investigation of the genetic diversity of West-African watermelon (Citrullus lanatus ssp. vulgaris oleaginous type). Genet Resour Crop Evol. 2011;58:805–14.

    Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Faith M, Nybom H. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. Hereditas. 2010;147:142–53.

    CAS  PubMed  Google Scholar 

  • Mujaju C, Sehic J, Werlemark G, Garkava-Gustavsson L, Andersen SB, Nybom H. Genetic diversity among and within (Citrullus lanatus) landraces in Southern Africa. J Hortic Sci Biotechnol. 2011;86:353–8.

    Google Scholar 

  • Mujaju C, Sehic J, Nybom H. Assessment of EST-SSR markers for evaluating genetic diversity in watermelon accessions from Zimbabwe. Am J Plant Sci. 2013;4:1448.

    Google Scholar 

  • Munyenyembe P. Conservation of plant genetic resources of southern Africa: prospects and challenges. The 36th Session of the Food and Agricultural Organization (FAO) of the United Nations Conference, Rome; 2009.

    Google Scholar 

  • Nagy J. Description of the important cultivated watermelon varieties (In Hungarian). In: Nagy J, editor. Melon and watermelon. Budapest: Szaktudas Kiado Haz Rt.; 2005. p. 114–31.

    Google Scholar 

  • Nantoumé AD, Traore S, Christiansen JL, Andersen SB, Jensen BD. Traditional uses and cultivation of indigenous watermelons (Citrullus lanatus) in Mali. Int J Biodivers Conserv. 2012;4:461–71.

    Google Scholar 

  • Nantoumé AD, Andersen S, Jensen B. Genetic differentiation of watermelon landrace types in Mali revealed by microsatellite markers. Genet Resour Crop Evol. 2013;2129–2141

    Google Scholar 

  • Navot N, Zamir D. Isozyme and seed protein phylogeny of the genus Citrullus (Cucurbitaceae). Plant Syst Evol. 1987;156:61–7.

    Google Scholar 

  • Netzer D, Martyn RD. PI-296341, a source of resistance in watermelon to race 2 of Fusarium oxysporum f. sp. niveum. Plant Dis. 1989;73:518.

    Google Scholar 

  • Nimmakayala P, Tomason YR, Jeong J, Ponniah SK, Karunathilake A, Levi A, Perumal R, Reddy UK. Genetic reticulation and interrelationships among Citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles. Plant Genet Res. 2010;8:16–25.

    CAS  Google Scholar 

  • Nimmakayala P, Vajja G, Gist RA, Tomason YR, Levi A, Reddy UK. Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation-specific polymorphisms across the genealogies. Euphytica. 2011;177:79–89.

    CAS  Google Scholar 

  • Nimmakayala P, Levi A, Abburi L, Abburi VL, Tomason YR, Saminathan T, Vajja VG, Malkaram S, Reddy R, Wehner TC, Reddy UK. Single nucleotide polymorphisms generated by genotyping by sequencing used to characterize genome-wide diversity, linkage disequilibrium and selection sweep for worldwide cultivated watermelon. BMC Genomics. 2014;15:767.

    PubMed  PubMed Central  Google Scholar 

  • Oyulu C. A quantitative and qualitative study of seed type in ‘Egusi’ (Colocynthis citrullus L.). Trop Sci. 1977;19:55–62.

    Google Scholar 

  • Paris HS. Origin and emergence of the sweet dessert watermelon Citrullus lanatus. Ann Bot. 2015;116:133–48.

    PubMed  PubMed Central  Google Scholar 

  • Paris HS. Overview of the origins and history of the five major cucurbit crops: issues for ancient DNA analysis or archaeological specimens. Veg Hist Archaeobotany. 2016;25:405–14.

    Google Scholar 

  • Prothro J, Sandlin K, Gill R, Bachlava E, White V, Knapp SJ, McGregor C. Mapping of the egusi seed trait locus (eg) and quantitative trait loci associated with seed oil percentage in watermelon. J Am Soc Hort Sci. 2012;137:311–5.

    Google Scholar 

  • Reddy UK, Aryal N, Islam-Faridi N, Tomason Y, Levi A, Nimmakayala P. Cytomolecular characterization of rDNA distribution in various Citrullus species using fluorescent in situ hybridization. Genet Resour Crop Evol. 2013; doi:10.1007/s10722-013-9976-1.

    Google Scholar 

  • Reddy UK, Abburi L, Abburi VL, Saminathan T, Cantrell R, Vajja VG, Reddy R, Tomason YR, Levi A, Wehner TC, Nimmakayala P. A genome-wide scan of selective sweeps and association mapping of fruit traits using microsatellite markers in watermelon. J Hered. 2014a; doi:10.1093/jhered/esu077.

    PubMed  PubMed Central  Google Scholar 

  • Reddy UK, Nimmakayala P, Levi A, Abburi VL, Saminathan T, Tomason YR, Vajja G, Reddy R, Abburi L, Wehner TC, Ronin Y, Korol A. High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon. G3: Genes|Genomes|Genetics. 2014b; doi:10.1534/g3.114.012815.

    Google Scholar 

  • Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33.

    PubMed  PubMed Central  Google Scholar 

  • Ren Y, Zhang J, Guo S, He H, Sun H, Tian S, Gong G, Zhang H, Xu Y. A tonoplast sugar transporter mediates sugar accumulation in dessert watermelon (Citrullus lanatus) fruit. XXV plant animal genome conference, San Diego; 2017. http://www.intlpag.org/.

  • Renner SS, Chomicki G, Greuter W. (2313) Proposal to conserve the name Momordica lanata (Citrullus lanatus) (watermelon, Cucurbitaceae), with a conserved type, against Citrullus battich. Taxon. 2014;63:941–2.

    Google Scholar 

  • Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001;160:315–21.

    CAS  PubMed  Google Scholar 

  • Robinson RW, Decker-Walters DS. Cucurbits. Oxon: CAB International Publishing; 1997.

    Google Scholar 

  • Sain RS, Joshi P. Pollen fertility of interspecific F1 hybrids in genus Citrullus (Cucurbitaceae). Curr Sci. 2003;85:431–4.

    Google Scholar 

  • Sain RS, Joshi P, Divakara Sastry EV. Cytogenetic analysis of interspecific hybrids in genus Citrullus (Cucurbitaceae). Euphytica. 2002;128:205–10.

    CAS  Google Scholar 

  • Sari N, Solmaz I, Yetisir H, Unlu H. Watermelon genetic resources in Turkey and their characteristics. Acta Hortic. 2006;731:433–8.

    Google Scholar 

  • Sari N, Tan A, Yanmaz R, Yetisir H, Balkaya A, Solmaz I, Aykas L. General status of cucurbit genetic resources in Turkey. In: Pitrat M, editor. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Avignon: INRA; 2008. p. 21–32.

    Google Scholar 

  • Shimotsuma M. Cytogenetic and evolutionary studies in the genus Citrullus. Seiken Ziho. 1963;15:23–4.

    Google Scholar 

  • Solmaz I, Sari N. Characterization of watermelon (Citrullus lanatus) accessions collected from Turkey for morphological traits. Genet Resour Crop Evol. 2009;56:173–88.

    Google Scholar 

  • Solmaz I, Sari N, Aka-Kacar Y, Yalcin-Mendi NY. The genetic characterization of Turkish watermelon (Citrullus lanatus) accessions using RAPD markers. Genet Resour Crop Evol. 2010;57:763–71.

    CAS  Google Scholar 

  • Solmaz I, Sari N, Kartal E, Yetisir H. Seed characteristics and seed-fruit correlation of Turkish watermelon germplasm. In: Sari N, Solmaz I, Aras N, editors. Proceedings of the Xth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Antalya: University of Cukurova, ZiraatFakultesi. 2012. p. 340–5.

    Google Scholar 

  • Solmaz I, Aka Kacar Y, Sari N, Simsek O. Genetic diversity within Turkish watermelon [Citrullus lanatus (Thunb.) Matsumura & Nakai] accessions revealed by SSR and SRAP markers. Turk J Agric For. 2016;40:407–19.

    Google Scholar 

  • Sowell G. An additional source of resistance to gummy stem blight in watermelon. Plant Dis Rep. 1975;59:413–5.

    Google Scholar 

  • Sowell G, Pointer GR. Gummy stem blight resistance in introduced watermelons. Plant Dis Rep. 1962;46:883–5.

    Google Scholar 

  • Sowell GJ, Rhodes BB, Norton JD. New sources of resistance to watermelon anthracnose. J Am Soc Hort Sci. 1980;105:197–9.

    Google Scholar 

  • Strange EB, Guner N, Pesic-Van Esbroeck Z, Wehner TC. Screening the watermelon germplasm collection for resistance to Papaya Ringspot Virus Type-W. Crop Sci. 2002;32:1324–30.

    Google Scholar 

  • Szamosi C, Solmaz I, Sarı N. Seed characteristics of Hungarian and Turkish watermelon genotypes. Proceedings of the 3rd Turkish Seed Congress, Kapadokya; 25–28 June 2008. p. 149–154.

    Google Scholar 

  • Szamosi C, Solmaz I, Sari N, Barsony C. Morphological characterization of Hungarian and Turkish watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) genetic resources. Genet Resour Crop Evol. 2009;56:1091–105.

    Google Scholar 

  • Taylor FW. The potential for the commercial utilization of indigenous plants in Botswana. In: Wickens GE, Goodin JR, Fields DV, editors. Plants for arid lands. London: George Allen & Unwin; 1985. p. 232–41.

    Google Scholar 

  • Tetteh AY, Wehner TC, Davis AR. Identifying resistance to powdery mildew race 2W in the USDA-ARS watermelon germplasm collection. Crop Sci. 2010;50:933–9.

    Google Scholar 

  • Tetteh AY, Wehner TC, Davis AR. Inheritance of resistance to the new race of powdery mildew in watermelon. Crop Sci. 2013;53:880–7.

    Google Scholar 

  • Thies JA, Levi A. Resistance of watermelon germplasm to the peanut root-knot nematode. HortScience. 2003;38:1417–21.

    Google Scholar 

  • Thies JA, Levi A. Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. HortScience. 2007;42:1530–3.

    Google Scholar 

  • Thies JA, Ariss JJ, Hassell RL, Olson S, Kousik CS, Levi A. Grafting for management of southern root-knot nematode, Meloidogyne incognita, in watermelon. Plant Dis. 2010;94:1195–9.

    Google Scholar 

  • Thies J, Ariss JJ, Hassell R, Buckner S, Levi A. Accessions of Citrullus lanatus var citroides are valuable rootstocks for grafted watermelon in fields infested with root-knot nematodes. HortScience. 2015;50:4–8.

    CAS  Google Scholar 

  • Uluturk ZI, Frary A, Doganlar S. Determination of genetic diversity in watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) germplasm. Aust J Crop Sci. 2011;5:1832–6.

    Google Scholar 

  • United States Department of Agriculture, National Agricultural Statistics Service. 2009. https://www.nass.usda.gov/Publications/Ag_Statistics/2009/.

  • Verma M, Arya L. Development of EST-SSRs in watermelon (Citrullus lanatus) and their transferability to Cucumis. J Hortic Sci Biotechnol. 2008;83:732–6.

    CAS  Google Scholar 

  • Wechter WP, Kousik CS, McMillan ML, Levi A. Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience. 2012;47:334–8.

    Google Scholar 

  • Wehner T. Watermelon. In: Prohens J, Nuez F, editors. Vegetables I: asteraceae, brassicaceae, chenopodicaceae, and cucurbitaceae. New York: Springer; 2008. p. 381–418.

    Google Scholar 

  • Wehner TC, Barrett C. Vegetable cultivar descriptions for North America, lists 1-26 Combined. Am Soc Hortic Sci. 1996. http://www2.ashs.org/cultivars/.

  • Wehner TC, Shetty NV, Elmstrom GW. Breeding and seed production. In: Maynard DN, editor. Watermelons. Characteristics, production, and marketing. Alexandria: ASHS Press; 2001. p. 21–73.

    Google Scholar 

  • Yang X, Ren R, Ray R, Xu J, Li P, Zhang M, Liu G, Yao X, Kilan A. Genetic diversity and population structure of core watermelon (Citrullus lanatus) genotypes using DArTseq-based SNPs. Plant Genet Resour: Characterization Utili. 2016;14:226–33.

    Google Scholar 

  • Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K. Programmed proteome response for drought avoidance/tolerance in the root of a C3 xerophyte (wild watermelon) under water deficits. Plant Cell Physiol. 2008;49:226–41.

    CAS  PubMed  Google Scholar 

  • Zamir D, Navot N, Rudich J. Enzyme polymorphism in Citrullus lanatus and C. colocynthis in Israel and Sinai. Plant Syst Evol. 1984;146:163–70.

    CAS  Google Scholar 

  • Zhang XP, Rhodes BB, Skorupska H. RAPD molecular markers in watermelon. Cucurb Genet Coop Rep. 1994;17:116–9.

    Google Scholar 

  • Zhang H, Gong G, Guo S, Ren Y, Xu Y, Ling K-S. Screening the USDA watermelon germplasm collection for drought tolerance at the seedling stage. HortScience. 2011;46:1245–8.

    CAS  Google Scholar 

  • Zhang H, Fan J, Guo S, Ren Y, Gong G, Zhang J. Genetic diversity, population structure, and formation of a core collection of 1197 Citrullus accessions. HortScience. 2016a;51:23–9.

    CAS  Google Scholar 

  • Zhang J, Guo S, Ren Y, Zhang H, Gong G, Zhou M, Wand G, Zong M, He H, Liu F, Xu Y. High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol. 2016b; doi:10.1111/nph.14257.

    PubMed Central  Google Scholar 

  • Zhao R. A history of food culture in China. New York: SCPG Publishing Co; 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Levi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Levi, A., Jarret, R., Kousik, S., Patrick Wechter, W., Nimmakayala, P., Reddy, U.K. (2017). Genetic Resources of Watermelon. In: Grumet, R., Katzir, N., Garcia-Mas, J. (eds) Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models, vol 20. Springer, Cham. https://doi.org/10.1007/7397_2016_34

Download citation

Publish with us

Policies and ethics