Advertisement

Evolution of HCV NS4B Inhibitors

  • Giuseppe ManfroniEmail author
  • Rolando Cannalire
Chapter
  • 37 Downloads
Part of the Topics in Medicinal Chemistry book series (TMC, volume 32)

Abstract

NS4B has remained for a long time an undisclosed target within the HCV drug discovery programs. However, impressive drug discovery efforts from 2005 to 2016 led to the identification of different chemical classes targeting NS4B as effective anti-HCV agents, and some of them act by impairing AH2-mediated membranous web formation or RNA-binding property. This book chapter aims to discuss research published on NS4B inhibitors focusing on hit identification and hit-to-lead optimization, also with respect to pharmacokinetic properties and structure-activity relationships raised for the different chemical classes taken into account. To date, the only clinical trial conducted with molecules targeting NS4B was focused on clemizole hydrochloride. However, even if NS4B ligands are not currently used in therapy, they can serve in the near future as new weapons to combat resistance to the current therapy.

Keywords

HCV proteins Hit identification Medicinal chemistry NS4B assays NS4B inhibitors 

Notes

Compliance with Ethical Standards

Conflict of Interest Giuseppe Manfroni declares that he has no conflict of interest. Rolando Cannalire declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Selby MJ, Choo QL, Berger K et al (1993) Expression, identification and subcellular localization of the proteins encoded by the hepatitis C viral genome. J Gen Virol 74:1103–1113PubMedGoogle Scholar
  2. 2.
    Kim JE, Song WK, Chung KM et al (1999) Subcellular localization of hepatitis C viral proteins in mammalian cells. Arch Virol 144(2):329–343PubMedGoogle Scholar
  3. 3.
    Sklan EH, Glenn JS (2006) HCV NS4B: from obscurity to central stage. In: Tan SL (ed) Hepatitis C viruses: genomes and molecular biology. Horizon Bioscience, Norfolk, pp 245–266Google Scholar
  4. 4.
    Hugle T, Fehrmann F, Bieck E et al (2001) The hepatitis C virus nonstructural protein 4b is an integral endoplasmic reticulum membrane protein. Virology 284:70–81PubMedGoogle Scholar
  5. 5.
    Lundin M, Monné M, Widell A et al (2003) Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol 77:5428–5438PubMedPubMedCentralGoogle Scholar
  6. 6.
    Elazar M, Liu P, Rice C et al (2004) An N-terminal amphipathic helix in hepatitis C virus (HCV) NS4B mediates membrane association, correct localization of replication complex proteins, and HCV RNA replication. J Virol 78:11393–11400PubMedPubMedCentralGoogle Scholar
  7. 7.
    Gouttenoire J, Castet V, Montserret R et al (2009) Identification of a novel determinant for membrane association in hepatitis C virus nonstructural protein 4B. J Virol 83:6257–6268PubMedPubMedCentralGoogle Scholar
  8. 8.
    Gouttenoire J, Montserret R, Kennel A et al (2009) An amphipathic-helix at the C terminus of hepatitis C virus nonstructural protein 4B mediates membrane association. J Virol 83:11378–11384PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gouttenoire J, Montserret R, Paul D et al (2014) Aminoterminal amphipathic α-helix AH1 of hepatitis C virus non-structural protein 4B possesses a dual role in RNA replication and virus production. PLoS Pathog 10:e1004501PubMedPubMedCentralGoogle Scholar
  10. 10.
    Lundin M, Lindström H, Grönwall C et al (2006) Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein. J Gen Virol 87:3263–3272PubMedGoogle Scholar
  11. 11.
    Romero-Brey I, Merz A, Chiramel A et al (2012) Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 8:e1003056PubMedPubMedCentralGoogle Scholar
  12. 12.
    Einav S, Elazar M, Danieli T et al (2004) A nucleotide binding motif in hepatitis C virus (HCV) NS4B mediates HCV RNA replication. J Virol 78:11288–11295PubMedPubMedCentralGoogle Scholar
  13. 13.
    Thompson AA, Zou A, Yan J et al (2009) Biochemical characterization of recombinant hepatitis C virus nonstructural protein 4B: evidence for ATP/GTP hydrolysis and adenylate kinase activity. Biochemistry 48:906–916PubMedGoogle Scholar
  14. 14.
    Einav S, Sklan EH, Moon HM et al (2008) The nucleotide binding motif of hepatitis C virus NS4B can mediate cellular transformation and tumor formation without Ha-ras co-transfection. Hepatology 47:827–835PubMedGoogle Scholar
  15. 15.
    Palomares-Jerez MF, Villalaín J (2011) Membrane interaction of segment H1 (NS4B(H1)) from hepatitis C virus non-structural protein 4B. Biochim Biophys Acta 1808:1219–1229PubMedGoogle Scholar
  16. 16.
    Guillén J, González-Alvarez A, Villalaín J et al (2010) A membranotropic region in the C-terminal domain of hepatitis C virus protein NS4B interaction with membranes. Biochim Biophys Acta 1798:327–337PubMedGoogle Scholar
  17. 17.
    Aligo J, Jia S, Manna D et al (2009) Formation and function of hepatitis C virus replication complexes require residues in the carboxy-terminal domain of NS4B protein. Virology 393:68–83PubMedPubMedCentralGoogle Scholar
  18. 18.
    Liefhebber JM, Brandt BW, Broer R et al (2009) Hepatitis C virus NS4B carboxy terminal domain is a membrane binding domain. Virol J 6:62PubMedPubMedCentralGoogle Scholar
  19. 19.
    Einav S, Gerber D, Bryson PD et al (2008) Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 26:1019–1027PubMedPubMedCentralGoogle Scholar
  20. 20.
    Yu GY, Lee KJ, Gao L et al (2006) Palmitoylation and polymerization of hepatitis C virus NS4B protein. J Virol 80:6013–6023PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fogeron ML, Jirasko V, Penzel S et al (2016) Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus. J Biomol NMR 65(2):87–98PubMedGoogle Scholar
  22. 22.
    Paul D, Madan V, Ramirez O et al (2017) Glycine-zipper motifs in hepatitis C virus nonstructural protein 4B are required for the establishment of viral replication organelles. J Virol doi: https://doi.org/10.1128/JVI.01890-17. JVI.01890
  23. 23.
    Rai R, Deval J (2001) New opportunities in anti-hepatitis C virus drug discovery: targeting NS4B. Antivir Res 90:93–101Google Scholar
  24. 24.
    Cho NJ, Dvory-Sobol H, Lee C et al (2010) Identification of a class of HCV inhibitors directed against the nonstructural protein NS4B. Sci Transl Med 2:1–8Google Scholar
  25. 25.
    Chunduru SK, Benatatos CA, Nits TJ et al (2005) Compounds, compositions, and methods for treatment and prophylaxis of hepatitis viral C infection and associates diseases. WO2005051318Google Scholar
  26. 26.
    Arico-Muendel C, Zhu Z, Dickson H et al (2015) Encoded library technology screening of hepatitis C virus NS4B yields a small molecule compound series with in vitro replicon activity. Antimicrob Agents Chemother 59:3450–3459PubMedPubMedCentralGoogle Scholar
  27. 27.
    Cannalire R, Barreca ML, Manfroni G et al (2016) A journey around the medicinal chemistry of hepatitis C virus inhibitors targeting NS4B: from target to preclinical drug candidates. J Med Chem 59:16–41PubMedGoogle Scholar
  28. 28.
    Wang Z, Chen X, Wu C et al (2016) Current drug discovery for anti-hepatitis C virus targeting NS4B. Curr Top Med Chem 16(12):1362–1371PubMedGoogle Scholar
  29. 29.
    Finkelstein M, Kromer CM, Sweeney SA et al (1960) Some aspects of the pharmacology of clemizole hydrochloride. J Am Pharm Assoc Sci Ed 49:18–22Google Scholar
  30. 30.
    Einav S, Sobol HD, Gehrig E et al (2010) The hepatitis C virus (HCV) NS4B RNA binding inhibitor clemizole is highly synergistic with HCV protease inhibitors. J Infect Dis 202:65–74PubMedPubMedCentralGoogle Scholar
  31. 31.
    Choong IC, Cory D, Gleen JS et al (2012) Method and composition of treating a Flaviviridae family infection. US/027605A1Google Scholar
  32. 32.
    Choong IC, Cory D, Gleen JS et al (2010) Method and composition of treating a Flaviviridae family infection. WO2010/107739Google Scholar
  33. 33.
    Choong IC, Gleen JS, Yang W (2010) Method and composition of treating a Flaviviridae family infection. WO2010/107742Google Scholar
  34. 34.
    Gleen JS, Yang W, Choong IC (2012) Method and composition of treating a Flaviviridae family infection. US2012/0148534Google Scholar
  35. 35.
  36. 36.
    Chunduru SK, Benatatos CA, Nits TJ, et al (2007) Compounds, compositions, and methods for treatment and prophylaxis of hepatitis viral C infection and associates diseases. US200770264920A1Google Scholar
  37. 37.
    Bryson PD, Cho NJ, Einav S et al (2010) A small molecule inhibits HCV replication and alters NS4B’s subcellular distribution. Antivir Res 87:1–8PubMedGoogle Scholar
  38. 38.
    Choi M, Lee S, Choi T et al (2013) Hepatitis C virus NS4B inhibitor suppresses viral genome by disrupting NS4b’s dimerization/multimerization as well as its interaction with NS5A. Virus Genes 47:395–407PubMedGoogle Scholar
  39. 39.
    Dufner-Beattie J, O’Guin A, O’Guin S et al (2014) Identification of AP80978, a novel small-molecule inhibitor of hepatitis C virus replication that targets NS4B. Antimicrob Agents Chemother 58:3399–3410PubMedPubMedCentralGoogle Scholar
  40. 40.
    Shotwell JB, Baskaran S, Chong P et al (2012) Imidazo[1,2-a]pyridines that directly interact with hepatitis C NS4B: initial preclinical characterization. ACS Med Chem Lett 3:565–569PubMedPubMedCentralGoogle Scholar
  41. 41.
    Banka A, Catalano JG, Chong PY et al (2011) Preparation of piperazinyl antiviral agents. WO 2011041713Google Scholar
  42. 42.
    Baskaran S, Maung J, Neitzel ML et al (2010) Preparation of imidazopyridine derivatives for treating viral infections. US 20100204265Google Scholar
  43. 43.
    Baskaran S, Maung J, Neitzel M et al (2010) Preparation of imidazopyridine derivatives for treating viral infections. WO2010091409Google Scholar
  44. 44.
    Miller JF, Chong PY, Shotwell JB et al (2014) Hepatitis C replication inhibitors that target the viral NS4B protein. J Med Chem 57:2107–2120PubMedGoogle Scholar
  45. 45.
    Pouliot JJ, Thomson M, Xie M et al (2015) Preclinical characterization and in vivo efficacy of GSK8853, a small-molecule inhibitor of the hepatitis C virus NS4B protein. Antimicrob Agents Chemother 59(10):6539–6550PubMedPubMedCentralGoogle Scholar
  46. 46.
    Tai VW, Garrido D, Price DJ et al (2014) Design and synthesis of spirocyclic compounds as HCV replication inhibitors by targeting viral NS4B protein. Bioorg Med Chem Lett 24:2288–2294PubMedGoogle Scholar
  47. 47.
    Wang NY, Xu Y, Zuo WQ et al (2015) Discovery of imidazo[2,1-b]thiazole HCV NS4B inhibitors exhibiting synergistic effect with other direct-acting antiviral agents. J Med Chem 58:2764–2778PubMedGoogle Scholar
  48. 48.
    Chen G, Ren H, Turpoff A et al (2013) Discovery of N-(40-(indol-2-yl)phenyl)sulfonamides as novel inhibitors of HCV replication. Bioorg Med Chem Lett 23:3942–3946PubMedGoogle Scholar
  49. 49.
    Zhang X, Zhang N, Chen G et al (2013) Discovery of novel HCV inhibitors: synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorg Med Chem Lett 23:3947–3953PubMedGoogle Scholar
  50. 50.
    Zhang N, Zhang X, Zhu J et al (2014) Structure−activity relationship (SAR) optimization of 6-(indol-2-yl)pyridine-3-sulfonamides: identification of potent, selective, and orally bioavailable small molecules targeting hepatitis C (HCV) NS4B. J Med Chem 57:2121–2135PubMedGoogle Scholar
  51. 51.
    Graci JD, Jung SP, Pichardo J et al (2016) PTC725, an NS4B-targeting compound, inhibits a hepatitis C virus genotype 3 replicon, as predicted by genome sequence analysis and determined experimentally. Antimicrob Agents Chemother 60(12):7060–7066PubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen G, Ren H, Zhang N et al (2015) 6-(Azaindol-2-yl)pyridine-3-sulfonamides as potent and selective inhibitors targeting hepatitis C virus NS4B. Bioorg Med Chem Lett 25:781–786PubMedGoogle Scholar
  53. 53.
    Zhang N, Turpoff A, Zhang X et al (2016) Discovery of 2-(4-sulfonamidophenyl)-indole 3-carboxamides as potent and selective inhibitors with broad hepatitis C virus genotype activity targeting HCV NS4B. Bioorg Med Chem Lett 26(2):594–601PubMedGoogle Scholar
  54. 54.
    Kakarla R, Liu J, Naduthambi D et al (2014) Discovery of a novel class of potent HCV NS4B inhibitors: SAR studies on piperazinone derivatives. J Med Chem 57:2136–2160PubMedGoogle Scholar
  55. 55.
    Sofia MJ, Kakarla R, Liu J et al (2012) Preparation of piperazine derivatives and their uses to treat viral infections, including hepatitis C. US20120202794A1Google Scholar
  56. 56.
    Sofia MJ, Kakarla R, Liu J et al (2012) Preparation of pyrazine and imidazolidine derivatives and their uses to treat viral infections, including hepatitis C. WO2012103113A1Google Scholar
  57. 57.
    Phillips B, Cai R, Delaney W et al (2014) Highly potent HCV NS4B inhibitors with activity against multiple genotypes. J Med Chem 57:2161–2166PubMedGoogle Scholar
  58. 58.
    Gleen JS, Cho NJ, Yang W (2010) Screening for inhibitors of HCV amphipathic helix (AH) function. WO2010/039192A2Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze FarmaceuticheUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations