pp 1-38 | Cite as

Advanced Assays in Epigenetics

  • Carmela Dell’Aversana
  • Federica Sarno
  • Mariarosaria Conte
  • Cristina Giorgio
  • Lucia AltucciEmail author
Part of the Topics in Medicinal Chemistry book series


Epigenetic mechanisms orchestrate the finely tuned regulation of genetic material and play a pivotal role in defining cellular functions and phenotypes. A growing set of tools supports analysis of the epigenome. This chapter will provide an overview of the principle methods of studying complex epigenetic machinery, focusing on recent advancements of tools and techniques in the field of epigenetics. It will also address the advantages, limitations and perspectives of each approach. Increasingly, the high sensitivity, specificity, accuracy, precision and reproducibility of cutting-edge technologies in epigenetics are allowing the identification of new key targets and molecular mechanisms in healthy and pathological states and are becoming methods of choice for clinical investigations.


Epigenetics Genome Histone modification Methylation miRNA 











Amplified Luminescent Proximity Homogeneous Assay Screen


Bioluminescence resonance energy transfer


Bisulfite sequencing


Chemical modification-assisted bisulfite sequencing


Capillary electrophoresis single-strand conformation polymorphism


Cellular thermal shift assay


Chromatin immunoprecipitation


Chromatin proteomics


Droplet digital PCR


1-Ethyl-3(3-dimethylaminoproyl)-carbodiimide hydrochloride


Enzyme-assisted identification of genome modification assay


Enhanced ProLabel


Embryonic stem


Epigenome-wide association studies


Exponential amplification reaction


5-Formylcytosine chemical modification-assisted bisulfite sequencing


Fluorescent in situ hybridization


Fluorescence lifetime microscopy


Förster resonance energy transfer




Histone acetyltransferases


Histone methyltransferases


High-throughput dose-response


High-throughput screening


High-throughput sequencing


In situ hybridization


Isothermal titration colorimetry


Liquid chromatography-mass spectrometry


Locked nucleic acid




miRNA trapping


Massive parallel sequencing


Mass spectrometry


Microscale thermophoresis


Next-generation sequencing


NanoLuc luciferase


Photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation


Quantum dot


RNA binding proteins


Rapid immunoprecipitation mass spectrometry of endogenous protein


Renilla luciferase


Reduced representation bisulfite sequencing


Single-cell bisulfite sequencing


Single-cell genome-wide methylome and transcriptome sequencing


Single-cell reduced representation bisulfite sequencing


Single-nucleus methylcytosine sequencing


Single-nucleotide polymorphisms


Surface plasmon resonance


Tet-assisted bisulfite sequencing


Targeted chromatin ligation


Melting temperature


Time-resolved fluorescent energy transfer




Yellow fluorescent protein


Compliance with Ethical Standards

Funding: The authors acknowledge AIRC17217; PON_0101227; VALERE: Vanvitelli per la Ricerca; Regione Campania lotta alle patologie oncologiche: iCURE (CUP B21C17000030007); and Regione Campania FASE2: IDEAL (CUP B53D18000080007). We thank C. Fisher for linguistic editing.

Conflict of Interest: The authors declare no competing interests.

Ethical Statement: This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681. Scholar
  2. 2.
    Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11(10):726–734. Scholar
  3. 3.
    Cheuk IW, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20(1):12–19. Scholar
  4. 4.
    Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK (2012) Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 53(3–4):289–305. Scholar
  5. 5.
    Thomas ML, Marcato P (2018) Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. Cancers (Basel) 10(4). Scholar
  6. 6.
    Vardabasso C, Gaspar-Maia A, Hasson D, Punzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong J, Panda T, Chung CY, Yao JL, Singh R, Segura MF, Fontanals-Cirera B, Verma A, Mann M, Hernando E, Hake SB, Bernstein E (2015) Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell 59(1):75–88. Scholar
  7. 7.
    Jia M, Jansen L, Walter V, Tagscherer K, Roth W, Herpel E, Kloor M, Blaker H, Chang-Claude J, Brenner H, Hoffmeister M (2016) No association of CpG island methylator phenotype and colorectal cancer survival: population-based study. Br J Cancer 115(11):1359–1366. Scholar
  8. 8.
    Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN et al (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci U S A 91(12):5426–5430Google Scholar
  9. 9.
    Yasgar A, Jadhav A, Simeonov A, Coussens NP (2016) AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions. Methods Mol Biol 1439:77–98. Scholar
  10. 10.
    Wigle TJ, Herold JM, Senisterra GA, Vedadi M, Kireev DB, Arrowsmith CH, Frye SV, Janzen WP (2010) Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J Biomol Screen 15(1):62–71. Scholar
  11. 11.
    Prabhu L, Chen L, Wei H, Demir O, Safa A, Zeng L, Amaro RE, O’Neil BH, Zhang ZY, Lu T (2017) Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol Biosyst 13(12):2509–2520. Scholar
  12. 12.
    Scarano S, Scuffi C, Mascini M, Minunni M (2011) Surface plasmon resonance imaging-based sensing for anti-bovine immunoglobulins detection in human milk and serum. Anal Chim Acta 707(1–2):178–183. Scholar
  13. 13.
    Kim D, Lee IS, Jung JH, Yang SI (1999) Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity. Arch Pharm Res 22(1):25–29Google Scholar
  14. 14.
    Duff MR Jr, Grubbs J, Howell EE (2011) Isothermal titration calorimetry for measuring macromolecule-ligand affinity. J Vis Exp (55).
  15. 15.
    Holdgate G (2009) Isothermal titration calorimetry and differential scanning calorimetry. Methods Mol Biol 572:101–133. Scholar
  16. 16.
    Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353. Scholar
  17. 17.
    Zillner K, Jerabek-Willemsen M, Duhr S, Braun D, Langst G, Baaske P (2012) Microscale thermophoresis as a sensitive method to quantify protein: nucleic acid interactions in solution. Methods Mol Biol 815:241–252. Scholar
  18. 18.
    Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stutzer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y (2014) A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell 157(4):869–881. Scholar
  19. 19.
    Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O, Wilson DW, Schubert T, Langst G, Gilson PR, Crabb BS, Moes S, Jenoe P, Lim SW, Brown GV, Bozdech Z, Voss TS, Duffy MF (2015) A plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17(6):741–751. Scholar
  20. 20.
    Raha D, Hong M, Snyder M (2010) ChIP-seq: a method for global identification of regulatory elements in the genome. Curr Protoc Mol Biol Chapter 21:Unit 21 19 21-14. Scholar
  21. 21.
    Wang CI, Alekseyenko AA, LeRoy G, Elia AE, Gorchakov AA, Britton LM, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI (2013) Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 20(2):202–209. Scholar
  22. 22.
    Mohammed H, Taylor C, Brown GD, Papachristou EK, Carroll JS, D'Santos CS (2016) Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 11(2):316–326. Scholar
  23. 23.
    Cao Z, Lu C (2016) A microfluidic device with integrated sonication and immunoprecipitation for sensitive epigenetic assays. Anal Chem 88(3):1965–1972. Scholar
  24. 24.
    Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, Martinez Molina D (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9(9):2100–2122. Scholar
  25. 25.
    Becher I, Werner T, Doce C, Zaal EA, Togel I, Khan CA, Rueger A, Muelbaier M, Salzer E, Berkers CR, Fitzpatrick PF, Bantscheff M, Savitski MM (2016) Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol 12(11):908–910. Scholar
  26. 26.
    McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF, Waszkiewicz A, Kallal LA, Nagarajan RP, Stern M, Quinn AM, Creasy CL, Su DS, Graves AP, Annan RS, Sweitzer SM, Holbert MA (2018) A high-throughput dose-response cellular thermal shift assay for rapid screening of drug target engagement in living cells, exemplified using SMYD3 and IDO1. SLAS Discov 23(1):34–46. Scholar
  27. 27.
    Song Y, Madahar V, Liao J (2011) Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng 39(4):1224–1234. Scholar
  28. 28.
    Alibhai D, Kelly DJ, Warren S, Kumar S, Margineau A, Serwa RA, Thinon E, Alexandrov Y, Murray EJ, Stuhmeier F, Tate EW, Neil MA, Dunsby C, French PM (2013) Automated fluorescence lifetime imaging plate reader and its application to Forster resonant energy transfer readout of Gag protein aggregation. J Biophotonics 6(5):398–408. Scholar
  29. 29.
    Wade M, Mendez J, Coussens NP, Arkin MR, Glicksman MA (2004) Inhibition of protein-protein interactions: cell-based assays. In: Sittampalam GS, Coussens NP, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, BethesdaGoogle Scholar
  30. 30.
    Bacart J, Corbel C, Jockers R, Bach S, Couturier C (2008) The BRET technology and its application to screening assays. Biotechnol J 3(3):311–324. Scholar
  31. 31.
    Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB, Zimmerman K, Otto P, Daniels DL, Kirkland TA, Wood KV (2015) NanoBRET – a novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10(8):1797–1804. Scholar
  32. 32.
    Hu F, Martin H, Martinez A, Everitt J, Erkanli A, Lee WT, Dewhirst M, Ramanujam N (2017) Distinct angiogenic changes during carcinogenesis defined by novel label-free dark-field imaging in a hamster cheek pouch model. Cancer Res 77(24):7109–7119. Scholar
  33. 33.
    Tollefsbol TO (2011) Advances in epigenetic technology. Methods Mol Biol 791:1–10. Scholar
  34. 34.
    Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114(3):A160–A167Google Scholar
  35. 35.
    Gasperskaja E, Kucinskas V (2017) The most common technologies and tools for functional genome analysis. Acta Med Litu 24(1):1–11. Scholar
  36. 36.
    Schwartzman O, Tanay A (2015) Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet 16(12):716–726. Scholar
  37. 37.
    Milne TA, Zhao K, Hess JL (2009) Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins. Methods Mol Biol 538:409–423. Scholar
  38. 38.
    Zarnegar MA, Reinitz F, Newman AM, Clarke MF (2017) Targeted chromatin ligation, a robust epigenetic profiling technique for small cell numbers. Nucleic Acids Res 45(17):e153. Scholar
  39. 39.
    Teste B, Champ J, Londono-Vallejo A, Descroix S, Malaquin L, Viovy JL, Draskovic I, Mottet G (2017) Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses. Lab Chip 17(3):530–537. Scholar
  40. 40.
    Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. Scholar
  41. 41.
    Hansel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S (2018) Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc 13(3):551–564. Scholar
  42. 42.
    Gaasterland T, Oprea M (2001) Whole-genome analysis: annotations and updates. Curr Opin Struct Biol 11(3):377–381Google Scholar
  43. 43.
    Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238. Scholar
  44. 44.
    Almouzni G, Cedar H (2016) Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8(5). Scholar
  45. 45.
    Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. Scholar
  46. 46.
    Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6(5):a019133. Scholar
  47. 47.
    Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85(2):142–154. Scholar
  48. 48.
    Li Q, Hermanson PJ, Springer NM (2018) Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol Biol 1676:185–196. Scholar
  49. 49.
    Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, He C (2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25(3):386–389. Scholar
  50. 50.
    Yu M, Han D, Hon GC, He C (2018) Tet-assisted bisulfite sequencing (TAB-seq). Methods Mol Biol 1708:645–663. Scholar
  51. 51.
    Kawasaki Y, Kuroda Y, Suetake I, Tajima S, Ishino F, Kohda T (2017) A novel method for the simultaneous identification of methylcytosine and hydroxymethylcytosine at a single base resolution. Nucleic Acids Res 45(4):e24. Scholar
  52. 52.
    Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135(25):9315–9317. Scholar
  53. 53.
    Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691. Scholar
  54. 54.
    Guo H, Zhu P, Guo F, Li X, Wu X, Fan X, Wen L, Tang F (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10(5):645–659. Scholar
  55. 55.
    Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. Scholar
  56. 56.
    Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12(3):534–547. Scholar
  57. 57.
    Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, Castanon R, Lucero J, Nery JR, Sandoval JP, Bui B, Sejnowski TJ, Harkins TT, Mukamel EA, Behrens MM, Ecker JR (2017) Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357(6351):600–604. Scholar
  58. 58.
    Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood S, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232. Scholar
  59. 59.
    Han J, Zhang Z, Wang K (2018) 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol Cytogenet 11:21. Scholar
  60. 60.
    Li G, Cai L, Chang H, Hong P, Zhou Q, Kulakova EV, Kolchanov NA, Ruan Y (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15(Suppl 12):S11. Scholar
  61. 61.
    Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13(11):919–922. Scholar
  62. 62.
    Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. Scholar
  63. 63.
    Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. Scholar
  64. 64.
    Jacobsen N, Andreasen D, Mouritzen P (2011) Profiling microRNAs by real-time PCR. Methods Mol Biol 732:39–54. Scholar
  65. 65.
    Campomenosi P, Gini E, Noonan DM, Poli A, D'Antona P, Rotolo N, Dominioni L, Imperatori A (2016) A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol 16(1):60. Scholar
  66. 66.
    Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. Scholar
  67. 67.
    Song Y, Kilburn D, Song JH, Cheng Y, Saeui CT, Cheung DG, Croce CM, Yarema KJ, Meltzer SJ, Liu KJ, Wang TH (2017) Determination of absolute expression profiles using multiplexed miRNA analysis. PLoS One 12(7):e0180988. Scholar
  68. 68.
    Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M (2017) Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 45(15):e144. Scholar
  69. 69.
    Moody L, He H, Pan YX, Chen H (2017) Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 9:119. Scholar
  70. 70.
    Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, Kocher JP (2014) CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 15:423. Scholar
  71. 71.
    Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10(7):1087–1092. Scholar
  72. 72.
    Rueda A, Barturen G, Lebron R, Gomez-Martin C, Alganza A, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43(W1):W467–W473. Scholar
  73. 73.
    Andres-Leon E, Nunez-Torres R, Rojas AM (2016) miARma-seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 6:25749. Scholar
  74. 74.
    Garcia-Gimenez JL, Rubio-Belmar PA, Peiro-Chova L, Hervas D, Gonzalez-Rodriguez D, Ibanez-Cabellos JS, Bas-Hermida P, Mena-Molla S, Garcia-Lopez EM, Pallardo FV, Bas T (2018) Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Sci Rep 8(1):2646. Scholar
  75. 75.
    Gustafson D, Tyryshkin K, Renwick N (2016) microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab 30(5):563–575. Scholar
  76. 76.
    Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Line A, Llorente A (2017) Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer 16(1):156. Scholar
  77. 77.
    Buschmann D, Kirchner B, Hermann S, Marte M, Wurmser C, Brandes F, Kotschote S, Bonin M, Steinlein OK, Pfaffl MW, Schelling G, Reithmair M (2018) Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 7(1):1481321. Scholar
  78. 78.
    Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci U S A 100(8):4504–4509. Scholar
  79. 79.
    Zhang Y, Zhang CY (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84(1):224–231. Scholar
  80. 80.
    Liu H, Tian T, Zhang Y, Ding L, Yu J, Yan M (2017) Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification. Biosens Bioelectron 89(Pt 2):710–714. Scholar
  81. 81.
    Na J, Shin GW, Son HG, Lee SV, Jung GY (2017) Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Sci Rep 7(1):11396. Scholar
  82. 82.
    Urbanek MO, Nawrocka AU, Krzyzosiak WJ (2015) Small RNA detection by in situ hybridization methods. Int J Mol Sci 16(6):13259–13286. Scholar
  83. 83.
    Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174. Scholar
  84. 84.
    Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162. Scholar
  85. 85.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. Scholar
  86. 86.
    Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050. Scholar
  87. 87.
    Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44(1):47–54. Scholar
  88. 88.
    Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4(2):76–84Google Scholar
  89. 89.
    Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. Scholar
  90. 90.
    Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. Scholar
  91. 91.
    Danan C, Manickavel S, Hafner M (2016) PAR-CLIP: a method for transcriptome-wide identification of RNA binding protein interaction sites. Methods Mol Biol 1358:153–173. Scholar
  92. 92.
    Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. Scholar
  93. 93.
    Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C (1986) 4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. Biochem Biophys Res Commun 141(2):847–854Google Scholar
  94. 94.
    Bezerra R, Favre A (1990) In vivo incorporation of the intrinsic photolabel 4-thiouridine into Escherichia coli RNAs. Biochem Biophys Res Commun 166(1):29–37Google Scholar
  95. 95.
    Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8(7):559–564. Scholar
  96. 96.
    Baigude H, Ahsanullah LZ, Zhou Y, Rana TM (2012) miR-TRAP: a benchtop chemical biology strategy to identify microRNA targets. Angew Chem Int Ed Engl 51(24):5880–5883. Scholar
  97. 97.
    Cambronne XA, Shen R, Auer PL, Goodman RH (2012) Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci U S A 109(50):20473–20478. Scholar

Copyright information

© Springer Nature Switzerland AG  2019

Authors and Affiliations

  • Carmela Dell’Aversana
    • 1
  • Federica Sarno
    • 1
  • Mariarosaria Conte
    • 2
  • Cristina Giorgio
    • 1
  • Lucia Altucci
    • 1
    Email author
  1. 1.Department of Precision MedicineUniversity of Campania “Luigi Vanvitelli”NapoliItaly
  2. 2.IRCCS, SDNNaplesItaly

Personalised recommendations