Phase Change and Phenology in Trees

  • Amy M. Brunner
  • Erika Varkonyi-Gasic
  • Rebecca C. Jones
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 21)


A long life span and large size are central characteristics of the tree growth habit. This growth habit requires a prolonged management of meristems as well as the long-term maintenance of above-ground tissues that are exposed to a variety of abiotic and biotic conditions, both seasonally recurring as well as episodic. Phase change and phenology, the timing of life cycle events, are key adaptive traits that alter meristem activity and identity as well as other aspects of growth and physiology. We review these processes and illustrate some of the diversity among taxa. The increasing genomic resources for trees and technological innovations are enabling the elucidation of the complex regulatory networks underpinning these processes as well as the variation within and between tree taxa. We address the current state of knowledge of environmental signals, genes and pathways regulating the multiple component processes of vegetative and reproductive phase change and phenology in trees.


Flowering time Dormancy Maturation Phase change Phenology 



The authors acknowledge the following support for their work on phase change and phenology: Office of Science (BER), U.S. Department of Energy, grant no DE-SC0012574 (AMB) and Australian Research Council grants DP130104220 and DP160101650 (RJ). New Zealand Ministry of Business, Innovation and Employment grant C10X0816 (EV-G)


  1. Aitken SN, Bemmels JB. Time to get moving: assisted gene flow of forest trees. Evol Appl. 2016;9(1):271–90.PubMedCrossRefGoogle Scholar
  2. Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S. Nano scale proteomics revealed the presence of regulatory proteins including three FT-Like proteins in phloem and xylem saps from rice. Plant Cell Physiol. 2008;49:767–90.PubMedCrossRefGoogle Scholar
  3. Alberto F, Bouffier L, Louvet JM, Lamy JB, Delzon S, Kremer A. Adaptive responses for seed and leaf phenology in natural populations of sessile oak along an altitudinal gradient. J Evol Biol. 2011;24(7):1442–54.PubMedCrossRefGoogle Scholar
  4. Alburquerque N, García-Montiel F, Carrillo A, Burgos L. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot. 2008;64(2):162–70.CrossRefGoogle Scholar
  5. Aldwinckle H. Flowering of apple seedlings 16–20 months after germination. HortScience. 1975;10(2):124–6.Google Scholar
  6. Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–13.PubMedCrossRefGoogle Scholar
  7. Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, Wissel K, Tandre K, Aspeborg H, Moyle R, Ohmiya Y, Bhalerao R, Brunner A, Gustafsson P, Karlsson J, Lundeberg J, Nilsson O, Sandberg G, Strauss S, Sundberg B, Uhlen M, Jansson S, Nilsson P. A transcriptional timetable of autumn senescence. Genome Biol. 2004;5(4).Google Scholar
  8. Avia K, Karkkainen K, Lagercrantz U, Savolainen O. Association of FLOWERING LOCUS T/TERMINAL FLOWER 1-like gene FTL2 expression with growth rhythm in Scots pine (Pinus sylvestris). New Phytol. 2014;204(1):159–70.PubMedCrossRefGoogle Scholar
  9. Axtell MJ, Bowman JL. Evolution of plant microRNAs and their targets. Trends Plant Sci. 2008;13(7):343–9. doi: 10.1016/j.tplants.2008.03.009.PubMedCrossRefGoogle Scholar
  10. Azeez A, Miskolczi P, Tylewicz S, Bhalerao RP. A tree ortholog of APETALA1 mediates photoperiodic control of seasonal growth. Curr Biol. 2014;24(7):717–24.PubMedCrossRefGoogle Scholar
  11. Baba K, Karlberg A, Schmidt J, Schrader J, Hvidsten TR, Bako L, Bhalerao RP. Activity-dormancy transition in the cambial meristem involves stage-specific modulation of auxin response in hybrid aspen. Proc Natl Acad Sci USA. 2011;108(8):3418–23.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Begum S, Nakaba S, Oribe Y, Kubo T, Funada R. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii × P-grandidentata). Ann Bot (London). 2007;100(3):439–47.CrossRefGoogle Scholar
  13. Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol Plant. 2013;147(1):46–54.PubMedCrossRefGoogle Scholar
  14. Benedict C, Skinner JS, Meng R, Chang YJ, Bhalerao R, Huner NPA, Finn CE, Chen THH, Hurry V. The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ. 2006;29(7):1259–72.PubMedCrossRefGoogle Scholar
  15. Benitez-Alfonso Y. Symplastic intercellular transport from a developmental perspective. J Exp Bot. 2014;65(7):1857–63.PubMedCrossRefGoogle Scholar
  16. Bernier G, Perilleux C. A physiological overview of the genetics of flowering time control. Plant Biotechnol J. 2005;3(1):3–16.PubMedCrossRefGoogle Scholar
  17. Bielenberg DG, Wang Y, Li ZG, Zhebentyayeva T, Fan SH, Reighard GL, Scorza R, Abbott AG. Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes. 2008;4(3):495–507.CrossRefGoogle Scholar
  18. Bobinac M, Batos B, Miljkovic D, Radulovic S. Polycyclism and Phenological Variability in the Common Oak (Quercus robur L.). Arch Biol Sci. 2012;64(1):97–105.CrossRefGoogle Scholar
  19. Bohlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science. 2006;312(5776):1040–3.PubMedCrossRefGoogle Scholar
  20. Bolotin M. Photoperiodic induction of precocious flowering in a woody species Eucalyptus occidentalis Endl. Bot Gaz. 1975;136(4):358–65.CrossRefGoogle Scholar
  21. Bond BJ. Age-related changes in photosynthesis of woody plants. Trends Plant Sci. 2000;5(8):349–53.PubMedCrossRefGoogle Scholar
  22. Borchert R, Rivera G. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol. 2001;21(4):213–21.PubMedCrossRefGoogle Scholar
  23. Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C. Insolation and photoperiodic control of tree development near the equator. New Phytol. 2015;205(1):7–13.PubMedCrossRefGoogle Scholar
  24. Boss PK, Thomas MR. Tendrils, inflorescences and fruitfulness: a molecular perspective. Aust J Grape Wine Res. 2000;6(2):168–74.CrossRefGoogle Scholar
  25. Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002;416(6883):847–50.PubMedCrossRefGoogle Scholar
  26. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–3.PubMedCrossRefGoogle Scholar
  27. Bratzel F, Turck F. Molecular memories in the regulation of seasonal flowering: from competence to cessation. Genome Biol. 2015;16.Google Scholar
  28. Brodribb T, Hill RS. A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Aust J Bot. 1993;41(3):293–305.CrossRefGoogle Scholar
  29. Brooker MIH, Kleinig DA. Field guide to eucalypts. Volume 1. South-eastern Australia. 3rd ed. Hawthorn, VIC: Bloomings Books; 2006.Google Scholar
  30. Brunner AM, Li JY, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH. Genetic containment of forest plantations. Tree Genet Genomes. 2007;3(2):75–100.CrossRefGoogle Scholar
  31. Brunner AM, Evans LM, Hsu CY, Sheng XY. Vernalization and the chilling requirement to exit bud dormancy: shared or separate regulation? Front Plant Sci. 2014;5:732.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Busov V, Carneros E, Yakovlev I. EARLY BUD-BREAK1 (EBB1) defines a conserved mechanism for control of bud-break in woody perennials. Plant Signal Behav. 2016;11(2):e1073873.PubMedCrossRefGoogle Scholar
  33. Calle Z, Schlumpberger BO, Piedrahita L, Leftin A, Hammer SA, Tye A, Borchert R. Seasonal variation in daily insolation induces synchronous bud break and flowering in the tropics. Trees (Struct Funct). 2010;24(5):865–77.CrossRefGoogle Scholar
  34. Cao K, Cui LR, Zhou XT, Ye L, Zou ZR, Deng SL. Four tomato FLOWERING LOCUS T-like proteins act antagonistically to regulate floral initiation. Front Plant Sci. 2016;6.Google Scholar
  35. Cardoso S, Sousa VB, Quilho T, Pereira H. Anatomical variation of teakwood from unmanaged mature plantations in East Timor. J Wood Sci. 2015;61(3):326–33.CrossRefGoogle Scholar
  36. Carmona MJ, Chaïb J, Martínez-Zapater JM, Thomas MR. A molecular genetic perspective of reproductive development in grapevine. J Exp Bot. 2008;59(10):2579–96.PubMedCrossRefGoogle Scholar
  37. Carvalho SD, Folta KM. Environmentally modified organisms – expanding genetic potential with light. Crit Rev Plant Sci. 2014;33(6):486–508.CrossRefGoogle Scholar
  38. Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen THH, Thomashow MF. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot. 2011;62(11):3807–19.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Castède S, Campoy JA, Le Dantec L, Quero-García J, Barreneche T, Wenden B, Dirlewanger E. Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium). PLoS One. 2015;10(11):e0143250.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chaikiattiyos S, Menzel CM, Rasmussen TS. Floral induction in tropical fruit-trees – effects of temperature and water-supply. J Hortic Sci. 1994;69(3):397–415.CrossRefGoogle Scholar
  41. Chen PM, Li PH. Induction of frost hardiness in stem cortical tissues of Cornus stolonifera Michx by water stress. 2. Biochemical changes. Plant Physiol. 1977;59(2):240–3.Google Scholar
  42. Chen YT, Shen CH, Lin WD, Chu HA, Huang BL, Kuo CI, Yeh KW, Huang LC, Chang IF. Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biol. 2013;15(1):27–36.PubMedCrossRefGoogle Scholar
  43. Chen Z, Yang X, Su XX, Rao P, Gao K, Lei BQ, An XM. Identification and expression analysis of APETALA1 homologues in poplar. Acta Physiol Plant. 2015;37(3).Google Scholar
  44. Chuine I. Why does phenology drive species distribution? Philos Trans R Soc Lond B Biol Sci. 2010;365(1555):3149–60.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Chutinanthakun T, Sekozawa Y, Sugaya S, Gemma H. Effect of bending and the joint tree training system on the expression levels of GA3- and GA2-oxidases during flower bud development in ‘Kiyo’ Japanese plum. Sci Hortic (Amsterdam). 2015;193:308–15.CrossRefGoogle Scholar
  46. Clapham DH, Dormling I, Ekberg I, Eriksson G, Qamaruddin M, Vince-Prue D. Latitudinal cline of requirement for far-red light for the photoperiodic control of budset and extension growth in Picea abies (Norway spruce). Physiol Plant. 1998;102(1):71–8.CrossRefGoogle Scholar
  47. Clune J, Mouret JB, Lipson H. The evolutionary origins of modularity. Proc Biol Sci. 2013;280(1755):20122863.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cockayne L. Observations concerning evolution, derived from ecological studies in New Zealand. Trans Proc R Soc New Zealand. 1911;44:1–50.Google Scholar
  49. Coleman GD, Chen THH, Fuchigami LH. Complementary-DNA cloning of poplar bark storage protein and control of its expression by photoperiod. Plant Physiol. 1992;98(2):687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Cooke JEK, Eriksson ME, Junttila O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ. 2012;35(10):1707–28.PubMedCrossRefGoogle Scholar
  51. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol. 2011;11.Google Scholar
  52. Critchfield WB. Leaf dimorphism in Populus trichocarpa. Am J Bot. 1960;47(8):699–711.CrossRefGoogle Scholar
  53. Davenport TL, Ying Z, Kulkarni V, White TL. Evidence for a translocatable florigenic promoter in mango. Sci Hortic. 2006;110(2):150–9.CrossRefGoogle Scholar
  54. Day ME, Greenwood MS, Diaz-Sala C. Age- and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol. 2002;22(8):507–13.PubMedCrossRefGoogle Scholar
  55. Demotes-Mainard S, Peron T, Corot A, Bertheloot J, Le Gourrierec J, Pelleschi-Travier S, Crespel L, Morel P, Huche-Thelier L, Boumaza R, Vian A, Guerin V, Leduc N, Sakr S. Plant responses to red and far-red lights, applications in horticulture. Environ Exp Bot. 2016;121:4–21.CrossRefGoogle Scholar
  56. Dicenta F, Garcia JE, Carbonell EA. Heritability of flowering, productivity and maturity in almond. J Hortic Sci. 1993;68(1):113–20.CrossRefGoogle Scholar
  57. Ding JH, Nilsson O. Molecular regulation of phenology in trees – because the seasons they are a-changin. Curr Opin Plant Biol. 2016;29:73–9.PubMedCrossRefGoogle Scholar
  58. Druart N, Johansson A, Baba K, Schrader J, Sjodin A, Bhalerao RR, Resman L, Trygg J, Moritz T, Bhalerao RP. Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J. 2007;50(4):557–73.PubMedCrossRefGoogle Scholar
  59. Egea J, Ortega E, Martinez-Gómez P, Dicenta F. Chilling and heat requirements of almond cultivars for flowering. Environ Exp Bot. 2003;50(1):79–85.Google Scholar
  60. Elliott S, Baker PJ, Borchert R. Leaf flushing during the dry season: the paradox of Asian monsoon forests. Glob Ecol Biogeogr. 2006;15(3):248–57.CrossRefGoogle Scholar
  61. Elo A, Lemmetyinen J, Novak A, Keinonen K, Porali I, Hassinen M, Sopanen T. BpMADS4 has a central role in inflorescence initiation in silver birch (Betula pendula). Physiol Plant. 2007;131(1):149–58.PubMedCrossRefGoogle Scholar
  62. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M. Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res. 2005;14(5):703–12.PubMedCrossRefGoogle Scholar
  63. Eriksson ME, Hoffman D, Kaduk M, Mauriat M, Moritz T. Transgenic hybrid aspen trees with increased gibberellin (GA) concentrations suggest that GA acts in parallel with FLOWERING LOCUS T2 to control shoot elongation. New Phytol. 2015;205(3):1288–95.PubMedCrossRefGoogle Scholar
  64. Espinosa-Ruiz A, Saxena S, Schmidt J, Mellerowicz E, Miskolczi P, Bako L, Bhalerao RP. Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen. Plant J. 2004;38(4):603–15.PubMedCrossRefGoogle Scholar
  65. Evans MMS, Poethig RS. Gibberellins promote vegetative phase change and reproductive maturity in maize. Plant Physiol. 1995;108(2):475–87.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen JG, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014;46(10):1089–96.PubMedCrossRefGoogle Scholar
  67. Fabbri A, Alerci L. Reproductive and vegetative bud differentiation in Olea europaea L. J Hortic Sci Biotech. 1999;74(4):522–7.CrossRefGoogle Scholar
  68. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol. 2010;185(4):917–30.PubMedCrossRefGoogle Scholar
  69. Farmer RE. Growth and assimilation rate of juvenile northern red oak – effects of light and temperature. Forest Sci. 1975;21(4):373–87.Google Scholar
  70. Fenner M. The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst. 1998;1(1):78–91.CrossRefGoogle Scholar
  71. Fernando DD, Zhang SL. Constitutive expression of the SAP1 gene from willow (Salix discolor) causes early flowering in Arabidopsis thaliana. Dev Genes Evol. 2006;216(1):19–28.PubMedCrossRefGoogle Scholar
  72. Finkelstein R. Abscisic Acid synthesis and response. Arabidopsis Book. 2013;11:e0166. doi: 10.1199/tab.0166.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Flachowsky H, Peil A, Sopanen T, Elo A, Hanke V. Overexpression of BpMADS4 from silver birch (Betula pendula Roth.) induces early-flowering in apple (Malus × domestica Borkh.). Plant Breed. 2007;126(2):137–45.CrossRefGoogle Scholar
  74. Fonti P, von Arx G, Garcia-Gonzalez I, Eilmann B, Sass-Klaassen U, Gartner H, Eckstein D. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 2010;185(1):42–53.PubMedCrossRefGoogle Scholar
  75. Foster T, Johnston R, Seleznyova A. A morphological and quantitative characterization of early floral development in apple (Malus × domestica Borkh.). Ann Bot (London). 2003;92(2):199–206.CrossRefGoogle Scholar
  76. Foster TM, Watson AE, van Hooijdonk BM, Schaffer RJ. Key flowering genes including FT-like genes are upregulated in the vasculature of apple dwarfing rootstocks. Tree Genet Genomes. 2014;10(1):189–202.CrossRefGoogle Scholar
  77. Foster TM, Celton JM, Chagne D, Tustin DS, Gardiner SE Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic Res. 2015. 2:15001. doi:ARTN15001. 10.1038/hortres.2015.1
  78. Fracheboud Y, Luquez V, Bjorken L, Sjodin A, Tuominen H, Jansson S. The control of autumn senescence in European aspen. Plant Physiol. 2009;149(4):1982–91.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Fraga MF, Canal MJ, Rodriguez R. Phase-change related epigenetic and physiological changes in Pinus radiata D. Don Planta. 2002;215(4):672–8.PubMedCrossRefGoogle Scholar
  80. Franklin KA, Toledo-Ortiz G, Pyott DE, Halliday KJ. Interaction of light and temperature signalling. J Exp Bot. 2014;65(11):2859–71.PubMedCrossRefGoogle Scholar
  81. Freiman A, Shlizerman L, Golobovitch S, Yablovitz Z, Korchinsky R, Cohen Y, Samach A, Chevreau E, Le Roux PM, Patocchi A, Flaishman MA. Development of a transgenic early flowering pear (Pyrus communis L.) genotype by RNAi silencing of PcTFL1-1 and PcTFL1-2. Planta. 2012;235(6):1239–51.PubMedCrossRefGoogle Scholar
  82. Freiman A, Golobovitch S, Yablovitz Z, Belausov E, Dahan Y, Peer R, Avraham L, Freiman Z, Evenor D, Reuveni M, Sobolev V, Edelman M, Shahak Y, Samach A, Flaishman MA. Expression of flowering locus T2 transgene from Pyrus communis L. delays dormancy and leaf senescence in Malus × domestica Borkh, and causes early flowering in tobacco. Plant Sci. 2015;241:164–76.PubMedCrossRefGoogle Scholar
  83. Frewen BE, Chen THH, Howe GT, Davis J, Rohde A, Boerjan W, Bradshaw HD. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics. 2000;154(2):837–45.PubMedPubMedCentralGoogle Scholar
  84. Garcia-Lopez MC, Vidoy I, Jimenez-Ruiz J, Munoz-Merida A, Fernandez-Ocana A, de la Rosa R, Bautista Barroso J, Navarro F, Trelles O, Beuzon CR, Barcelo A, Valpuesta V, Luque F. Genetic changes involved in the juvenile-to-adult transition in the shoot apex of Olea europaea L. occur years before the first flowering. Tree Genet Genomes. 2014;10(3):585–603.Google Scholar
  85. Gardner S, Drinnan A, Newbigin E, Ladiges P. Leaf ontogeny and morphology in Acacia Mill. (Mimosaceae). Muelleria. 2008;26(1):43–50.Google Scholar
  86. Giavalisco P, Kapitza K, Kolasa A, Buhtz A, Kehr J. Towards the proteome of Brassica napus phloem sap. Proteomics. 2006;6:896–909.PubMedCrossRefGoogle Scholar
  87. Goodger JQD, Choo TYS, Woodrow IE. Ontogenetic and temporal trajectories of chemical defence in a cyanogenic eucalypt. Oecologia. 2007;153(4):799–808. doi: 10.1007/s00442-007-0787-y.PubMedCrossRefGoogle Scholar
  88. Grainger J. Studies upon the time of flowering of plants: anatomical, floristic and phenological aspects OP the problem. Ann Appl Biol. 1939;26(4):684–704.CrossRefGoogle Scholar
  89. Gramzow L, Theissen G. Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. J Exp Zool Part B. 2015;324(4):353–62.CrossRefGoogle Scholar
  90. Greathouse DC, Laetsch WM, Phinney BO. Shoot-growth rhythm of a tropical tree, Theobroma cacao. Am J Bot. 1971;58(4):281–6.Google Scholar
  91. Greenham K, McClung CR. Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet. 2015;16(10):598–610.PubMedCrossRefGoogle Scholar
  92. Groover AT. What genes make a tree a tree? Trends Plant Sci. 2005;10(5):210–4.PubMedCrossRefGoogle Scholar
  93. Guak S, Neilsen D. Chill unit models for predicting dormancy completion of floral buds in apple and sweet cherry. Hortic Environ Biotechnol. 2013;54(1):29–36.CrossRefGoogle Scholar
  94. Guitton B, Kelner JJ, Velasco R, Gardiner SE, Chagne D, Costes E. Genetic control of biennial bearing in apple. J Exp Bot. 2012;63(1):131–49.PubMedCrossRefGoogle Scholar
  95. Guitton B, Kelner JJ, Celton JM, Sabau X, Renou JP, Chagne D, Costes E. Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biol. 2016;16:55.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Guo L, Dai J, Ranjitkar S, Yu H, Xu J, Luedeling E. Chilling and heat requirements for flowering in temperate fruit trees. Int J Biometeorol. 2014;58(6):1195–206.PubMedCrossRefGoogle Scholar
  97. Hackett WP. Juvenility, maturation, and rejuvenation in woody plants. Hortic Rev. 1985;7:109–55.Google Scholar
  98. Hansche P. Heritability of juvenility in peach. HortScience. 1986;21(5):1197–8.Google Scholar
  99. Hasan O, Reid JB. Reduction of generation time in Eucalyptus globulus. Plant Growth Regul. 1995;17(1):53–60.Google Scholar
  100. Heide OM. Growth and dormancy in Norway spruce ecotypes (Picea abies). 1. Interaction of photoperiod and temperature. Physiol Plant. 1974;30(1):1–12.Google Scholar
  101. Heide OM. High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiol. 2003;23(13):931–6.PubMedCrossRefGoogle Scholar
  102. Heide OM. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci Hortic (Amsterdam). 2008;115(3):309–14.CrossRefGoogle Scholar
  103. Heide OM. Temperature rather than photoperiod controls growth cessation and dormancy in Sorbus species. J Exp Bot. 2011;62(15):5397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Heide OM, Prestrud AK. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 2005;25(1):109–14.PubMedCrossRefGoogle Scholar
  105. Herrmann S, Recht S, Boenn M, Feldhahn L, Angay O, Fleischmann F, Tarkka MT, Grams EE, Buscot F. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. J Exp Bot. 2015;66(22):7113–27.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Hoenicka H, Nowitzki O, Hanelt D, Fladung M. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta. 2008;227(5):1001–11.PubMedCrossRefGoogle Scholar
  107. Hoenicka H, Lehnhardt D, Briones V, Nilsson O, Fladung M. Low temperatures are required to induce the development of fertile flowers in transgenic male and female early flowering poplar (Populus tremula L.). Tree Physiol. 2016;36(5):667–77.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Holeski LM, Hillstrom ML, Whitham TG, Lindroth RL. Relative importance of genetic, ontogenetic, induction, and seasonal variation in producing a multivariate defense phenotype in a foundation tree species. Oecologia. 2012;170(3):695–707.PubMedCrossRefGoogle Scholar
  109. Horstman A, Willemsen V, Boutilier K, Heidstra R. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci. 2014;19(3):146–57.PubMedCrossRefGoogle Scholar
  110. Howe GT, Gardner G, Hackett WP, Furnier GR. Phytochrome control of short-day-induced bud set in black cottonwood. Physiol Plant. 1996;97(1):95–103.CrossRefGoogle Scholar
  111. Howe GT, Davis J, Jeknic Z, Chen THH, Frewen B, Bradshaw HD, Saruul P. Physiological and genetic approaches to studying endodormancy-related traits in Populus. HortScience. 1999;34(7):1174–84.Google Scholar
  112. Hsu CY, Liu YX, Luthe DS, Yuceer C. Poplar FT2 shortens the juvenile phase and promotes seasonal flowering. Plant Cell. 2006;18(8):1846–61.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Hsu CY, Adams JP, Kim HJ, No K, Ma CP, Strauss SH, Drnevich J, Vandervelde L, Ellis JD, Rice BM, Wickett N, Gunter LE, Tuskan GA, Brunner AM, Page GP, Barakat A, Carlson JE, dePamphilis CW, Luthe DS, Yuceer C. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA. 2011;108(26):10756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Hsu CY, Adams JP, No K, Liang HY, Meilan R, Pechanova O, Barakat A, Carlson JE, Page GP, Yuceer C. Overexpression of CONSTANS and CO1 and CO2 fails to alter normal reproductive onset and fall bud set in woody perennial poplar. PLoS One. 2012;7(9):e45448.Google Scholar
  115. Huang HJ, Wang S, Jiang J, Liu GF, Li HY, Chen S, Xu HW. Overexpression of BpAP1 induces early flowering and produces dwarfism in Betula platyphylla × Betula pendula. Physiol Plant. 2014;151(4):495–506.PubMedCrossRefGoogle Scholar
  116. Hudson CJ, Freeman JS, Jones RC, Potts BM, Wong MML, Weller JL, Hecht VFG, Poethig RS, Vaillancourt RE. Genetic control of heterochrony in Eucalyptus globulus. G3 (Genes Genomes Genetics). 2014;4(7):1235–45.PubMedCentralGoogle Scholar
  117. Huijser P, Schmid M. The control of developmental phase transitions in plants. Development. 2011;138(19):4117–29.PubMedCrossRefGoogle Scholar
  118. Hussain S, Niu Q, Yang F, Hussain N, Teng Y. The possible role of chilling in floral and vegetative bud dormancy release in Pyrus pyrifolia. Biol Plant. 2015;59(4):726–34.CrossRefGoogle Scholar
  119. Ibanez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME. Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees. Plant Physiol. 2010;153(4):1823–33.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ikegami H, Nogata H, Inoue Y, Himeno S, Yakushiji H, Hirata C, Hirashima K, Mori M, Awamura M, Nakahara T. Expression of FcFT1, a FLOWERING LOCUS T-like gene, is regulated by light and associated with inflorescence differentiation in fig (Ficus carica L.). BMC Plant Biol. 2013;13(1):1–12.CrossRefGoogle Scholar
  121. Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide polymoirphism and phenotypic associations within and around the phytochrome B2 locus in European aspen (Populus tremula, Salicaceae). Genetics. 2008;178(4):2217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Inigo S, Alvarez MJ, Strasser B, Califano A, Cerdan PD. PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis. Plant J. 2012;69(4):601–12.PubMedCrossRefGoogle Scholar
  123. Islam N, Li G, Garrett WM, Lin R, Sriram G, Cooper B, Coleman GD. Proteomics of nitrogen remobilization in poplar bark. J Proteome Res. 2015;14(2):1112–26.PubMedCrossRefGoogle Scholar
  124. Israelsson M, Mellerowicz E, Chono M, Gullberg J, Moritz T. Cloning and overproduction of gibberellin 3-oxidase in hybrid aspen trees. Effects of gibberellin homeostasis and development. Plant Physiol. 2004;135(1):221–30.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Jaeger KE, Pullen N, Lamzin S, Morris RJ, Wigge PA. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis. Plant Cell. 2013;25(3):820–33.PubMedPubMedCentralCrossRefGoogle Scholar
  126. James SA, Bell DT. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp globulus (Myrtaceae). Aust J Bot. 2001;49(2):259–69.CrossRefGoogle Scholar
  127. Jameson PE, Clemens J. Phase change and flowering in woody plants of the New Zealand flora. J Exp Bot. 2015. doi: 10.1093/jxb/erv472.PubMedCentralGoogle Scholar
  128. Jaya E, Kubien DS, Jameson PE, Clemens J. Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiol. 2010;30(3):393–403.PubMedCrossRefGoogle Scholar
  129. Jimenez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG. Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol. 2009;9:81.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Jimenez S, Reighard GL, Bielenberg DG. Gene expression of DAM5 and DAM6 is suppressed by chilling temperatures and inversely correlated with bud break rate. Plant Mol Biol. 2010;73(1–2):157–67.PubMedCrossRefGoogle Scholar
  131. Jones RC, Hecht VFG, Potts BM, Vaillancourt RE, Weller JL. Expression of a FLOWERING LOCUS T homologue is temporally associated with annual flower bud initiation in Eucalyptus globulus subsp. globulus (Myrtaceae). Aust J Bot. 2011;59:756–69.CrossRefGoogle Scholar
  132. Jordan GJ, Potts BM, Wiltshire RJE. Strong, independent, quantitative genetic control of the timing of vegetative phase change and first flowering in Eucalyptus globulus ssp. globulus (Tasmanian Blue Gum). Heredity. 1999;83:179–87.PubMedCrossRefGoogle Scholar
  133. Jordan GJ, Potts BM, Chalmers P, Wiltshire RJE. Quantitative genetic evidence that the timing of vegetative phase change in Eucalyptus globulus ssp. globulus is an adaptive trait. Aust J Bot. 2000;48(5):561–7.CrossRefGoogle Scholar
  134. Junttila O. Apical growth cessation and shoot tip abscission in Salix. Physiol Plant. 1976;38(4):278–86.CrossRefGoogle Scholar
  135. Junttila O. Effect of photoperiod and temperature on apical growth cessation in 2 ecotypes of Salix and Betula. Physiol Plant. 1980;48(3):347–52.CrossRefGoogle Scholar
  136. Junttila O. The cessation of apical growth in latitudinal ecotypes and ecotype crosses of Salix pentandra L. J Exp Bot. 1982;33(136):1021–9.Google Scholar
  137. Junttila O, Hanninen H. The minimum temperature for budburst in Betula depends on the state of dormancy. Tree Physiol. 2012;32(3):337–45.PubMedCrossRefGoogle Scholar
  138. Junttila O, Kaurin A. Climatic control of apical growth cessation in latitudinal ecotypes of Salix pentandra L. In: Kaurin A, Junttila O, Nilsen J, editors. Plant production in the north. Oslo: Norwegian University Press; 1985. p. 83–91.Google Scholar
  139. Kaiserli E, Paldi K, O’Donnell L, Batalov O, Pedmale UV, Nusinow DA, Kay SA, Chory J. Integration of light and photoperiodic signaling in transcriptional nuclear foci. Dev Cell. 2015;35(3):311–21.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Kalberer SR, Wisniewski M, Arora R. Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci. 2006;171(1):3–16.CrossRefGoogle Scholar
  141. Kalcsits LA, Silim S, Tanino K. Warm temperature accelerates short photoperiod-induced growth cessation and dormancy induction in hybrid poplar (Populus × spp.). Trees (Struct Funct). 2009;23(5):971–9.CrossRefGoogle Scholar
  142. Kaplan DR. Heteroblastic leaf development in Acacia: morphological and morphogenic implications. Cellule. 1980;73(2):135–203.Google Scholar
  143. Karlberg A, Bako L, Bhalerao RP. Short day-mediated cessation of growth requires the downregulation of AINTEGUMENTALIKE1 transcription factor in hybrid aspen. PLoS Genet. 2011;7(11).Google Scholar
  144. Karlgren A, Gyllenstrand N, Clapham D, Lagercrantz U. FLOWERING LOCUS T/TERMINAL FLOWER1-like genes affect growth rhythm and bud set in Norway spruce. Plant Physiol. 2013;163(2):792–803.PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kearsley MJC, Whitham TG. The developmental stream of cottonwoods affects ramet growth and resistance to galling aphids. Ecology. 1998;79(1):178–91.CrossRefGoogle Scholar
  146. Keller SR, Soolanayakanahally RY, Guy RD, Silim SN, Olson MS, Tiffin P. Climate-driven local adaptation of ecophysiology and phenology in balsam poplar, Populus balsamifera L. (Salicaceae). Am J Bot. 2011;98(1):99–108.PubMedCrossRefGoogle Scholar
  147. Keskitalo J, Bergquist G, Gardestrom P, Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005;139(4):1635–48.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Klintenas M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. Analysis of conifer FLOWERING LOCUS T/TERMINAL FLOWER1-like genes provides evidence for dramatic biochemical evolution in the angiosperm FT lineage. New Phytol. 2012;196(4):1260–73.PubMedCrossRefGoogle Scholar
  149. Klocko AL, Ma C, Robertson S, Esfandiari E, Nilsson O, Strauss SH. FT overexpression induces precocious flowering and normal reproductive development in Eucalyptus. Plant Biotechnol J. 2016a;14(2):808–19.PubMedCrossRefGoogle Scholar
  150. Klocko AL, Brunner AB, Huang J, Meilan R, Lu H, Ma C, Morel A, Zhao D, Ault K, Dow M, Howe G, Schevchenko O, Strauss SH. Containment of transgenic trees by suppression of LEAFY. Nat Biotechnol. 2016b;34(9):918–22.Google Scholar
  151. Knabel M, Friend AP, Palmer JW, Diack R, Wiedow C, Alspach P, Deng C, Gardiner SE, Tustin DS, Schaffer R, Foster T, Chagne D. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. BMC Plant Biol. 2015;15:230.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci. 2006;131(1):74–81.Google Scholar
  153. Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, S-i K, Igasaki T, Nishiguchi M, Yano K, Shimizu T, Takahashi S, Iwanami H, Moriya S, Abe K. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol. 2010;51(4):561–75.PubMedCrossRefGoogle Scholar
  154. Kozarewa I, Ibanez C, Johansson M, Ogren E, Mozley D, Nylander E, Chono M, Moritz T, Eriksson ME. Alteration of PHYA expression change circadian rhythms and timing of bud set in Populus. Plant Mol Biol. 2010;73(1–2):143–56.PubMedCrossRefGoogle Scholar
  155. Kozlowski J. Optimal allocation of resources to growth and reproduction – implications for age and size at maturity. Trends Ecol Evol. 1992;7(1):15–9.PubMedCrossRefGoogle Scholar
  156. Kubien DS, Jaya E, Clemens J. Differences in the structure and gas exchange physiology of juvenile and adult leaves in Metrosideros excelsa. Int J Plant Sci. 2007;168(5):563–70.CrossRefGoogle Scholar
  157. Kumar M, Saranpaa P, Barnett JR, Wilkinson MJ. Juvenile-mature wood transition in pine: correlation between wood properties and candidate gene expression profiles. Euphytica. 2009;166(3):341–55.CrossRefGoogle Scholar
  158. Kuster TM, Dobbertin M, Gunthardt-Goerg MS, Schaub M, Arend M. A phenological timetable of oak growth under experimental drought and air warming. PLoS One. 2014;9(2):e89724.Google Scholar
  159. Lang GA. Dormancy – a new universal terminology. HortScience. 1987;22(5):817–20.Google Scholar
  160. Leida C, Conesa A, Llacer G, Badenes ML, Rios G. Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol. 2012;193(1):67–80.PubMedCrossRefGoogle Scholar
  161. Li ZG, Reighard GL, Abbott AG, Bielenberg DG. Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot. 2009;60(12):3521–30.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Libby WJ, Hood JV. Juvenility in hedged radiata pine. Acta Hortic. 1976;56:91–8.Google Scholar
  163. Lifschitz E, Ayre BG, Eshed Y. Florigen and anti-florigen – a systemic mechanism for coordinating growth and termination in flowering plants. Front Plant Sci. 2014;5:465.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E, Xoconostle-Cazares B, Gendler K, Jorgensen RA, Phinney B, Lough TJ, Lucas WJ. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell. 2007;19(5):1488–506.PubMedPubMedCentralCrossRefGoogle Scholar
  165. Linkosalo T, Lechowicz MJ. Twilight far-red treatment advances leaf bud burst of silver birch (Betula penduld). Tree Physiol. 2006;26(10):1249–56.PubMedCrossRefGoogle Scholar
  166. Luttge U, Hertel B. Diurnal and annual rhythms in trees. Trees (Struct Funct). 2009;23(4):683–700.CrossRefGoogle Scholar
  167. Maiden JH. A critical revision of the genus Eucalyptus, vol. 2. Government Printer: Sydney; 1913.Google Scholar
  168. Maloof JN, Borevitz JO, Dabi T, Lutes J, Nehring RB, Redfern JL, Trainer GT, Wilson JM, Asami T, Berry CC, Weigel D, Chory J. Natural variation in light sensitivity of Arabidopsis. Nat Genet. 2001;29(4):441–6.PubMedCrossRefGoogle Scholar
  169. Mankessi F, Saya AR, Favreau B, Doulbeau S, Conejero G, Lartaud M, Verdeil JL, Monteuuis O. Variations of DNA methylation in Eucalyptus urophylla × Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol Plant. 2011;143(2):178–87.PubMedCrossRefGoogle Scholar
  170. Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat M, Fomara F, Schneeberger K, Krajewski P, Coupland G. Combinatorial activities of SHORT VEGETATIVE PHASE and FLOWERING LOCUS C define distinct modes of flowering regulation in Arabidopsis. Genome Biol. 2015;16:31.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Mattick JS, Taft RJ, Faulkner GJ. A global view of genomic information–moving beyond the gene and the master regulator. Trends Genet. 2010;26(1):21–8.PubMedCrossRefGoogle Scholar
  172. McKown AD, Guy RD, Klapste J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014;201(4):1263–76.PubMedCrossRefGoogle Scholar
  173. Meilan R. Floral induction in woody angiosperms. New For. 1997;14(3):179–202.CrossRefGoogle Scholar
  174. Meir M, Ransbotyn V, Raveh E, Barak S, Tel-Zur N, Zaccai M. Dormancy release and flowering time in Ziziphus jujuba Mill., a “direct flowering” fruit tree, has a facultative requirement for chilling. J Plant Physiol. 2016;192:118–27.PubMedCrossRefGoogle Scholar
  175. Millard P, Grelet GA. Nitrogen storage and remobilization by trees: ecophysiological relevance in a changing world. Tree Physiol. 2010;30(9):1083–95.PubMedCrossRefGoogle Scholar
  176. Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng XY, Meilan R, Strauss SH, Brunner AM. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 2010;62(4):674–88.PubMedCrossRefGoogle Scholar
  177. Molmann JA, Junttila O, Johnsen O, Olsen JE. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies). Plant Cell Environ. 2006;29(2):166–72.PubMedCrossRefGoogle Scholar
  178. Moncur MW. Effect of low temperature on floral induction of Eucalyptus lansdowneana F. Muell and J Brown ssp. lansdowneana. Aust J Bot. 1992;40(2):157–67.CrossRefGoogle Scholar
  179. Moncur MW, Hasan O. Floral induction in Eucalyptus nitens. Tree Physiol. 1994;14(11):1303–12.PubMedCrossRefGoogle Scholar
  180. Monteuuis O, Doulbeau S, Verdeil JL. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype. Trees (Struct Funct). 2008;22(6):779–84.CrossRefGoogle Scholar
  181. Morel H, Mangenet T, Beauchene J, Ruelle J, Nicolini E, Heuret P, Thibaut B. Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest. Trees (Struct Funct). 2015;29(4):973–84.CrossRefGoogle Scholar
  182. Moreno-Alias I, Leon L, de la Rosa R, Rapoport HF. Morphological and anatomical evaluation of adult and juvenile leaves of olive plants. Trees (Struct Funct). 2009;23(1):181–7.CrossRefGoogle Scholar
  183. Munoz-Fambuena N, Mesejo C, Gonzalez-Mas MC, Iglesias DJ, Primo-Millo E, Agusti M. Gibberellic acid reduces flowering intensity in sweet orange [Citrus sinensis (L.) Osbeck] by repressing CiFT gene expression. J Plant Growth Regul. 2012;31(4):529–36.CrossRefGoogle Scholar
  184. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, Van der Merwe K, Singh P, Van Jaarsveld I, Silva OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang XH, Ranjan P, Tschaplinski TJ, Ye CY, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Lheim CK, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Peer YV, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014;510(7505):356–62.PubMedGoogle Scholar
  185. Myking T, Heide OM. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiol. 1995;15(11):697–704.Google Scholar
  186. Nakagawa M, Honsho C, Kanzaki S, Shimizu K, Utsunomiya N. Isolation and expression analysis of FLOWERING LOCUS T-like and gibberellin metabolism genes in biennial-bearing mango trees. Sci Hortic (Amsterdam). 2012;139:108–17.CrossRefGoogle Scholar
  187. Nave N, Katz E, Chayut N, Gazit S, Samach A. Flower development in the passion fruit Passiflora edulis requires a photoperiod-induced systemic graft-transmissible signal. Plant Cell Environ. 2010;33(12):2065–83.PubMedCrossRefGoogle Scholar
  188. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M, Ikoma Y. Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). J Exp Bot. 2007;58:3915–27.PubMedCrossRefGoogle Scholar
  189. Nishikawa F, Endo T, Shimada T, Fujii H, Shimizu T, Omura M. Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Physiol. 2009;29(7):921–6.PubMedCrossRefGoogle Scholar
  190. Nishikawa F, Iwasaki M, Fukamachi H, Nonaka K, Imai A, Endo T. Seasonal changes of citrus FLOWERING LOCUS T gene expression in kumquat. Bull Natl Inst Fruit Tree Sci. 2011;12:27–32.Google Scholar
  191. Nitsch JP. Photoperiodism in woody plants. Proc Amer Soc Hort Sci. 1957;70:526–44.Google Scholar
  192. Núñez-Elisea R, Davenport TL. Flowering of mango trees in containers as influenced by seasonal temperature and water stress. Sci Hortic (Amsterdam). 1994;58(1):57–66.CrossRefGoogle Scholar
  193. Núñez-Elisea R, Davenport TL. Effect of leaf age, duration of cool temperature treatment, and photoperiod on bud dormancy release and floral initiation in mango. Sci Hortic (Amsterdam). 1995;62(1):63–73.CrossRefGoogle Scholar
  194. O’Reilly-Wapstra JM, Humphreys JR, Potts BM. Stability of genetic-based defensive chemistry across life stages in a Eucalyptus species. J Chem Ecol. 2007;33:1876–84.PubMedCrossRefGoogle Scholar
  195. Olsen JE. Light and temperature sensing and signaling in induction of bud dormancy in woody plants. Plant Mol Biol. 2010;73(1–2):37–47.PubMedCrossRefGoogle Scholar
  196. Olsen JE, Junttila O, Nilsen J, Eriksson ME, Martinussen I, Olsson O, Sandberg G, Moritz T. Ectopic expression of oat phytochrome A in hybrid aspen changes critical daylength for growth and prevents cold acclimatization. Plant J. 1997;12(6):1339–50.CrossRefGoogle Scholar
  197. Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol Ecol. 2013;22(5):1214–30.PubMedCrossRefGoogle Scholar
  198. Pallardy SG, Kozlowski TT. Physiology of woody plants. 3rd ed. Amsterdam/Boston: Elsevier; 2008.Google Scholar
  199. Parmentier-Line CM, Coleman GD. Constitutive expression of the Poplar FD-like basic leucine zipper transcription factor alters growth and bud development. Plant Biotechnol J. 2016;14(1):260–70.PubMedCrossRefGoogle Scholar
  200. Pena L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol. 2001;19(3):263–7.PubMedCrossRefGoogle Scholar
  201. Petterle A, Karlberg A, Bhalerao RP. Daylength mediated control of seasonal growth patterns in perennial trees. Curr Opin Plant Biol. 2013;16(3):301–6.PubMedCrossRefGoogle Scholar
  202. Pin PA, Nilsson O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 2012;35(10):1742–55.PubMedCrossRefGoogle Scholar
  203. Pin PA, Benlloch R, Bonnet D, Wremerth-Weich E, Kraft T, Gielen JJL, Nilsson O. An antagonistic pair of FT homologs mediates the control of flowering time in sugar beet. Science. 2010;330(6009):1397–400.PubMedCrossRefGoogle Scholar
  204. Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127(4):1513–23.PubMedPubMedCentralCrossRefGoogle Scholar
  205. Poethig RS. Phase change and the regulation of shoot morphogenesis in plants. Science. 1990;250(4983):923–30.PubMedCrossRefGoogle Scholar
  206. Poethig RS. Small RNAs and developmental timing in plants. Curr Opin Genet Dev. 2009;19(4):374–8.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Poethig RS. The past, present, and future of vegetative phase change. Plant Physiol. 2010;154(2):541–4.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Poethig RS. Vegetative phase change and shoot maturation in plants. Develop Timing. 2013;105:125–52.CrossRefGoogle Scholar
  209. Polgar CA, Primack RB. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol. 2011;191(4):926–41.PubMedCrossRefGoogle Scholar
  210. Potts BM, Wiltshire RJE. Eucalypt genetics and genecology. In: Williams J, Woinarski J, editors. Eucalypt ecology: individuals to ecosystems. Cambridge, UK: Cambridge University Press; 1997. p. 56–91.Google Scholar
  211. Preston JC, Hileman LC. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front Plant Sci. 2013;4.Google Scholar
  212. Preston JC, Sandve SR. Adaptation to seasonality and the winter freeze. Front Plant Sci. 2013;4.Google Scholar
  213. Ramos A, Perez-Solis E, Ibanez C, Casado R, Collada C, Gomez L, Aragoncillo C, Allona I. Winter disruption of the circadian clock in chestnut. Proc Natl Acad Sci USA. 2005;102(19):7037–42.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ. A common mechanism controls the life cycle and architecture of plants. Development. 1998;125(9):1609–15.PubMedGoogle Scholar
  215. Ream TS, Woods DP, Amasino RM. The molecular basis of vernalization in different plant groups. Cold Spring Harb Symp Quant Biol. 2012;77:105–15.PubMedCrossRefGoogle Scholar
  216. Rehill BJ, Whitham TG, Martinsen GD, Schweitzer JA, Bailey JK, Lindroth RL. Developmental trajectories in cottonwood phytochemistry. J Chem Ecol. 2006;32(10):2269–85.PubMedCrossRefGoogle Scholar
  217. Resman L, Howe G, Jonsen D, Englund M, Druart N, Schrader J, Antti H, Skinner J, Sjodin A, Chen T, Bhalerao RP. Components acting downstream of short day perception regulate differential cessation of cambial activity and associated responses in early and late clones of hybrid poplar. Plant Physiol. 2010;154(3):1294–303.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Rinne P, Tuominen H, Junttila O. Seasonal-changes in bud dormancy in relation to bud morphology, water and starch content, and abscisic-acid concentration in adult trees of Betula pubescens. Tree Physiol. 1994;14(6):549–61.Google Scholar
  219. Rinne PL, Kaikuranta PM, van der Schoot C. The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 2001;26(3):249–64.Google Scholar
  220. Rinne PLH, Welling A, Vahala J, Ripel L, Ruonala R, Kangasjarvi J, van der Schoot C. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in populus. Plant Cell. 2011;23(1):130–46.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Rios G, Leida C, Conejero A, Badenes ML. Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci. 2014;5:247.PubMedPubMedCentralGoogle Scholar
  222. Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR. Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci. 1994;119(4):789–92.Google Scholar
  223. Rohde A, Prinsen E, De Rycke R, Engler G, Van Montagu M, Boerjan W. PtABI3 impinges on the growth and differentiation of embryonic leaves during bud set in poplar. Plant Cell. 2002;14(8):1885–901.Google Scholar
  224. Rohde A, Bhalerao RP. Plant dormancy in the perennial context. Trends Plant Sci. 2007;12(5):217–23.PubMedCrossRefGoogle Scholar
  225. Rohde A, Bastien C, Boerjan W. Temperature signals contribute to the timing of photoperiodic growth cessation and bud set in poplar. Tree Physiol. 2011;31(5):472–82.PubMedCrossRefGoogle Scholar
  226. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma CP, Cheng SP, Jouanin L, Pilate G, Strauss SH. Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J. 2000;22(3):235–45.PubMedCrossRefGoogle Scholar
  227. Ruonala R, Rinne PLH, Baghour M, Moritz T, Tuominen H, Kangasjarvi J. Transitions in the functioning of the shoot apical meristem in birch (Betula pendula) involve ethylene. Plant J. 2006;46(4):628–40.PubMedCrossRefGoogle Scholar
  228. Ruttink T, Arend M, Morreel K, Storme V, Rombauts S, Fromm J, Bhalerao RP, Boerjan W, Rohde A. A molecular timetable for apical bud formation and dormancy induction in poplar. Plant Cell. 2007;19(8):2370–90.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez-Gómez P. Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Genomes. 2016;12(4):1–14.CrossRefGoogle Scholar
  230. Samach A, Smith HM. Constraints to obtaining consistent annual yields in perennials. II: environment and fruit load affect induction of flowering. Plant Sci. 2013;207:168–76.PubMedCrossRefGoogle Scholar
  231. Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P. Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci. 2014;5:334.PubMedPubMedCentralGoogle Scholar
  232. Sasaki S, Yamagishi N, Yoshikawa N. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods. 2011a;7:15.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot. Plant Physiol. 2011b;157(1):485–97.PubMedPubMedCentralCrossRefGoogle Scholar
  234. Schaffalitzky De Muckadell M. Juvenile stages in woody plants. Physiol Plant. 1954;7(4):782–96.CrossRefGoogle Scholar
  235. Schmidt S, Stewart GR. Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia. Tree Physiol. 1998;18(6):403–10.PubMedCrossRefGoogle Scholar
  236. Shalom L, Samuels S, Zur N, Shlizerman L, Zemach H, Weissberg M, Ophir R, Blumwald E, Sadka A. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees. PLoS One. 2012;7(10).Google Scholar
  237. Simmons D, Parsons RF. Seasonal-variation in the volatile leaf oils of two Eucalyptus species. Biochem Syst Ecol. 1987;15(2):209–15.Google Scholar
  238. Snowball A. Seasonal cycle of shoot development in selected Actinidia species. New Zeal J Crop Hort. 1997;25:221–31.CrossRefGoogle Scholar
  239. Solar A, Colaric M, Usenik V, Stampar F. Seasonal variations of selected flavonoids, phenolic acids and quinones in annual shoots of common walnut (Juglans regia L.). Plant Sci. 2006;170(3):453–61.CrossRefGoogle Scholar
  240. Soltis PS, Soltis DE. Ancient WGD events as drivers of key innovations in angiosperms. Curr Opin Plant Biol. 2016;30:159–65.PubMedCrossRefGoogle Scholar
  241. Song GQ, Walworth A, Zhao DY, Jiang N, Hancock JF. The Vaccinium corymbosum FLOWERING LOCUS T-like gene (VcFT): a flowering activator reverses photoperiodic and chilling requirements in blueberry. Plant Cell Rep. 2013;32(11):1759–69.PubMedCrossRefGoogle Scholar
  242. Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu XM, Llewellyn DJ, Peacock WJ, Dennis ES. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol. 1998;37(6):897–910.PubMedCrossRefGoogle Scholar
  243. Srinivasan C, Dardick C, Callahan A, Scorza R. Plum (Prunus domestica) Trees Transformed with Poplar FT1 Result in Altered Architecture, Dormancy Requirement, and Continuous Flowering. PLoS One. 2012;7(7):e40715.PubMedPubMedCentralCrossRefGoogle Scholar
  244. Strimbeck GR, Schaberg PG, Fossdal CG, Schroder WP, Kjellsen TD. Extreme low temperature tolerance in woody plants. Front Plant Sci. 2015;6:884.PubMedPubMedCentralCrossRefGoogle Scholar
  245. Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21(9):R338–45.PubMedCrossRefGoogle Scholar
  246. Sun C, Zhao Q, Liu D-D, You C-X, Hao Y-J. Ectopic expression of the apple Md-miRNA156h gene regulates flower and fruit development in Arabidopsis. Plant Cell Tiss Org. 2013;112(3):343–51.CrossRefGoogle Scholar
  247. Suzuki M, McCarty DR. Functional symmetry of the B3 network controlling seed development. Curr Opin Plant Biol. 2008;11(5):548–53.Google Scholar
  248. Tanino KK, Kalcsits L, Silim S, Kendall E, Gray GR. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction. Plant Mol Biol. 2010;73(1–2):49–65.PubMedCrossRefGoogle Scholar
  249. Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K. Structure and function of florigen and the receptor complex. Trends Plant Sci. 2013;18(5):287–94.PubMedCrossRefGoogle Scholar
  250. Telfer A, Bollman KM, Poethig RS. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development. 1997;124(3):645–54.PubMedGoogle Scholar
  251. Tian WM, Wu JL, Hao BZ, Hu ZH. Vegetative storage proteins in the tropical tree Swietenia macrophylia: seasonal fluctuation in relation to a fundamental role in the regulation of tree growth. Can J Bot. 2003;81(5):492–500.CrossRefGoogle Scholar
  252. Turner C, Wiltshire RJE, Potts BM, Vaillancourt RE. Allozyme variation and conservation of the Tasmanian endemics, Eucalyptus risdonii, E. tenuiramis and E. coccifera. Conserv Genet. 2000;1:209–16.CrossRefGoogle Scholar
  253. Tylewicz S, Tsuji H, Miskolczi P, Petterle A, Azeez A, Jonsson K, Shimamoto K, Bhalerao RP. Dual role of tree florigen activation complex component FD in photoperiodic growth control and adaptive response pathways. Proc Natl Acad Sci USA. 2015;112(10):3140–5.PubMedPubMedCentralCrossRefGoogle Scholar
  254. Ueno S, Klopp C, Leple JC, Derory J, Noirot C, Leger V, Prince E, Kremer A, Plomion C, Le Provost G. Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC Genomics. 2013;14:236.PubMedPubMedCentralCrossRefGoogle Scholar
  255. Valledor L, Meijon M, Hasbun R, Canal MJ, Rodriguez R. Variations in DNA methylation, acetylated histone H4, and methylated histone H3 during Pinus radiata needle maturation in relation to the loss of in vitro organogenic capability. J Plant Physiol. 2010;167(5):351–7.PubMedCrossRefGoogle Scholar
  256. van Cleve B, Apel K. Induction by nitrogen and low-temperature of storage-protein synthesis in poplar trees exposed to long days. Planta. 1993;189(1):157–60.CrossRefGoogle Scholar
  257. van der Schoot C, Paul LK, Rinne PLH. The embryonic shoot: a lifeline through winter. J Exp Bot. 2014;65(7):1699–712.PubMedCrossRefGoogle Scholar
  258. Van Houdt H, Bleys A, Depicker A. RNA target sequences promote spreading of RNA silencing. Plant Physiol. 2003;131(1):245–53.PubMedPubMedCentralCrossRefGoogle Scholar
  259. Vander Mijnsbrugge K, Turcsan A, Maes J, Duchene N, Meeus S, Steppe K, Steenackers M. Repeated summer drought and re-watering during the first growing year of Oak (Quercus petraea) delay autumn senescence and bud burst in the following spring. Front Plant Sci. 2016:7.Google Scholar
  260. Varkonyi-Gasic E, Moss SMA, Voogd C, Wang TC, Putterill J, Hellens RP. Homologs of FT, CEN and FD respond to developmental and environmental signals affecting growth and flowering in the perennial vine kiwifruit. New Phytol. 2013;198(3):732–46.PubMedCrossRefGoogle Scholar
  261. Vasconcelos MC, Greven M, Winefield CS, Trought MCT, Raw V. The flowering process of Vitis vinifera: a review. Am J Enol Vitic. 2009;60(4):411–34.Google Scholar
  262. Venugopal N, Liangkuwang MG. Cambial activity and annual rhythm of xylem production of elephant apple tree (Dillenia indica Linn.) in relation to phenology and climatic factor growing in sub-tropical wet forest of northeast India. Trees (Struct Funct). 2007;21(1):101–10.CrossRefGoogle Scholar
  263. Vico G, Thompson SE, Manzoni S, Molini A, Albertson JD, Almeida-Cortez JS, Fay PA, Feng X, Guswa AJ, Liu H, Wilson TG, Porporato A. Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry ecosystems. Ecohydrology. 2015;8(4):660–81.CrossRefGoogle Scholar
  264. Vining KJ, Romanel E, Jones RC, Klocko A, Alves-Ferreira M, Hefer CA, Amarasinghe V, Dharmawardhana P, Naithani S, Ranik M, Wesley-Smith J, Solomon L, Jaiswal P, Myburg AA, Strauss SH The floral transcriptome of Eucalyptus grandis. New Phytol. 2015;206(4)1406–22.Google Scholar
  265. Visser T. On the inheritance of the juvenile period in apple. Euphytica. 1965;14(2):125–34.CrossRefGoogle Scholar
  266. Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, Franke A, Feil R, Lunn JE, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science. 2013;339(6120):704–7.PubMedCrossRefGoogle Scholar
  267. Wall C, Dozier W, Ebel RC, Wilkins B, Woods F, Foshee W. Vegetative and floral chilling requirements of Four New Kiwi cultivars of Actinidia chinensis and A. deliciosa. HortScience. 2008;43(3):644–7.Google Scholar
  268. Walton E, Fowke P, Weis K, McLeay P. Shoot axillary bud morphogenesis in kiwifruit (Actinidia deliciosa). Ann Bot (London). 1997;80:13–21.CrossRefGoogle Scholar
  269. Walton EF, Podivinsky E, Wu RM. Bimodal patterns of floral gene expression over the two seasons that kiwifruit flowers develop. Physiol Plant. 2001;111(3):396–404.PubMedCrossRefGoogle Scholar
  270. Walworth AE, Rowland LJ, Polashock JJ, Hancock JF, Song GQ. Overexpression of a blueberry-derived CBF gene enhances cold tolerance in a southern highbush blueberry cultivar. Mol Breeding. 2012;30(3):1313–23.CrossRefGoogle Scholar
  271. Wang JW. Regulation of flowering time by the miR156-mediated age pathway. J Exp Bot. 2014;65(17):4723–30.PubMedCrossRefGoogle Scholar
  272. Wang JW, Park MY, Wang LJ, Koo YJ, Chen XY, Weigel D, Poethig RS. MiRNA control of vegetative phase change in trees. PLoS Genet. 2011;7(2):8.CrossRefGoogle Scholar
  273. Wareing PF. Problems of juvenility and flowering in trees. J Linn Soc Lond Bot. 1959;56(366):282–9.CrossRefGoogle Scholar
  274. Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJB, Miller AJ. Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016;21(5):418–37.PubMedCrossRefGoogle Scholar
  275. Weigel D, Nilsson O. A developmental switch sufficient for flower initiation in diverse plants. Nature. 1995;377(6549):495–500.PubMedCrossRefGoogle Scholar
  276. Weigl K, Wenzel S, Flachowsky H, Peil A, Hanke MV. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple. Plant Biotechnol J. 2015;13(2):246–58.PubMedCrossRefGoogle Scholar
  277. Welling A, Palva ET. Molecular control of cold acclimation in trees. Physiol Plant. 2006;127(2):167–81.CrossRefGoogle Scholar
  278. Welling A, Palva ET. Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol. 2008;147(3):1199–211.PubMedPubMedCentralCrossRefGoogle Scholar
  279. Welling A, Moritz T, Palva ET, Junttila O. Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol. 2002;129(4):1633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  280. Wendling I, Trueman SJ, Xavier A. Maturation and related aspects in clonal forestry-Part I: concepts, regulation and consequences of phase change. New For. 2014;45(4):449–71.CrossRefGoogle Scholar
  281. Wenzel S, Flachowsky H, Hanke M-V. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell Tissue Organ Cult. 2013;115:127–37.CrossRefGoogle Scholar
  282. Wilkie JD, Sedgley M, Olesen T. Regulation of floral initiation in horticultural trees. J Exp Bot. 2008;59(12):3215–28.PubMedCrossRefGoogle Scholar
  283. Williams BJ, Pellett NE, Klein RM. Phytochrome control of growth cessation and initiation of cold-acclimation in selected woody plants. Plant Physiol. 1972;50(2):262–5.PubMedPubMedCentralCrossRefGoogle Scholar
  284. Williams RJ, Myers BA, Eamus D, Duff GA. Reproductive phenology of woody species in a north Australian tropical savanna. Biotropica. 1999;31(4):626–36.CrossRefGoogle Scholar
  285. Wiltshire RJE, Reid JB. The pattern of juvenility within Eucalyptus tenuiramis Miq. saplings. Paper presented at the Mass production technology for genetically improved fast growing forest tree species. AFOCEL-IUFRO symposium, Bordeaux, Association Foret Cellulose, Nangis-Paris; 1992.Google Scholar
  286. Wiltshire RJE, Potts BM, Reid JB. A paedomorphocline in Eucalyptus – natural variation in the E. risdonii / E. tenuiramis complex. Aust J Bot. 1991;39(6):545–66.CrossRefGoogle Scholar
  287. Wiltshire RJE, Potts BM, Reid JB. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii - E. tenuiramis complex. Aust J Bot. 1998;46(1):45–63.CrossRefGoogle Scholar
  288. Wisniewski M, Norelli J, Bassett C, Artlip T, Macarisin D. Ectopic expression of a novel peach (Prunus persica) CBF transcription factor in apple (Malus x domestica) results in short-day induced dormancy and increased cold hardiness. Planta. 2011;233(5):971–83.PubMedCrossRefGoogle Scholar
  289. Wisniewski M, Nassuth A, Teulieres C, Marque C, Rowland J, Cao PB, Brown A. Genomics of cold hardiness in woody plants. Crit Rev Plant Sci. 2014;33(2–3):92–124.CrossRefGoogle Scholar
  290. Wright SJ, Van Schaik CP. Light and the phenology of tropical trees. Am Nat. 1994;143(1):192–9.CrossRefGoogle Scholar
  291. Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell. 2009;138(4):750–9.PubMedPubMedCentralCrossRefGoogle Scholar
  292. Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E. Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot. 2012;63(2):797–807.PubMedCrossRefGoogle Scholar
  293. Wu RM, Wang TC, McGie T, Voogd C, Allan AC, Hellens RP, Varkonyi-Gasic E. Overexpression of the kiwifruit SVP3 gene affects reproductive development and suppresses anthocyanin biosynthesis in petals, but has no effect on vegetative growth, dormancy, or flowering time. J Exp Bot. 2014;65(17):4985–95.PubMedPubMedCentralCrossRefGoogle Scholar
  294. Xing LB, Zhang D, Li YM, Zhao CP, Zhang SW, Shen YW, An N, Han MY. Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis. BMC Genomics. 2014;15:1125.PubMedPubMedCentralCrossRefGoogle Scholar
  295. Xing LB, Zhang D, Zhao CP, Li YM, Ma JJ, An N, Han MY. Shoot bending promotes flower bud formation by miRNA-mediated regulation in apple (Malus domestica Borkh.). Plant Biotechnol J. 2016;14(2):749–70.PubMedCrossRefGoogle Scholar
  296. Xu ML, Hu TQ, Smith MR, Poethig RS. Epigenetic regulation of vegetative phase change in Arabidopsis. Plant Cell. 2016;28(1):28–41.PubMedGoogle Scholar
  297. Yamagishi N, Sasaki S, Yamagata K, Komori S, Nagase M, Wada M, Yamamoto T, Yoshikawa N. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol Biol. 2011;75(1–2):193–204.PubMedCrossRefGoogle Scholar
  298. Yamagishi N, Kishigami R, Yoshikawa N. Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol J. 2014;12(1):60–8.PubMedCrossRefGoogle Scholar
  299. Yamagishi N, Li C, Yoshikawa N. Promotion of flowering by Apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci. 2016;7:171.PubMedPubMedCentralCrossRefGoogle Scholar
  300. Yang L, Xu M, Koo Y, He J, Poethig RS. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. elife. 2013;2:e00260.Google Scholar
  301. Ye J, Geng Y, Zhang B, Mao H, Qu J, Chua N-H. The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. Biotechnol Biofuels. 2014;7(1):1–11. doi: 10.1186/1754-6834-7-91.
  302. Yeang HY. Synchronous flowering of the rubber tree (Hevea brasiliensis) induced by high solar radiation intensity. New Phytol. 2007;175(2):283–9.PubMedCrossRefGoogle Scholar
  303. Yeom M, Kim H, Lim J, Shin AY, Hong S, Kim JI, Nam HG. How do phytochromes transmit the light quality information to the circadian clock in Arabidopsis? Mol Plant. 2014;7(11):1701–4.PubMedCrossRefGoogle Scholar
  304. Yooyongwech S, Sugaya S, Sekozawa Y, Gemma H. Differential adaptation of high- and low-chill dormant peaches in winter through aquaporin gene expression and soluble sugar content. Plant Cell Rep. 2009;28(11):1709–15.PubMedCrossRefGoogle Scholar
  305. Yordanov YS, Ma C, Strauss SH, Busov VB. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc Natl Acad Sci USA. 2014;111(27):10001–6.PubMedPubMedCentralCrossRefGoogle Scholar
  306. Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu JQ, Huang JR, Wang GD, Wang JW. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife. 2013;2. doi: 10.7554/eLife.00269.
  307. Yu S, Lian H, Wang JW. Plant developmental transitions: the role of microRNAs and sugars. Curr Opin Plant Biol. 2015;27:1–7.PubMedCrossRefGoogle Scholar
  308. Yuceer C, Kubiske ME, Harkess RL, Land SB. Effects of induction treatments on flowering in Populus deltoides. Tree Physiol. 2003a;23(7):489–95.PubMedCrossRefGoogle Scholar
  309. Yuceer C, Land SB, Kubiske ME, Harkess RL. Shoot morphogenesis associated with flowering in Populus deltoides (Salicaceae). Am J Bot. 2003b;90(2):196–206.PubMedCrossRefGoogle Scholar
  310. Zawaski C, Busov VB. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS One. 2014;9(1):e86217.PubMedPubMedCentralCrossRefGoogle Scholar
  311. Zawaski C, Kadmiel M, Pickens J, Ma C, Strauss S, Busov V. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering. Planta. 2011;234(6):1285–98.PubMedCrossRefGoogle Scholar
  312. Zhang H, Harry DE, Ma C, Yuceer C, Hsu C-Y, Vikram V, Shevchenko O, Etherington E, Strauss SH. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus. J Exp Bot. 2010;61(10):2549–60.PubMedCrossRefGoogle Scholar
  313. Zhang JZ, Mei L, Liu R, Khan MRG, Hu CG. Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (CiLFY) during precocious trifoliate orange phase change process. PLoS One. 2014;9(2):e88558.PubMedPubMedCentralCrossRefGoogle Scholar
  314. Zhou XH, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol. 2015;208(2):298–301.PubMedCrossRefGoogle Scholar
  315. Zhu QH, Helliwell CA. Regulation of flowering time and floral patterning by miR172. J Exp Bot. 2011;62(2):487–95. doi: 10.1093/jxb/erq295.PubMedCrossRefGoogle Scholar
  316. Zhuang W, Cai B, Gao Z, Zhang Z. Determination of chilling and heat requirements of 69 Japanese apricot cultivars. Eur J Agron. 2016;74:68–74.CrossRefGoogle Scholar
  317. Ziv D, Zviran T, Zezak O, Samach A, Irihimovitch V. Expression profiling of FLOWERING LOCUS T-like gene in alternate bearing ‘Hass’ avocado trees suggests a role for PaFT in Avocado Flower Induction. PLoS One. 2014;9(10):e110613.PubMedPubMedCentralCrossRefGoogle Scholar
  318. Zohner CM, Renner SS. Perception of photoperiod in individual buds of mature trees regulates leaf-out. New Phytol. 2015;208(4):1023–30.PubMedCrossRefGoogle Scholar
  319. Zotz G, Wilhelm K, Becker A. Heteroblasty – a review. Bot Rev. 2011;77(2):109–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Amy M. Brunner
    • 1
  • Erika Varkonyi-Gasic
    • 2
  • Rebecca C. Jones
    • 3
  1. 1.Department of Forest Resources and Environmental ConservationVirginia TechBlacksburgUSA
  2. 2.The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research)AucklandNew Zealand
  3. 3.School of Biological SciencesUniversity of TasmaniaHobartAustralia

Personalised recommendations