pp 1-31 | Cite as

Landscape Genomics of Angiosperm Trees: From Historic Roots to Discovering New Branches of Adaptive Evolution

  • Karl C. Fetter
  • Paul F. Gugger
  • Stephen R. Keller
Chapter
Part of the Plant Genetics and Genomics: Crops and Models book series

Abstract

Landscape genomic studies analyze spatial patterns of genetic variation to test hypotheses about how demographic history, gene flow, and natural selection have shaped populations. For decades, angiosperm trees have served as outstanding model systems for landscape-scale genetic studies due to their extensive geographic ranges, large effective population sizes, abundant genetic diversity, and high gene flow. These characteristics were recognized early in the landscape genetics literature, and studies on angiosperm trees, particularly Populus and Quercus, tested hypotheses about how landscape features shaped neutral patterns of gene flow and population divergence. More recently, advances in sequencing and analysis methodologies have allowed for greater opportunities to directly test how natural selection acting locally across the landscape has shaped the genome-wide diversity of populations, often in the context of broad climatic gradients in growing season length. Despite, the methodological gains and successes of the last decade, landscape genomics studies face new challenges of study design, hypothesis testing, and validation. Here, we explore the development of landscape genetics and genomics in angiosperm trees and what we have learned from investigating the evolutionary consequences of life as a tree in heterogeneous landscapes. We outline the past, present, and potential future of landscape genomic studies in angiosperm trees, highlighting successes of the field, challenges to overcome, and ideas that scientists from all backgrounds engaged in landscape genomics should consider.

Keywords

Genomics Trees Landscape Genetics Association Genetics 

References

  1. Aitken, S. N., and J. B. Bemmels. 2015. Time to get moving: assisted gene flow of forest trees. Evolutionary Applications 9:271–290.Google Scholar
  2. Alberto FJ, Derory J, Boury C, Frigerio J-M, Zimmermann NE, Kremer A. Imprints of natural selection along environmental gradients in phenology-related genes of Quercus petraea. Genetics. 2013;195:495–512.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ally D, Ritland K, Otto SP. Can clone size serve as a proxy for clone age? An exploration using microsatellite divergence in Populus tremuloides. Mol Ecol. 2008;17:4897–911.PubMedCrossRefGoogle Scholar
  4. Anderson, M. K. 2005. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources. Book, University of California Press, Berkeley, CA.Google Scholar
  5. Arens P, Coops H, Jansen J, Vosman B. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers. Mol Ecol. 1998;7:11–8.CrossRefGoogle Scholar
  6. Augspurger CK. Seedling survival of tropical tree tpecies: interactions of dispersal distance, light-gaps, and pathogens. Ecology. 1984;65:1705–12.CrossRefGoogle Scholar
  7. Avelino J, Romero-Gurdián A, Cruz-Cuellar HF, Declerck FA. Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol Appl. 2012;22:584–96.PubMedCrossRefGoogle Scholar
  8. Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85–8.ADSPubMedCrossRefGoogle Scholar
  9. Becker C, Weigel D. Epigenetic variation: origin and transgenerational inheritance. Curr Opin Plant Biol. 2012;15:562–7.PubMedCrossRefGoogle Scholar
  10. Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K, Weigel D. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature. 2011;480:245–9.ADSPubMedCrossRefGoogle Scholar
  11. Berg, J. J., and G. Coop. 2014. A population genetic signal of polygenic adaptation. PLoS genetics 10:e1004412.Google Scholar
  12. Bernard E, Jacob L, Mairal J, Viara E, Vert J-P. A convex formulation for joint RNA isoform detection and quantification from multiple RNA-seq samples. BMC Bioinf. 2015;16:262.CrossRefGoogle Scholar
  13. Block, W. M., M. M. Morrison, and J. Verner. 1990. Wildlife and oak-woodland interdependency. Fremontia 18:72–76.Google Scholar
  14. Bodénès C, Chancerel E, Gailing O, Vendramin GG, Bagnoli F, Durand J, Goicoechea PG, Soliani C, Villani F, Mattioni C, Koelewijn HP, Murat F, Salse J, Roussel G, Boury C, Alberto F, Kremer A, Plomion C. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 2012;12:153.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH, Nilsson O. CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science. 2006;312:1040–3.ADSPubMedCrossRefGoogle Scholar
  16. Bono JM, Olesnicky EC, Matzkin LM. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing. Mol Ecol. 2015;24:3810–22.PubMedCrossRefGoogle Scholar
  17. Bragg JG, Supple MA, Andrew RL, Borevitz JO, Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytol. 2015;207:953–67.PubMedCrossRefGoogle Scholar
  18. Breen AL, Murray DF, Olson MS. Genetic consequences of glacial survival: the late Quaternary history of balsam poplar (Populus balsamifera L.) in North America. J Biogeogr. 2012;39:918–28.CrossRefGoogle Scholar
  19. Brown TB, Cheng R, Sirault XRR, Rungrat T, Murray KD, Trtilek M, Furbank RT, Badger M, Pogson BJ, Borevitz JO. TraitCapture: genomic and environment modelling of plant phenomic data. Curr Opin Plant Biol. 2014;18:73–9.PubMedCrossRefGoogle Scholar
  20. Burns, R. M., and B. H. Honkala. 1990. Silvics of North America: Hardwoods. Book, U.S. Department of Agriculture Forest Service, Washington, DC.Google Scholar
  21. Busby PE, Zimmerman N, Weston DJ, Jawdy SS, Houbraken J, Newcombe G. Leaf endophytes and Populus genotype affect severity of damage from the necrotrophic leaf pathogen, Drepanopeziza populi. Ecosphere. 2013;4:art125.Google Scholar
  22. Bylesjö M, Segura V, Soolanayakanahally RY, Rae AM, Trygg J, Gustafsson P, Jansson S, Street NR. LAMINA: a tool for rapid quantification of leaf size and shape parameters. BMC Plant Biol. 2008;8:82.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ćalić I, Bussotti F, Martínez-García PJ, Neale DB. Recent landscape genomics studies in forest trees—what can we believe? Tree Genet Genomes. 2016;12:3.CrossRefGoogle Scholar
  24. Callahan CM, Rowe CA, Ryel RJ, Shaw JD, Madritch MD, Mock KE. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides). J Biogeogr. 2013;40:1780–91.CrossRefGoogle Scholar
  25. Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A. Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics. 2006;172:533–46.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chhatre V, Evans L, DiFazio S, Keller S. Selection driven introgression in a trispecies complex of Populus near the southern range edge. (n.d.).Google Scholar
  27. Christe C, Stölting KN, Bresadola L, Fussi B, Heinze B, Wegmann D, Lexer C. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow. Mol Ecol. 2016;25(11):2482–98.PubMedCrossRefGoogle Scholar
  28. Clark RM, Wagler TN, Quijada P, Doebley J. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture. Nat Genet. 2006;38:594–7.PubMedCrossRefGoogle Scholar
  29. Cokus SJ, Gugger PF, Sork VL. Evolutionary insights from de novo transcriptome assembly and SNP discovery in California white oaks. BMC Genomics. 2015;16:552.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dahlgren, R. A., M. J. Singer, and X. Huang. 1997. Oak tree and grazing impacts on soil properties and nutrients in a California oak woodland. Biogeochemistry 39:45–64.Google Scholar
  31. De Carvalho D, Ingvarsson PK, Joseph J, Suter L, Sedivy C, MacAya-Sanz D, Cottrell J, Heinze B, Schanzer I, Lexer C. Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol Ecol. 2010;19:1638–50.CrossRefGoogle Scholar
  32. Delfino-Mix A, Wright JW, Gugger, Liang C, Sork VL. Establishing a range-wide provenance test in valley oak (Quercus lobata Née) at two California sites. Proceedings of the seventh oak symposium: managing oak woodlands in a dynamic world. USDA Forest Service, Pacific Southwest Research Station, Albay; 2015. pp. 413–24.Google Scholar
  33. Derory J, Léger P, Garcia V, Schaeffer J, Hauser MT, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytol. 2006;170:723–38.Google Scholar
  34. Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodénès C, Alberto F, Kremer A, Bodenes C, Alberto F, Kremer A, Bodénès C, Alberto F, Kremer A. Contrasting relationships between the diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity. 2010;104:438–48.Google Scholar
  35. Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C. Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res Int. 2011;18:82–90.Google Scholar
  36. Difazio SP, Slavov GT, Joshi CP. Populus: a premier pioneer system for plant genomics. Science Publishers, Inc. Enfield, New Hampshire; 2011. pp. 1–28.Google Scholar
  37. Dillon S, McEvoy R, Baldwin DS, Southerton S, Campbell C, Parsons Y, Rees GN. Genetic diversity of Eucalyptus camaldulensis following population decline in response to drought and altered hydrological regime. Austral Ecol. 2015;40:558–72.Google Scholar
  38. Difazio, S. P., S. Leonardi, G. T. Slavov, S. L. Garman, W. T. Adams, and S. H. Strauss. 2012. Gene flow and simulation of transgene dispersal from hybrid poplar plantations. The New Phytologist 193:903–915.Google Scholar
  39. Dosskey, M., R. C. Schultz, and T. M. Isenhart. 1997. Riparian buffers for agrigultural land. Page Agroforestry Notes. Report, USDA National Agroforestry Center.Google Scholar
  40. Du Q, Xu B, Gong C, Yang X, Pan W, Tian J, Li B, Zhang D. Variation in growth, leaf, and wood property traits of Chinese white poplar (Populus tomentosa), a major industrial tree species in Northern China. Can J For Res. 2014;44:326–40.Google Scholar
  41. Durand, J., C. Bodenes, E. Chancerel, J.-M. Frigerio, G. Vendramin, F. Sebastiani, A. Buonamici, O. Gailing, H.-P. Koelewijn, F. Villani, C. Mattioni, M. Cherubini, P. Goicoechea, A. Herran, Z. Ikaran, C. Cabane, S. Ueno, F. Alberto, P.-Y. Dumoulin, E. Guichoux, A. de Daruvar, A. Kremer, and C. Plomion. 2010. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 11:570.Google Scholar
  42. Elmore A, Stylinski C, Prahdan K. Synergistic use of citizen science and remote sensing for continental-scale measurements of forest tree phenology. Remote Sensing. (n.d.).Google Scholar
  43. Espinoza, O., U. Buehlmann, M. Bumgardner, and B. Smith. 2011. Assessing changes in the US hardwood sawmill industry with a focus on markets and distribution. BioResources 6:2676–2689.Google Scholar
  44. Evans LM, Slavov GT, Rodgers-Melnick E, Martin J, Ranjan P, Muchero W, Brunner AM, Schackwitz W, Gunter L, Chen J-G, Tuskan GA, DiFazio SP. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations. Nat Genet. 2014;46:1089–96.PubMedCrossRefGoogle Scholar
  45. Evans LM, Allan GJ, DiFazio SP, Slavov GT, Wilder JA, Floate KD, Rood SB, Whitham TG. Geographical barriers and climate influence demographic history in narrowleaf cottonwoods. Heredity. 2015;114:387–96.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep. 2015;5:12217.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  47. Fang G-C, Blackmon BP, Staton ME, Nelson CD, Kubisiak TL, Olukolu BA, Henry D, Zhebentyayeva T, Saski CA, Cheng C-H, Monsanto M, Ficklin S, Atkins M, Georgi LL, Barakat A, Wheeler N, Carlson JE, Sederoff R, Abbott AG. A physical map of the Chinese chestnut (Castanea mollissima) genome and its integration with the genetic map. Tree Genet Genomes. 2012;9:525–37.CrossRefGoogle Scholar
  48. Fetter KC, Weakley AS. Morphological and DNA sequence divergence of Liriodendron tulipifera populations in the Southeastern coastal plain, USA. (n.d.).Google Scholar
  49. Feurdean A, Bhagwat SA, Willis KJ, Birks HJB, Lischke H, Hickler T. Tree migration-rates: narrowing the gap between inferred post-glacial rates and projected rates. PLoS One. 2013;8:e71797.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  50. Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol Lett. 2015;18:1–16.PubMedCrossRefGoogle Scholar
  51. Floate KD. Extent and patterns of hybridization among the three species of Populus that constitute the riparian forest of southern Alberta, Canada. Can J Bot. 2004;82:253–64.CrossRefGoogle Scholar
  52. Floate KD, Godbout J, Lau MK, Isabel N, Whitham TG. Plant-herbivore interactions in a trispecific hybrid swarm of Populus: assessing support for hypotheses of hybrid bridges, evolutionary novelty and genetic similarity. New Phytol. 2016;209(2):832–44.PubMedCrossRefGoogle Scholar
  53. Foll M, Gaggiotti O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics. 2008;180:977–93.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Foster AJ, Pelletier G, Tanguay P, Séguin A. Transcriptome analysis of poplar during leaf spot infection with Sphaerulina spp. PLoS One. 2015;10:e0138162.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Fralish, J. S. 2004. The keystone role of oak and hickory in the central hardwood forest. Page Upland oak ecology symposium: history, current conditions, and sustainability. Book Section, US Forest Service.Google Scholar
  56. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30:1687–99.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gailing, O. 2014. Strategies to Identify Adaptive Genes in Hybridizing Trees like Oaks and Poplars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca.Google Scholar
  58. Gailing, O., and A. L. Curtu. 2014. Interspecific gene flow and maintenance of species integrity in oaks. Annals of Forest Research 57:5–18.Google Scholar
  59. Gentry AH. Tree species richness of upper Amazonian forests. Proc Natl Acad Sci. 1988;85:156–9.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  60. Geraldes A, Difazio SP, Slavov GT, Ranjan P, Muchero W, Hannemann J, Gunter LE, Wymore AM, Grassa CJ, Farzaneh N, Porth I, McKown AD, Skyba O, Li E, Fujita M, Klápště J, Martin J, Schackwitz W, Pennacchio C, Rokhsar D, Friedmann MC, Wasteneys GO, Guy RD, El-Kassaby YA, Mansfield SD, Cronk QCB, Ehlting J, Douglas CJ, Tuskan GA. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species. Mol Ecol Resour. 2013;13:306–23.PubMedCrossRefGoogle Scholar
  61. Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure. Evolution. 2014;68:3260–80.PubMedCrossRefGoogle Scholar
  62. Geraldes A, Hefer CA, Capron A, Kolosova N, Martinez-Nuñez F, Soolanayakanahally RY, Stanton B, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Recent y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol Ecol. 2015;24:3243–56.PubMedCrossRefGoogle Scholar
  63. González-Martínez SC, Krutovsky KV, Neale DB. Forest-tree population genomics and adaptive evolution. New Phytol. 2006;170:227–38.PubMedCrossRefGoogle Scholar
  64. Graham E a, Riordan EC, Yuen EM, Estrin D, Rundel PW. Public Internet-connected cameras used as a cross-continental ground-based plant phenology monitoring system. Glob Chang Biol. 2010;16:3014–23.Google Scholar
  65. Grivet D, Deguilloux M-FF, Petit RJ, Sork VL. Contrasting patterns of historical colonization in white oaks (Quercus spp.) in California and Europe. Mol Ecol. 2006;15:4085–93.PubMedCrossRefGoogle Scholar
  66. Gugger PF, Cokus SJ, Sork VL. Association of transcriptome-wide sequence variation with climate gradients in valley oak (Quercus lobata). Tree Genet Genomes. 2016a;12:15.CrossRefGoogle Scholar
  67. Gugger PF, Fitz-Gibbon S, Pellegrini M, Sork VL. Species-wide patterns of DNA methylation variation in Quercus lobata and its association with climate gradients. Mol Ecol. 2016b;25:1665–80.Google Scholar
  68. Gugger, P. F., J. M. Peñaloza-Ramírez, J. W. Wright, and V. L. Sork. (n.d.). Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Tree Physiology.Google Scholar
  69. Günther T, Coop G. Robust identification of local adaptation from allele frequencies. Genetics. 2013;195:205–20.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hacquard S, Schadt CW. Towards a holistic understanding of the beneficial interactions across the Populus microbiome. New Phytol. 2015;205:1424–30.PubMedCrossRefGoogle Scholar
  71. Haldane JBS. The theory of a cline. J Genet. 1948;48:277–84.PubMedCrossRefGoogle Scholar
  72. Hall D, Luquez V, Garcia VM, Onge KRS, Jansson S, Ingvarsson PK. Adaptive population differentiation in phenology across a latitudinal gradient in European aspen (Populus tremula, L.): a comparison of neutral markers, candidate genes and phenotypic traits. Evolution. 2007;61:2849–60.PubMedCrossRefGoogle Scholar
  73. Hall D, Ma XF, Ingvarsson PK. Adaptive evolution of the Populus tremula photoperiod pathway. Mol Ecol. 2011;20:1463–74.PubMedCrossRefGoogle Scholar
  74. Hamilton MB. Tropical tree gene flow and seed dispersal. Nature. 1999;401:8–9.CrossRefGoogle Scholar
  75. Hancock, A. M., B. Brachi, N. Faure, M. W. Horton, L. B. Jarymowycz, F. G. Sperone, C. Toomajian, F. Roux, and J. Bergelson. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83–86.Google Scholar
  76. Hartfield M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol. 2016;29:5–22.PubMedCrossRefGoogle Scholar
  77. Herman, D. J., L. J. Halverson, and M. K. Firestone. 2003. Nitrogen dynamics in an annual grassland: oak canopy, climate, and microbial population effects. Ecological Applications 13:593–604.Google Scholar
  78. Hewitt G. Post-glacial re-colonization of European biota. Biol J Linn Soc. 1999;68:87–112.CrossRefGoogle Scholar
  79. Holeski LM, Zinkgraf MS, Couture JJ, Whitham TG, Lindroth RL. Transgenerational effects of herbivory in a group of long-lived tree species: maternal damage reduces offspring allocation to resistance traits, but not growth. J Ecol. 2013;101:1062–73.CrossRefGoogle Scholar
  80. Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytol. 2016;209:1240–51.PubMedCrossRefGoogle Scholar
  81. Homolová L, Malenovský Z, Clevers JGPW, García-Santos G, Schaepman ME. Review of optical-based remote sensing for plant trait mapping. Ecol Complex. 2013;15:1–16.CrossRefGoogle Scholar
  82. Huang Y-N, Zhang H, Rogers S, Coggeshall M, Woeste K. White oak growth after 23 years in a three-site provenance/progeny trial on a latitudinal gradient in Indiana. For Sci. 2015;61:1–8.Google Scholar
  83. Imbert E, Lefevre F. Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J Ecol. 2003;91:447–56.CrossRefGoogle Scholar
  84. Ingvarsson PK. Multilocus patterns of nucleotide polymorphism and the demographic history of Populus tremula. Genetics. 2008;180:329–40.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ingvarsson PK, García MV, Hall D, Luquez V, Jansson S. Clinal variation in phyB2, a candidate gene for day-length-induced growth cessation and bud set, across a latitudinal gradient in European aspen (Populus tremula). Genetics. 2006;172:1845–53.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Ingvarsson PK, Garcia MV, Luquez V, Hall D, Jansson S. Nucleotide polymorphism and phenotypic associations within and around the phytochrome B2 Locus in European aspen (Populus tremula, Salicaceae). Genetics. 2008;178:2217–26.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Isabel N, Lamothe M, Thompson SL. A second-generation diagnostic single nucleotide polymorphism (SNP)-based assay, optimized to distinguish among eight poplar (Populus L.) species and their early hybrids. Tree Genet Genomes. 2013;9:621–6.CrossRefGoogle Scholar
  88. Ivetić V, Stjepanović S, Devetaković J, Stanković D, Škorić M. Relationships between leaf traits and morphological attributes in one-year bareroot Fraxinus angustifolia Vahl. seedlings. Ann For Res. 2014;57:1.CrossRefGoogle Scholar
  89. Järvinen P, Lemmetyinen J, Savolainen O, Sopanen T. DNA sequence variation in BpMADS2 gene in two populations of Betula pendula. Mol Ecol. 2003;12:369–84.PubMedCrossRefGoogle Scholar
  90. Keller SR, Olson MS, Silim S, Schroeder W, Tiffin P. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam poplar, Populus balsamifera. Mol Ecol. 2010;19:1212–26.PubMedCrossRefGoogle Scholar
  91. Keller SR, Levsen N, Ingvarsson PK, Olson MS, Tiffin P. Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L. Genetics. 2011;188:941–52.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Keller SR, Levsen N, Olson MS, Tiffin P. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol Biol Evol. 2012;29:3143–52.PubMedCrossRefGoogle Scholar
  93. Kempes CP, West GB, Crowell K, Girvan M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS One. 2011;6:e20551.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim Y-H, Kim MD, Choi YI, Park S-C, Yun D-J, Noh EW, Lee H-S, Kwak S-S. Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J. 2011;9:334–47.PubMedCrossRefGoogle Scholar
  95. Kleinknecht GJ, Lintz HE, Kruger A, Niemeier JJ, Salino-Hugg MJ, Thomas CK, Still CJ, Kim Y. Introducing a sensor to measure budburst and its environmental drivers. Front Plant Sci. 2015;6:123.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kremer A, Abbott AG, Carlson JE, Manos PS, Plomion C, Sisco P, Staton ME, Ueno S, Vendramin GG. Genomics of Fagaceae. Tree Genet Genomes. 2012;8:583–610.CrossRefGoogle Scholar
  97. Kroeger, T., F. Casey, P. Alvarez, M. Cheatum, and L. Tavassoi. 2010. An economic analysis of the benefits of habitat conservation on California rangelands. Page Conservation Economics White Paper. Report, Conservation Economics Program, Defenders of Wildlife, Washington, DC.Google Scholar
  98. Krutovsky, K. V, and D. B. Neale. 2005. Nucleotide diversity and linkage disequilibrium in cold-hardiness- and wood quality-related candidate genes in Douglas fir. Genetics 171:2029–2041.Google Scholar
  99. Langlet O. Two hundred years genecology. Taxon. 1971;20:653–721.CrossRefGoogle Scholar
  100. Le Corree V, Machon N, Petit RJ, Kremer A. Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genet Res. 1997;69:117–25.CrossRefGoogle Scholar
  101. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, Turczyk BM, Yang JL, Lee HS, Aach J, Zhang K, Church GM. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015;10:442–58.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Lepoittevin, C., C. Bodénès, E. Chancerel, L. Villate, T. Lang, I. Lesur, C. Boury, F. Ehrenmann, D. Zelenica, A. Boland, C. Besse, P. Garnier-Géré, C. Plomion, and A. Kremer. 2015. Single-nucleotide polymorphism discovery and validation in high-density SNP array for genetic analysis in European white oaks. Molecular Ecology Resources 15:1446–1459.Google Scholar
  103. Lesur, I., G. Le Provost, P. Bento, C. Da Silva, J.-C. Leplé, F. Murat, S. Ueno, J. Bartholomé, C. Lalanne, F. Ehrenmann, C. Noirot, C. Burban, V. Léger, J. Amselem, C. Belser, H. Quesneville, M. Stierschneider, S. Fluch, L. Feldhahn, M. Tarkka, S. Herrmann, F. Buscot, C. Klopp, A. Kremer, J. Salse, J.-M. Aury, and C. Plomion. 2015. The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics 16:1–23.Google Scholar
  104. Levsen ND, Tiffin P, Olson MS. Pleistocene speciation in the genus Populus (Salicaceae). Syst Biol. 2012;61:401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Liang H, Ayyampalayam S, Wickett N, Barakat A, Xu Y, Landherr L, Ralph PE, Jiao Y, Xu T, Schlarbaum SE, Ma H, Leebens-Mack JH, dePamphilis CW. Generation of a large-scale genomic resource for functional and comparative genomics in Liriodendron tulipifera L. Tree Genet Genomes. 2011;7:941–54.CrossRefGoogle Scholar
  106. Linhart YB, Grant MC. Evolutionary significance of local genetic differentiation in plants. Annu Rev Ecol Syst. 1996;27:237–77.CrossRefGoogle Scholar
  107. Lotterhos KE, Whitlock MC. Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol. 2014;23:2178–92.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Luppold, W., and M. Bumgardner. 2008. Regional analysis of hardwood lumber production: 1963-2005. Northern Journal of Applied Forestry 25:146–150.Google Scholar
  109. Luquez V, Hall D, Albrectsen BR, Karlsson J, Ingvarsson P, Jansson S. Natural phenological variation in aspen (Populus tremula): the SwAsp collection. Tree Genet Genomes. 2007;4:279–92.CrossRefGoogle Scholar
  110. Ma X-F, Hall D, Onge KRS, Jansson S, Ingvarsson PK. Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics. 2010;186:1033–44.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Madritch MD, Kingdon CC, Singh A, Mock KE, Lindroth RL, Townsend PA. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130194.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Manel S, Schwartz MK, Luikart G, Taberlet P. Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol. 2003;18:189–97.CrossRefGoogle Scholar
  113. Manel S, Perrier C, Pratlong M, Abi-Rached L, Paganini J, Pontarotti P, Aurelle D. Genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol Ecol. 2015;25:170–84.PubMedCrossRefGoogle Scholar
  114. Martins K., Gugger PF, Llanderal-Mendoza J, González-Rodríguez A, Fitz-Gibbon S, Zhao JL, Oyama K, Sork VL. Spatially divergent selection on Mexican populations of Quercus rugosa in the Trans-Mexican Volcanic Belt. (n.d.).Google Scholar
  115. Martinsen GD, Whitham TG, Turek RJ, Keim P. Hybrid populations selectively filter gene introgression between species. Evolution. 2001;55:1325–35.PubMedCrossRefGoogle Scholar
  116. McCauley, D. E. 1995. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends in ecology & evolution (Personal edition) 10:198–202.Google Scholar
  117. Mckown AD, Guy RD, Klápště J, Geraldes A, Friedmann M, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Geographical and environmental gradients shape phenotypic trait variation and genetic structure in Populus trichocarpa. New Phytol. 2014a;201:1263–76.PubMedCrossRefGoogle Scholar
  118. McKown AD, Guy RD, Quamme L, Klápště J, La Mantia J, Constabel CP, El-Kassaby YA, Hamelin RC, Zifkin M, Azam MS. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Mol Ecol. 2014b;23:5771–90.PubMedCrossRefGoogle Scholar
  119. McKown AD, Klápště J, Guy RD, Geraldes A, Porth I, Hannemann J, Friedmann M, Muchero W, Tuskan GA, Ehlting J, Cronk QCB, El-Kassaby YA, Mansfield SD, Douglas CJ. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa. New Phytol. 2014c;203:535–53.PubMedCrossRefGoogle Scholar
  120. McLachlan JS, Clark JS, Manos PS. Molecular indicators of tree migration capacity under rapid climate change. Ecology. 2005;86:2088–98.CrossRefGoogle Scholar
  121. McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M. Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant Cell Environ. 2014;37:1440–51.PubMedCrossRefGoogle Scholar
  122. Meijón M, Satbhai SB, Tsuchimatsu T, Busch W. Genome-wide association study using cellular traits identifies a new regulator of root development in Arabidopsis. Nat Genet. 2013;46:77–81.PubMedCrossRefGoogle Scholar
  123. Meirmans PG, Lamothe M, Gros-Louis M-C, Khasa D, Périnet P, Bousquet J, Isabel N. Complex patterns of hybridization between exotic and native North American poplar species. Am J Bot. 2010;97:1688–97.PubMedCrossRefGoogle Scholar
  124. Menon M, Barnes WJ, Olson MS. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season. New Phytol. 2015;207:710–22.PubMedCrossRefGoogle Scholar
  125. McShea, W. J., W. M. Healy, P. Devers, T. Fearer, F. H. Koch, D. Stauffer, and J. Waldon. 2007. Forestry matters: decline of oaks will impact wildlife in hardwood forests. The Journal of Wildlife Management 71:1717–1728.Google Scholar
  126. Mishra P, Panigrahi KC. GIGANTEA, an emerging story. Front Plant Sci. 2015;6:8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mock KE, Rowe CA, Hooten MB, Dewoody J, Hipkins VD. Clonal dynamics in western North American aspen (Populus tremuloides). Mol Ecol. 2008;17:4827–44.PubMedCrossRefGoogle Scholar
  128. Mock KE, Callahan CM, Islam-Faridi MN, Shaw JD, Rai HS, Sanderson SC, Rowe CA, Ryel RJ, Madritch MD, Gardner RS, Wolf PG. Widespread triploidy in Western North American aspen (Populus tremuloides). PLoS One. 2012;7:e48406.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  129. Moran EV, Willis J, Clark JS. Genetic evidence for hybridization in red oaks (Quercus sect. Lobatae, Fagaceae). Am J Bot. 2012;99:92–100.PubMedCrossRefGoogle Scholar
  130. Muller, C. H. 1952. Ecological control of hybridization in Quercus: a factor in the mechanism of evolution. Evolution 6:147–161.Google Scholar
  131. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, Jenkins J, Lindquist E, Tice H, Bauer D, Goodstein DM, Dubchak I, Poliakov A, Mizrachi E, Kullan ARK, Hussey SG, Pinard D, van der Merwe K, Singh P, van Jaarsveld I, Silva-Junior OB, Togawa RC, Pappas MR, Faria DA, Sansaloni CP, Petroli CD, Yang X, Ranjan P, Tschaplinski TJ, Ye C-Y, Li T, Sterck L, Vanneste K, Murat F, Soler M, Clemente HS, Saidi N, Cassan-Wang H, Dunand C, Hefer CA, Bornberg-Bauer E, Kersting AR, Vining K, Amarasinghe V, Ranik M, Naithani S, Elser J, Boyd AE, Liston A, Spatafora JW, Dharmwardhana P, Raja R, Sullivan C, Romanel E, Alves-Ferreira M, Külheim C, Foley W, Carocha V, Paiva J, Kudrna D, Brommonschenkel SH, Pasquali G, Byrne M, Rigault P, Tibbits J, Spokevicius A, Jones RC, Steane DA, Vaillancourt RE, Potts BM, Joubert F, Barry K, Pappas GJ, Strauss SH, Jaiswal P, Grima-Pettenati J, Salse J, Van de Peer Y, Rokhsar DS, Schmutz J. The genome of Eucalyptus grandis. Nature. 2014;510:356–62.ADSPubMedGoogle Scholar
  132. Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK. A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci U S A. 2001;98:14784–9.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  133. Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA. Mechanisms of long-distance dispersal or seeds by wind. Nature. 2002;418:409–13.ADSPubMedCrossRefGoogle Scholar
  134. Neiman M, Olson MS, Tiffin P. Selective histories of poplar protease inhibitors: Elevated polymorphism, purifying selection, and positive selection driving divergence of recent duplicates. New Phytol. 2009;183:740–50.PubMedCrossRefGoogle Scholar
  135. Neale, D. B., and A. Kremer. 2011. Forest tree genomics: growing resources and applications. Nature reviews. Genetics 12:111–22.Google Scholar
  136. Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ. GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock. Plant Physiol. 2007;144:495–502.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Olson MS, Levsen N, Soolanayakanahally RY, Guy RD, Schroeder WR, Keller SR, Tiffin P. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate. Mol Ecol. 2013;22:1214–30.PubMedCrossRefGoogle Scholar
  138. Ordonez N, Seidl MF, Waalwijk C, Drenth A, Kilian A, Thomma BPHJ, Ploetz RC, Kema GHJ. Worse comes to worst: bananas and panama disease-when plant and pathogen clones meet. PLoS Pathog. 2015;11:e1005197.PubMedPubMedCentralCrossRefGoogle Scholar
  139. Ortego, J., P. F. Gugger, E. C. Riordan, and V. L. Sork. 2014. Influence of climatic niche suitability and geographical overlap on hybridization patterns among southern Californian oaks. Journal of Biogeography 41:1895–1908.Google Scholar
  140. Pavlik, B. M., P. C. Muick, S. G. Johnson, and M. Popper. 1991. Oaks of California. Book, Cachuma Press, Los Olivos, CA.Google Scholar
  141. Peñaloza-Ramírez JM, Gugger PF, Wright JW, Sork VL. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Tree Physiology. (n.d.).Google Scholar
  142. Petit RJ, Hampe A. Some evolutionary consequences of being a tree. Annu Rev Ecol Evol Syst. 2006;37:187–214.CrossRefGoogle Scholar
  143. Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A. 1997;94:9996–10001.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  144. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu J-LL, Kremer A. Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag. 2002;156:49–74.CrossRefGoogle Scholar
  145. Petit RJ, Hu FS, Dick CW. Forests of the past: a window to future changes. Science. 2008;320:1450–2.ADSPubMedCrossRefGoogle Scholar
  146. Petit, R. J., J. Carlson, A. L. Curtu, M.-L. Loustau, C. Plomion, A. González-Rodríguez, V. Sork, and A. Ducousso. 2013. Fagaceae trees as models to integrate ecology, evolution and genomics. The New Phytologist 197:369–371.Google Scholar
  147. Pettorelli N, Safi K, Turner W. Satellite remote sensing, biodiversity research and conservation of the future. Philos Trans R Soc Lond B Biol Sci. 2014;369:20130190.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Platt A, Vilhjálmsson BJ, Nordborg M. Conditions under which genome-wide association studies will be positively misleading. Genetics. 2010;186:1045–52.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Platt, A., P. F. Gugger, M. Pellegrini, and V. L. Sork. 2015. Genome-wide signature of local adaptation linked to variable CpG methylation in oak populations. Molecular Ecology 24:3823–3830.Google Scholar
  150. Plomion C, Aury J-M, Amselem J, Alaeitabar T, Barbe V, Belser C, Bergès H, Bodénès C, Boudet N, Boury C, Canaguier A, Couloux A, Da Silva C, Duplessis S, Ehrenmann F, Estrada-Mairey B, Fouteau S, Francillonne N, Gaspin C, Guichard C, Klopp C, Labadie K, Lalanne C, Le Clainche I, Leplé J-C, Le Provost G, Leroy T, Lesur I, Martin F, Mercier J, Michotey C, Murat F, Salin F, Steinbach D, Faivre-Rampant P, Wincker P, Salse J, Quesneville H, Kremer A. Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour. 2016;16:254–65.PubMedCrossRefGoogle Scholar
  151. Porth I, Koch M, Berenyi M, Burg A, Burg K. Identification of adaptation-specific differences in mRNA expression of sessile and pedunculate oak based on osmotic-stress-induced genes. Tree Physiol. 2005;25:1317–29.PubMedCrossRefGoogle Scholar
  152. Porth I, Klapšte J, Skyba O, Hannemann J, McKown AD, Guy RD, DiFazio SP, Muchero W, Ranjan P, Tuskan GA, Friedmann MC, Ehlting J, Cronk QCB, El-Kassaby YA, Douglas CJ, Mansfield SD. Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms. New Phytol. 2013;200:710–26.PubMedCrossRefGoogle Scholar
  153. Porth I, Klápště J, McKown AD, La Mantia J, Guy RD, Ingvarsson PK, Hamelin R, Mansfield SD, Ehlting J, Douglas CJ, El-Kassaby YA. Evolutionary quantitative genomics of Populus trichocarpa. PLoS One. 2015;10:e0142864.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rockman MV. The QTN program and the alleles that matter for evoltuion: all that’s gold does not glitter. Evolution. 2012;66:1–17.PubMedCrossRefGoogle Scholar
  155. Savolainen O, Pyhäjärvi T, Knürr T. Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst. 2007;38:595–619.CrossRefGoogle Scholar
  156. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen HM, Schork NJ, Ecker JR. Patterns of population epigenomic diversity. Nature. 2013;495:193–8.ADSPubMedPubMedCentralCrossRefGoogle Scholar
  157. Sheehan MJ, Kennedy LM, Costich DE, Brutnell TP. Subfunctionalization of PhyB1 and PhyB2 in the control of seedling and mature plant traits in maize. Plant J. 2007;49:338–53.PubMedCrossRefGoogle Scholar
  158. Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA, Gunter LE, Ranjan P, Vining K, Pomraning KR, Wilhelm LJ, Pellegrini M, Mockler TC, Freitag M, Geraldes A, El-Kassaby YA, Mansfield SD, Cronk QCB, Douglas CJ, Strauss SH, Rokhsar D, Tuskan GA. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol. 2012;196:713–25.PubMedCrossRefGoogle Scholar
  159. Soler M, Serra O, Molinas M, García-Berthou E, Caritat A, Figueras M. Seasonal variation in transcript abundance in cork tissue analyzed by real time RT-PCR. Tree Physiol. 2008;28:743–51.PubMedCrossRefGoogle Scholar
  160. Soltis DE, Morris AB, McLachlin JS, Manos PS, Soltis PS. Comparative phylogeography of unglaciated eastern North America. Mol Ecol. 2006;15:4261–93.PubMedCrossRefGoogle Scholar
  161. Soolanayakanahally RY, Guy RD, Silim SN, Drewes EC, Schroeder WR. Enhanced assimilation rate and water use efficiency with latitude through increased photosynthetic capacity and internal conductance in balsam poplar (Populus balsamifera L.). Plant Cell Environ. 2009;32:1821–32.PubMedCrossRefGoogle Scholar
  162. Soolanayakanahally RY, Guy RD, Silim SN, Song M. Timing of photoperiodic competency causes phenological mismatch in balsam poplar (Populus balsamifera L.). Plant Cell Environ. 2013;36:116–27.PubMedCrossRefGoogle Scholar
  163. Soolanayakanahally RY, Guy RD, Street NR, Robinson KM, Silim SN, Albrectsen BR, Jansson S. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. Front Plant Sci. 2015;6:528.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Sork V, Fitz-Gibbon S, Puiu D, Crepau M, Gugger P, Sherman R, Stevens K, Langley C, Pellegrini M, Salzberg S. The genome of a California endemic oak, Quercus lobata Née (Fagaceae). G3: Genes, Genomes, Genetics. (n.d.).Google Scholar
  165. Sork, V. L., F. W. Davis, P. E. Smouse, V. J. Apsit, R. J. Dyer, J. F. Fernandez-M, and B. Kuhn. 2002. Pollen movement in declining populations of California Valley oak, Quercus lobata: Where have all the fathers gone? Molecular Ecology 11:1657–1668.Google Scholar
  166. Sork, V. L., P. E. Smouse, V. J. Apsit, R. J. Dyer, and R. D. Westfall. 2005. A two-generation analysis of pollen pool genetic structure in flowering dogwood, Cornus florida (Cornaceae), in the Missouri Ozarks. American journal of botany 92:262–71.Google Scholar
  167. Sork, V. L., S. N. Aitken, R. J. Dyer, A. J. Eckert, P. Legendre, and D. B. Neale. 2013. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes 9:901–911.Google Scholar
  168. Sork VL, Smouse PE. Genetic analysis of landscape connectivity in tree populations. Landsc Ecol. 2006;21:821–36.CrossRefGoogle Scholar
  169. Sork VL, Squire KC, Gugger PF, Levy E, Steele S, Eckert AJ. Landscape genomic analysis of candidate genes for climate adaptation in a California endemic oak, Quercus lobata Née (Fagaceae). Am J Bot. 2016. doi:10.3732/ajb.1500162.Google Scholar
  170. Sorrie BA, Weakley AS. Coastal plain vascular plant endemics: phytogeographic patterns. Castanea. 2001;66:50–82.Google Scholar
  171. Steane D a, Potts BM, McLean E, Prober SM, Stock WD, Vaillancourt RE, Byrne M. Genome-wide scans detect adaptation to aridity in a widespread forest tree species. Mol Ecol. 2014;23:2500–13.PubMedCrossRefGoogle Scholar
  172. Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genetics: finding the genes underlying ecologically important traits. Heredity (Edinb). 2008;100:158–70.CrossRefGoogle Scholar
  173. Streiff R, Ducousso A, Lexer C, Steinkellner H, Gloessl J, Kremer A. Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea (Matt.) Liebl. Mol Ecol. 1999;8:831–41.CrossRefGoogle Scholar
  174. Suarez-Gonzalez A, Hefer CA, Christe C, Corea O, Lexer C, Cronk QCB, Douglas CJ. Genomic and functional approaches reveal a case of adaptive introgression from Populus balsamifera (balsam poplar) in P. trichocarpa (black cottonwood). Mol Ecol. 2016;25(11):2427–42.PubMedCrossRefGoogle Scholar
  175. Swarbreck, D., C. Wilks, P. Lamesch, T. Z. Berardini, M. Garcia-Hernandez, H. Foerster, D. Li, T. Meyer, R. Muller, L. Ploetz, A. Radenbaugh, S. Singh, V. Swing, C. Tissier, P. Zhang, and E. Huala. 2008. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Research 36:D1009–D1014.Google Scholar
  176. Tarkka, M. T., S. Herrmann, T. Wubet, L. Feldhahn, S. Recht, F. Kurth, S. Mailänder, M. Bönn, M. Neef, O. Angay, M. Bacht, M. Graf, H. Maboreke, F. Fleischmann, T. E. E. Grams, L. Ruess, M. Schädler, R. Brandl, S. Scheu, S. D. Schrey, I. Grosse, and F. Buscot. 2013. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. The New Phytologist 199:529–540.Google Scholar
  177. Taylor G. Populus: arabidopsis for forestry. Do we need a model tree? Ann Bot. 2002;90:681–9.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Thompson SL, Lamothe M, Meirmans PG, Périnet P, Isabel N. Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars. Mol Ecol. 2010;19:132–45.PubMedCrossRefGoogle Scholar
  179. Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;29:673–80.PubMedCrossRefGoogle Scholar
  180. Toomey M, Friedl MA, Frolking S, Hufkens K, Klosterman S, Sonnentag O, Baldocchi DD, Bernacchi CJ, Biraud SC, Richardson AD. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol Appl. 2015;25:99–115.PubMedCrossRefGoogle Scholar
  181. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.ADSPubMedCrossRefGoogle Scholar
  182. Ueno, S., G. Le Provost, V. Leger, C. Klopp, C. Noirot, J.-M. Frigerio, F. Salin, J. Salse, M. Abrouk, F. Murat, O. Brendel, J. Derory, P. Abadie, P. Leger, C. Cabane, A. Barre, A. de Daruvar, A. Couloux, P. Wincker, M.-P. Reviron, A. Kremer, and C. Plomion. 2010. Bioinformatic analysis of ESTs collected by Sanger and pyrosequencing methods for a keystone forest tree species: oak. BMC Genomics 11:650.Google Scholar
  183. Van Valen, L. 1976. Ecological species, multispecies, and oaks. Taxon 25:233–239.Google Scholar
  184. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185:1108–18.PubMedCrossRefGoogle Scholar
  185. Wang L, Tiffin P, Olson MS. Timing for success: expression phenotype and local adaptation related to latitude in the boreal forest tree, Populus balsamifera. Tree Genet Genomes. 2014;10:911–22.CrossRefGoogle Scholar
  186. Whitham TG, Difazio SP, Schweitzer JA, Shuster SM, Allan GJ, Bailey JK, Woolbright SA. Extending genomics to natural communities and ecosystems. Science. 2008;320:492–5.ADSPubMedCrossRefGoogle Scholar
  187. Wu, C.-I. 2001. The genic view of the process of speciation. Journal of Evolutionary Biology 14:851–865.Google Scholar
  188. Yang, W.-Y., J. Novembre, E. Eskin, and E. Halperin. 2012. A model-based approach for analysis of spatial structure in genetic data. Nature Genetics 44:725–731.Google Scholar
  189. Zhang P, Wu F, Kang X, Zhao C, Li Y. Genotypic variations of biomass feedstock properties for energy in triploid hybrid clones of Populus tomentosa. Bioenerg Res. 2015;8:1705–13.CrossRefGoogle Scholar
  190. Zhou L, Bawa R, Holliday JA. Exome resequencing reveals signatures of demographic and adaptive processes across the genome and range of black cottonwood (Populus trichocarpa). Mol Ecol. 2014;23:2486–99.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Karl C. Fetter
    • 1
  • Paul F. Gugger
    • 2
  • Stephen R. Keller
    • 1
  1. 1.Department of Plant BiologyUniversity of VermontBurlingtonUSA
  2. 2.Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgUSA

Personalised recommendations