Databases and Bioinformatics for Cucurbit Species

  • Yang Bai
  • Zhonghua ZhangEmail author
  • Zhangjun FeiEmail author
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 20)


Cucurbitaceae is a very large and diverse plant family, comprising several economically important crops such as cucumber (Cucumis sativus), melon (Cucumis melo), watermelon (Citrullus lanatus) and squash/pumpkin (Cucurbita spp.). As the rise of genomic research, the genomes of the first three major cucurbits have been sequenced and well annotated, while squash and pumpkin have pre-publication genome sequences available online. Genetic and transcriptomic research in cucurbit crops have also increased exponentially in the last two decades. Web-based databases have been developed to store, manage and provide access to the vast amount of genetic and genomic data. In this chapter, we describe most-current cucurbit databases and several other databases useful for cucurbit genomic research. Most importantly, the family-wide cucurbit genomics database (CuGenDB, is a comprehensive up-to-date repository of genetic, genomic and related resources for all four major cucurbits. CuGenDB provides browsing, searching and downloading services for the genomes of cucumber and watermelon, ESTs and genetic maps for all four cucurbits, and associated data mining tools. In future, the cucurbit databases will not only store more genomes and associated resources, but also provide users better services, such as fast data updates, easy data access, and powerful tools for sequence visualization, retrieval and analysis.


Cucurbit Watermelon Melon Cucumber Pumpkin Genomics Database 

Literature Cited

  1. Ando K, Carr KM, Grumet R. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics. 2012;13:518. doi: 10.1186/1471-2164-13-518.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Baudracco-Arnas S, Pitrat M. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet. 1996;93(1–2):57–64. doi: 10.1007/BF00225727.CrossRefPubMedGoogle Scholar
  3. Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011a;12(1):1–15. doi: 10.1186/1471-2164-12-104.CrossRefGoogle Scholar
  4. Blanca JM, Canizares J, Ziarsolo P, Esteras C, Mir G, Nuez F, et al. Melon transcriptome characterization: simple sequence repeats and single nucleotide polymorphisms discovery for high throughput genotyping across the species. Plant Genome. 2011b;4(2):118–31. doi: 10.3835/plantgenome2011.01.0003.CrossRefGoogle Scholar
  5. Blanca J, Esteras C, Ziarsolo P, Perez D, Fernandez-Pedrosa V, Collado C, et al. Transcriptome sequencing for SNP discovery across Cucumis melo. BMC Genomics. 2012;13:280. doi: 10.1186/1471-2164-13-280.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bradeen JM, Staub JE, Wye C, Antonise R, Peleman J. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome. 2001;44(1):111–9.CrossRefPubMedGoogle Scholar
  7. Chavez Montes RA, Rosas-Cardenas dFF, De Paoli E, Accerbi M, Rymarquis LA, Mahalingam G, et al. Sample sequencing of vascular plants demonstrates widespread conservation and divergence of microRNAs. Nat Commun. 2014;5:1–15. doi: 10.1038/ncomms4722.Google Scholar
  8. Chen C, Liu M, Jiang L, Liu X, Zhao J, Yan S, et al. Transcriptome profiling reveals roles of meristem regulators and polarity genes during fruit trichome development in cucumber (Cucumis sativus L.). J Exp Bot. 2014a;65(17):4943–58. doi: 10.1093/jxb/eru258.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen J, Hu Q, Zhang Y, Lu C, Kuang H. P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res. 2014b;42(D1):D1176–D81. doi: 10.1093/nar/gkt1000.CrossRefPubMedGoogle Scholar
  10. Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, et al. Analysis of expressed sequence tags generated from full-length enriched cDNA libraries of melon. BMC Genomics. 2011;12:252. doi: 10.1186/1471-2164-12-252.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica. 2002;125(3):373–84. doi: 10.1023/a:1016021926815.CrossRefGoogle Scholar
  12. Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, et al. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol. 2011;11(1):–14. doi: 10.1186/1471-2229-11-111.
  13. Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dolera N, Roig C, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics. 2012a;13:80. doi: 10.1186/1471-2164-13-80.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Esteras C, Gomez P, Monforte AJ, Blanca J, Vicente-Dólera N, Roig C, et al. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genomics. 2012b;13(1):1–21. doi: 10.1186/1471-2164-13-80.CrossRefGoogle Scholar
  15. Esteras C, Formisano G, Roig C, Diaz A, Blanca J, Garcia-Mas J, et al. SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theor Appl Genet. 2013;126(5):1285–303. doi: 10.1007/s00122-013-2053-5.CrossRefPubMedGoogle Scholar
  16. Fan M, Huang Y, Zhong Y, Kong Q, Xie J, Niu M, et al. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta. 2014;239(2):397–410. doi: 10.1007/s00425-013-1976-z.CrossRefPubMedGoogle Scholar
  17. Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet. 2003;107(5):864–74. doi: 10.1007/s00122-003-1277-1.CrossRefPubMedGoogle Scholar
  18. Gao P, Sheng Y, Luan F, Ma H, Liu S. RNA-Seq transcriptome profiling reveals differentially expressed genes involved in sex expression in Melon. Crop Sci. 2015;55(4):1686–95. doi: 10.2135/cropsci2014.06.0444.CrossRefGoogle Scholar
  19. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A. 2012;109(29):11872–7. doi: 10.1073/pnas.1205415109.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gonzalez VM, Garcia-Mas J, Arus P, Puigdomenech P. Generation of a BAC-based physical map of the melon genome. BMC Genomics. 2010;11:339. doi: 10.1186/1471-2164-11-339.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gonzalez-Ibeas D, Blanca J, Roig C, González-To M, Pico B, Truniger V, et al. MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007;8(1):1–17. doi: 10.1186/1471-2164-8-306.CrossRefGoogle Scholar
  22. Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, et al. Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet. 2005;110(5):802–11. doi: 10.1007/s00122-004-1814-6.CrossRefPubMedGoogle Scholar
  23. Grassi S, Piro G, Lee JM, Zheng Y, Fei Z, Dalessandro G, et al. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit. BMC Genomics. 2013;14:781. doi: 10.1186/1471-2164-14-781.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Guo S, Zheng Y, Joung JG, Liu S, Zhang Z, Crasta OR, et al. Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics. 2010;11:384. doi: 10.1186/1471-2164-11-384.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Guo S, Liu J, Zheng Y, Huang M, Zhang H, Gong G, et al. Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles. BMC Genomics. 2011;12:454. doi: 10.1186/1471-2164-12-454.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet. 2013;45(1):51–8. doi: 10.1038/ng.2470.CrossRefPubMedGoogle Scholar
  27. Guo S, Sun H, Zhang H, Liu J, Ren Y, Gong G, et al. Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One. 2015;10(6):e0130267. doi: 10.1371/journal.pone.0130267.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet. 2010;121(3):511–33. doi: 10.1007/s00122-010-1327-4.CrossRefPubMedGoogle Scholar
  29. Howe D, Costanzo M, Fey P, Gojobori T, Hannick L, Hide W, et al. Big data: The future of biocuration. Nature. 2008;455(7209):47–50.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, et al. The genome of the cucumber, Cucumis sativus L. Nat Genet. 2009;41(12):1275–81.CrossRefPubMedGoogle Scholar
  31. Jiang L, Yan S, Yang W, Li Y, Xia M, Chen Z, et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep. 2015;5:8031. doi: 10.1038/srep08031.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42(D1):D1182–D7. doi: 10.1093/nar/gkt1016.CrossRefPubMedGoogle Scholar
  33. Kim HA, Shin AY, Lee MS, Lee HJ, Lee HR, Ahn J, et al. De Novo Transcriptome Analysis of Cucumis melo L. var. makuwa. Mol Cells. 2016;39(2):141–8. doi: 10.14348/molcells.2016.2264.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee T-H, Tang H, Wang X, Paterson AH. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 2012. doi: 10.1093/nar/gks1104.Google Scholar
  35. Levi A, Thomas CE, Zhang X, Joobeur T, Dean RA, Wehner TC, et al. A genetic linkage map for watermelon based on randomly amplified polymorphic DNA markers. J Am Soc Hortic Sci. 2001;126(6):730–7.Google Scholar
  36. Levi A, Thomas E, Joobeur T, Zhang X, Davis A. A genetic linkage map for watermelon derived from a testcross population: ( Citrullus lanatus var. citroides x C. lanatus var. lanatus) x Citrullus colocynthis. Theor Appl Genet. 2002;105(4):555–63. doi: 10.1007/s00122-001-0860-6.CrossRefPubMedGoogle Scholar
  37. Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, et al. Genes expressed during the development and ripening of watermelon fruit. Plant Cell Rep. 2006;25(11):1233–45. doi: 10.1007/s00299-006-0163-0.CrossRefPubMedGoogle Scholar
  38. Li Z, Zhang Z, Yan P, Huang S, Fei Z, Lin K. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics. 2011;12(1):1–11. doi: 10.1186/1471-2164-12-540.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Martinez G, Forment J, Llave C, Pallas V, Gomez G. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs. PLoS One. 2011;6(5):e19523. doi: 10.1371/journal.pone.0019523.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, et al. A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica. 2011;2:167–76. doi: 10.1007/s10681-011-0410-5.CrossRefGoogle Scholar
  41. Oliver M, Garcia-Mas J, Cardus M, Pueyo N, Lopez-Sese AL, Arroyo M, et al. Construction of a reference linkage map for melon. Genome. 2001;44(5):836–45.CrossRefPubMedGoogle Scholar
  42. Omid A, Keilin T, Glass A, Leshkowitz D, Wolf S. Characterization of phloem-sap transcription profile in melon plants. J Exp Bot. 2007;58(13):3645–56. doi: 10.1093/jxb/erm214.CrossRefPubMedGoogle Scholar
  43. Park YH, Sensoy S, Wye C, Antonise R, Peleman J, Havey MJ. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome. 2000;43(6):1003–10.CrossRefPubMedGoogle Scholar
  44. Proost S, Van Bel M, Vaneechoutte D, de Peer Y V, Inze D, Mueller-Roeber B, et al. PLAZA 3.0: an access point for plant comparative genomics. Nucleic Acids Res. 2014. doi: 10.1093/nar/gku986.PubMedPubMedCentralGoogle Scholar
  45. Qi J, Liu X, Shen D, Miao H, Xie B, Li X, et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet. 2013;45(12):1510–5. doi: 10.1038/ng.2801.CrossRefPubMedGoogle Scholar
  46. Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z, et al. An integrated genetic and cytogenetic map of the cucumber genome. PLoS One. 2009;4(6):e5795.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, et al. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol. 2014;14:33. doi: 10.1186/1471-2229-14-33.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rhee SJ, Seo M, Jang YJ, Cho S, Lee GP. Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics. 2015;16:914. doi: 10.1186/s12864-015-2186-9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Robinson RW, Decker-Walters DS. Cucurbits. Wallingford, Oxon/New York, NY: Cab International; 1997.Google Scholar
  50. Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M, et al. Transposon insertions, structural variations, and SNPs contribute to the evolution of the melon genome. Mol Biol Evol. 2015;32(10):2760–74. doi: 10.1093/molbev/msv152.CrossRefPubMedGoogle Scholar
  51. Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, et al. Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome. 2003;46(5):761–73. doi: 10.1139/g03-060.CrossRefPubMedGoogle Scholar
  52. Sun J, Zhang Z, Zong X, Huang S, Li Z, Han Y. A high-resolution cucumber cytogenetic map integrated with the genome assembly. BMC Genomics. 2013;14:461. doi: 10.1186/1471-2164-14-461.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wang Y-H, Thomas EC, Dean AR. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet. 1997;95(5):791–8. doi: 10.1007/s001220050627.CrossRefGoogle Scholar
  54. Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics. 2014;15:1158. doi: 10.1186/1471-2164-15-1158.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wu T, Qin Z, Zhou X, Feng Z, Du Y. Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol. 2010;167(11):905–13. doi: 10.1016/j.jplph.2010.02.004.CrossRefPubMedGoogle Scholar
  56. Xu P, Xu S, Wu X, Tao Y, Wang B, Wang S, et al. Population genomic analyses from low-coverage RAD-Seq data: a case study on the non-model cucurbit bottle gourd. Plant J. 2014;77(3):430–42. doi: 10.1111/tpj.12370.CrossRefPubMedGoogle Scholar
  57. Yang L, Li D, Li Y, Gu X, Huang S, Garcia-Mas J, et al. A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol. 2013;13:53. doi: 10.1186/1471-2229-13-53.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, et al. Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet. 2012;124(2):249–59. doi: 10.1007/s00122-011-1701-x.CrossRefPubMedGoogle Scholar
  59. Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY, Li R, et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res. 2014;56(1):39–50. doi: 10.1111/jpi.12095.CrossRefPubMedGoogle Scholar
  60. Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015;16(1):1–13. doi: 10.1186/s12864-015-2312-8.CrossRefGoogle Scholar
  61. Zhang H, Wang H, Yi H, Zhai W, Wang G, Fu Q. Transcriptome profiling of Cucumis melo fruit development and ripening. Hort Res. 2016;3:16014. doi: 10.1038/hortres.2016.14.CrossRefGoogle Scholar
  62. Zhao W, Yang X, Yu H, Jiang W, Sun N, Liu X, et al. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network. Plant Cell Physiol. 2015;56(3):455–67. doi: 10.1093/pcp/pcu172.CrossRefPubMedGoogle Scholar
  63. Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, Zhao PX, Rhee SY, Fei Z iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant. 2016; doi: 10.1016/j.molp.2016.09.014.
  64. Zhou Q, Miao H, Li S, Zhang SP, Wang Y, Weng YQ, et al. A sequencing-based linkage map of cucumber. Mol Plant. 2015;8(6):961–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Boyce Thompson Institute, Cornell UniversityIthacaUSA
  2. 2.Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijingChina
  3. 3.U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and HealthIthacaUSA

Personalised recommendations