Advertisement

Evolution of HCV NS3/4a Protease Inhibitors

  • Nigel J. LivertonEmail author
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 31)

Abstract

HCV NS3/4a protease was identified as a target for drug discovery over 20 years ago. Cleavage products from substrate-based peptides provided the starting point for medicinal chemistry. However, their less-than-ideal properties as leads would make the path to orally bioavailable inhibitors a highly challenging one. Extensive optimization efforts by multiple groups led to inhibitors with reduced peptidic character in both reversible and slowly reversible covalent classes. Ten NS3/4a inhibitors have received regulatory approval to date starting with slowly reversible ketoamides boceprevir and telaprevir in 2011 for use in combination with interferon and ribavirin. Subsequently, reversible inhibitors that advanced into clinical studies from acyclic, P1–P3 macrocyclic, P2–P4 macrocyclic, and P1–P3/P2–P4 bismacrocyclic structural classes yielded seven approved drugs to date. The most recent approvals include multiple third-generation cross-genotype active compounds that also have improved activity against key NS3/4a resistance mutations at A156, R155, and D168. These compounds, including grazoprevir, glecaprevir, and voxilaprevir, can be used in interferon/ribavirin-free, direct-acting antiviral combinations with cure rates approaching 100% coupled with reduced duration of treatment. The evolution of inhibitor design leading to this successful outcome is discussed.

Keywords

Asunaprevir Boceprevir  Ciluprevir Danoprevir Faldaprevir Glecaprevir Grazoprevir HCV protease Interferon-free Macrocyclic inhibitors Narlaprevir Paritaprevir Ribavirin-free Simeprevir Sovaprevir Telaprevir Vaniprevir Vedroprevir Voxilaprevir 

Notes

Compliance with Ethical Standards

Conflict of Interest Author declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. 1.
    Hahm B, Han DS, Back SH et al (1995) NS3-4A of hepatitis C virus is a chymotrypsin-like protease. J Virol 69:2534–2539PubMedPubMedCentralGoogle Scholar
  2. 2.
    Kolykhalov AA, Mihalik K, Feinstone SM et al (2000) Hepatitis C virus encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J Virol 74:2046–2051PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gale Jr M, Foy EM (2005) Evasion of intracellular host defence by hepatitis C virus. Nature 436:939–945PubMedGoogle Scholar
  4. 4.
    Yao N, Reichert P, Taremi SS et al (1999) Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease–helicase. Structure 7:1353–1363PubMedGoogle Scholar
  5. 5.
    Failla C, Tomei L, De Francesco R (1994) Both NS3 and NS4A are required for proteolytic processing of hepatitis C virus nonstructural proteins. J Virol 68:3753–3760PubMedPubMedCentralGoogle Scholar
  6. 6.
    Schechter I, Berger A (1967). Biochem Biophys Res Commun 27:57–62Google Scholar
  7. 7.
    Steinkuhler C, Biasiol G, Brunetti M et al (1998) Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 37:8899–8905PubMedGoogle Scholar
  8. 8.
    Llinas-Brunet M, Bailey M, Fazal G et al (1998) Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg Med Chem Lett 8:1713–1718PubMedGoogle Scholar
  9. 9.
    Love RA, Parge HE, Wickersham JA et al (1996) The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331–342PubMedGoogle Scholar
  10. 10.
    Kim JL, Morgenstern KA, Lin C et al (1996) Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343–355PubMedGoogle Scholar
  11. 11.
    Yah Y, Li Y, Munshi S et al (1998) Complex of NS3 protease and NS4A peptide of BK strain hepatitis C virus: a 2.2 A resolution structure in a hexagonal crystal form. Protein Sci 7:837–847Google Scholar
  12. 12.
    Barbato G, Cicero DO, Nardi MC et al (1999). J Mol Biol 289:371–384PubMedGoogle Scholar
  13. 13.
    Ingallinella P, Altamura S, Bianchi E et al (1998) Potent peptide inhibitors of human hepatitis C virus NS3 protease are obtained by optimizing the cleavage products. Biochemistry 37:8906–8914PubMedGoogle Scholar
  14. 14.
    Narjes F, Koehler KF, Koch U et al (2002) A designed P(1) cysteine mimetic for covalent and non-covalent inhibitors of HCV NS3 protease. Bioorg Med Chem Lett 12:701–704PubMedGoogle Scholar
  15. 15.
    Llinas-Brunet M, Bailey M, Fazal G et al (2000) Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease; towards smaller inhibitors. Bioorg Med Chem Lett 10:2267–2270PubMedGoogle Scholar
  16. 16.
    LaPlante S, Cameron DR, Aubry N et al (1999) Solution structure of substrate-based ligands when bound to hepatitis C virus NS3 protease domain. J Biol Chem 274:18618–18624PubMedGoogle Scholar
  17. 17.
    Rancourt J, Cameron D, Gorys V et al (2004) Peptide-based inhibitors of the hepatitis C virus NS3 protease: structure-activity relationship at the C-terminal position. J Med Chem 47:2511–2522PubMedGoogle Scholar
  18. 18.
    Goudreau N, Cameron DR, Bonneau P et al (2004) NMR structural characterization of peptide inhibitors bound to the HCV NS3 protease: design of a new P2 substituent. J Med Chem 47:123–132PubMedGoogle Scholar
  19. 19.
    Tsantrizos YS, Bolger G, Bonneau P et al (2003) Macrocyclic inhibitors of the NS3 protease as potential therapeutic agents of hepatitis C virus infection. Angew Chem Int Ed 42:1356–1360Google Scholar
  20. 20.
    Llinas-Brunet M, Bailey MD, Bolger G et al (2004) Structure-activity study on a novel series of macrocyclic inhibitors of the hepatitis C virus NS3 protease leading to the discovery of BILN-2061. J Med Chem 47:1605–1608PubMedGoogle Scholar
  21. 21.
    Lamarre D, Anderson PC, Bailey M et al (2003) An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 426:186–189PubMedGoogle Scholar
  22. 22.
    Reiser M, Hinrichsen H, Benhamou Y, Reesink HW et al (2005) Antiviral efficacy of NS3-serine protease inhibitor BILN-2061 in patients with chronic genotype 2 and 3 hepatitis C. Hepatology 41:832–835PubMedGoogle Scholar
  23. 23.
    Stoltz JH, Stern JO, Huang Q et al (2011) A 28-day mechanistic time course study in the rhesus monkey with hepatitis C virus protease inhibitor BILN 2061. Toxicol Pathol 39:496–501PubMedGoogle Scholar
  24. 24.
    Yee NK, Farina V, Houpis IN et al (2006) Efficient large-scale synthesis of BILN 2061, a potent HCV protease inhibitor, by a convergent approach based on ring-closing metathesis. J Org Chem 71:7133–7145PubMedGoogle Scholar
  25. 25.
    Nicola T, Brenner M, Donsbach K et al (2005) First scale-up to production scale of a ring closing metathesis reaction forming a 15-membered macrocycle as a precursor of an active pharmaceutical ingredient. Org Process Res Dev 9:513–515Google Scholar
  26. 26.
    Farina V, Shu C, Zeng X et al (2009) Second-generation process for the HCV protease inhibitor BILN 2061: a greener approach to Ru catalyzed ring-closing metathesis. Org Process Res Dev 13:250–254Google Scholar
  27. 27.
    Lin C, Lin K, Luong Y-P (2004) In vitro resistance studies of hepatitis C virus serine protease inhibitors, VX-950 and BILN 2061: structural analysis indicates different resistance mechanisms. J Biol Chem 279:17508–17514PubMedGoogle Scholar
  28. 28.
    Lu L, Pilot-Matias TJ, Stewart KD (2004) Mutations conferring resistance to a potent hepatitis C virus serine protease inhibitor in vitro. Antimicrob Agents Chemother 48:2260–2266PubMedPubMedCentralGoogle Scholar
  29. 29.
    Powers JC, Asgian JL, Ekici OD et al (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 102:4639–4750PubMedGoogle Scholar
  30. 30.
    Johnson DS, Weerapana E, Cravatt BF (2010) Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem 2:949–964PubMedPubMedCentralGoogle Scholar
  31. 31.
    Attwood MR, Bennett JM, Campbell AD et al (1999) The design and synthesis of potent inhibitors of hepatitis C virus NS3-4A proteinase. Antivir Chem Chemother 10:259–273PubMedGoogle Scholar
  32. 32.
    Kettner CA, Shenvi AB (1984) Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G and chymotrypsin by peptide boronic acids. J Biol Chem 259:15106–15112PubMedGoogle Scholar
  33. 33.
    Kinder DH, Elstad CA, Meadows GG et al (1992) Antimetastatic activity of boro-amino acid analog protease inhibitors against B16BL6 melanoma in vivo. Invasion Metastasis 12:309–319PubMedGoogle Scholar
  34. 34.
    Perni RB, Pitlik J, Britt SD et al (2004) Inhibitors of hepatitis C virus NS3.4A protease 2. Warhead SAR and optimization. Bioorg Med Chem Lett 14:1441–1446PubMedGoogle Scholar
  35. 35.
    Perni RB, Farmer LJ, Cottrell KM et al (2004) Inhibitors of hepatitis C virus NS3.4A protease. Part 3: P2 proline variants. Bioorg Med Chem Lett 14:1939–1942PubMedGoogle Scholar
  36. 36.
    Yip Y, Victor F, Lamar J et al (2004) Discovery of a novel bicycloproline P2 bearing peptidyl α-ketoamide LY514962 as HCV protease inhibitor. Bioorg Med Chem Lett 14:251–256PubMedGoogle Scholar
  37. 37.
    Victor F, Lamar J, Snyder N et al (2004) P1 and P3 optimization of novel bicycloproline P2 bearing tetrapeptidyl α-ketoamide based HCV protease inhibitors. Bioorg Med Chem Lett 14:257–261PubMedGoogle Scholar
  38. 38.
    Chen S-H, Lamar J, Yip Y et al (2005) P1 and P1; optimization of [3,4]-bicycloproline P2 incorporated tetrapeptidyl α-ketoamide based HCV protease inhibitors. Lett Drug Des Disc 2:118–123Google Scholar
  39. 39.
    Drugs RD (2010) Telaprevir. Drugs R D 10:179–202Google Scholar
  40. 40.
    Venkatraman S, Bogen SL, Arassappan A et al (2006) Discovery of (1R,5S)-N-[3-amino-1-(cyclobutylmethyl)-2,3-dioxopropyl]-3-[2(S)-[[[(1,1-dimethylethyl)amino]carbonyl]amino]-3,3-dimethyl-1-oxobutyl]-6,6-dimethyl-3-azabicyclo[3.1.0]hexan-2(S)-carboxamide (Sch 503034), a selective, potent, orally bioavailable HCV NS3 protease inhibitor: a potential therapeutic agent for the treatment of hepatitis C infection. J Med Chem 49:6074–6086PubMedGoogle Scholar
  41. 41.
    Arasappan A, Padilla AI, Jao E et al (2009) Toward second generation hepatitis C virus NS3 serine protease inhibitors: discovery of novel P4 modified analogues with improved potency and pharmacokinetic profile. J Med Chem 52:2806–2817PubMedGoogle Scholar
  42. 42.
    Bogen SL, Pan W, Ruan S et al (2009) Toward the back-up of boceprevir (SCH 503034): discovery of new extended P4-capped ketoamide inhibitors of hepatitis C virus NS3 serine protease with improved potency and pharmacokinetic profiles. J Med Chem 52:3679–3688PubMedGoogle Scholar
  43. 43.
    Venkatraman S, Blackman M, Wu W et al (2009) Discovery of novel P3 sulfonamide-capped inhibitors of HCV NS3 protease. Inhibitors with improved cellular potencies. Bioorg Med Chem 17:4486–4495PubMedGoogle Scholar
  44. 44.
    Arasappan AF, Bennett SL, Bogen S et al (2010) Discovery of narlaprevir (SCH 900518): a potent, second generation HCV NS3 serine protease inhibitor. ACS Med Chem Lett 1:64–69PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tong X, Arasappan A, Bennett F et al (2010) Preclinical characterization of the antiviral activity of SCH 900518 (narlaprevir), a novel mechanism-based inhibitor of hepatitis C virus NS3 protease. Antimicrob Agents Chemother 54:2365–2370PubMedPubMedCentralGoogle Scholar
  46. 46.
    Isakov V, Koloda D, Tikhonova N et al (2016) Pharmacokinetics of the new hepatitis C virus NS3 protease inhibitor narlaprevir following single-dose use with or without ritonavir in patients with liver cirrhosis. Antimicrob Agents Chemother 60:7098–7104PubMedPubMedCentralGoogle Scholar
  47. 47.
    Llinas-Brunet M, Bailey MD, Goudreau N et al (2010) Discovery of a potent and selective noncovalent linear inhibitor of the hepatitis C virus NS3protease (BI 201335). J Med Chem 53:6466–6476PubMedGoogle Scholar
  48. 48.
    White PW, Llinàs-Brunet M, Amad M et al (2010) Preclinical characterization of BI 201335, a C-terminal carboxylic acid inhibitor of the hepatitis C virus NS3-NS4A protease. Antimicrob Agents Chemother 54:4611PubMedPubMedCentralGoogle Scholar
  49. 49.
    Jensen DM, Asselah T, Dieterich D et al (2016) Faldaprevir, pegylated interferon, and ribavirin for treatment-naïve HCV genotype-1: pooled analysis of two phase 3 trials. Ann Hepatol 15:333–349PubMedGoogle Scholar
  50. 50.
    Zeuzem S, Soriano V, Asselah T et al (2015) Efficacy and safety of faldaprevir, deleobuvir, and ribavirin in treatment-naive patients with chronic hepatitis C virus infection and advanced liver fibrosis or cirrhosis. Antimicrob Agents Chemother 59:1282–1291PubMedPubMedCentralGoogle Scholar
  51. 51.
    Zeuzem S, Dufour J-F, Buti M et al (2015) Interferon-free treatment of chronic hepatitis C with faldaprevir, deleobuvir and ribavirin: SOUND-C3, a phase 2b study. Liver Int 35:417–421PubMedGoogle Scholar
  52. 52.
    Scola PM, Wang A, Good AC et al (2014) Discovery and early clinical evaluation of BMS-605339, a potent and orally efficacious tripeptidic acylsulfonamide NS3 protease inhibitor for the treatment of hepatitis C virus infection. J Med Chem 57:1730–1755PubMedGoogle Scholar
  53. 53.
    Scola PM, Sun L-Q, Wang AX et al (2014) The discovery of asunaprevir (BMS-650032), an orally efficacious NS3 protease inhibitor for the treatment of hepatitis C virus infection. J Med Chem 57:1730–1752PubMedGoogle Scholar
  54. 54.
    McPhee F, Sheaffer AK, Friborg J et al (2012) Preclinical profile and characterization of the hepatitis C virus NS3 protease inhibitor asunaprevir (BMS-650032). Antimicrob Agents Chemother 56:5387–5396PubMedPubMedCentralGoogle Scholar
  55. 55.
    Wei L, Zhang M, Xu M et al (2016) Phase 3, open-label study of daclatasvir plus asunaprevir in Asian patients with chronic hepatitis C virus genotype 1b infection who are ineligible for or intolerant to interferon alfa therapies with or without ribavirin. J Gatroenerol Hepatol 31:1860–1867Google Scholar
  56. 56.
    Suzuki Y, Ikeda K, Suzuki F et al (2013) Dual oral therapy with daclatasvir and asunaprevir for patients with HCV genotype 1b infection and limited treatment options. J Hepatol 58:655–662PubMedGoogle Scholar
  57. 57.
    Kumada H, Suzuki Y, Ikeda K et al (2014) Daclatasvir plus asunaprevir for chronic HCV genotype 1b infection. Hepatology 59:2083–2091PubMedPubMedCentralGoogle Scholar
  58. 58.
    Sun L-Q, Mull E, Zheng B et al (2016) Discovery of a potent acyclic, tripeptidic, acyl sulfonamide inhibitor of hepatitis C virus NS3 protease as a back-up to asunaprevir with the potential for once-daily dosing. J Med Chem 59:8042–8060PubMedGoogle Scholar
  59. 59.
    Huang M, Fabrycki J, Patel D et al (2010) Antiviral activity, combination and resistance of ACH-1625, a potent, clinical stage HCV NS3 protease inhibitor. J Hepatol 52:S254Google Scholar
  60. 60.
    Agarwal A, Zhang B, Olek E et al (2012) Rapid and sharp decline in HCV upon monotherapy with NS3 protease inhibitor, ACH-1625. Antivir Ther 17:1533–1539PubMedGoogle Scholar
  61. 61.
    Sheng XC, Appleby T, Butler T et al (2012) Discovery of GS-9451: an acid inhibitor of the hepatitis C virus NS3/4A protease. Bioorg Med Chem Lett 22:2629–2634PubMedGoogle Scholar
  62. 62.
    Yang H, Robinson M, Corsa AC et al (2014) IV preclinical characterization of the novel hepatitis C virus NS3 protease inhibitor GS-9451. Antimicrob Agents Chemother 58:647–653PubMedPubMedCentralGoogle Scholar
  63. 63.
    Johansson PO, Back M, Kvarnstrom I et al (2006) Potent inhibitors of the hepatitis C virus NS3 protease: use of a novel P2 cyclopentane-derived template. Bioorg Med Chem 14:5136–5151PubMedGoogle Scholar
  64. 64.
    Thorstensson F, Wangsell F, Kvarnstrom I et al (2007) Synthesis of novel potent hepatitis C virus NS3 protease inhibitors: discovery of 4-hydroxy-cyclopent-2-ene-1,2-dicarboxylic acid as an acyl-L-hydroxyproline bioisostere. Bioorg Med Chem 15:827–838PubMedGoogle Scholar
  65. 65.
    Back M, Johansson PO, Wangsell F et al (2007) Novel potent macrocyclic inhibitors of the hepatitis C virus NS3 protease: use of cyclopentane and cyclopentene P2-motifs. Bioorg Med Chem 15:7184–7202PubMedGoogle Scholar
  66. 66.
    Raboisson P, de Kock H, Rosenquist A et al (2008) Structure−activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorg Med Chem Lett 18:4853–4858PubMedGoogle Scholar
  67. 67.
    Rosenquist Å, Samuelsson B, Johansson P-O et al (2014) Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J Med Chem 57:1673–1693PubMedGoogle Scholar
  68. 68.
    Parsy C, Alexandre F-R, Brandt G et al (2014) Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease. Bioorg Med Chem Lett 24:4444–4449PubMedGoogle Scholar
  69. 69.
    Parsy CC, Alexandre F-R, Bidau V et al (2015) Discovery and structural diversity of the hepatitis C virus NS3/4A serine protease inhibitor series leading to clinical candidate IDX320. Bioorg Med Chem Lett 25:5427–5436PubMedGoogle Scholar
  70. 70.
    Seiwert SD, Andrews SW, Jiang Y et al (2008) Preclinical characteristics of the hepatitis C virus NS3/4A protease inhibitor ITMN-191 (R7227). Antimicrob Agents Chemother 52:4432–4441PubMedPubMedCentralGoogle Scholar
  71. 71.
    Jensen DM, Brunda M, Elston R et al (2016) Interferon-free regimens containing setrobuvir for patients with genotype 1 chronic hepatitis C: a randomized, multicenter study. Liver Int 36:505–514PubMedGoogle Scholar
  72. 72.
    Huang M, Podos S, Patel D et al (2010) ACH-2684: HCV NS3 protease inhibitor with potent activity against multiple genotypes and known resistant variants. Hepatology 52(S1):1204AGoogle Scholar
  73. 73.
    Pompei M, Di Francesco ME, Koch U et al (2009) Phosphorous acid analogs of novel P2–P4 macrocycles as inhibitors of HCV–NS3 protease. Bioorg Med Chem Lett 19:2574–2578PubMedGoogle Scholar
  74. 74.
    Pyun H-J, Chaudhary K, Somoza JR et al (2009) Synthesis and resolution of diethyl (1S,2S)-1-amino-2-vinylcyclopropane-1-phosphonate for HCV NS3 protease inhibitors. Tetrahedron Lett 50:3833–3835Google Scholar
  75. 75.
    Sheng XC, Pyun H-J, Chaudhary K et al (2009) Discovery of novel phosphonate derivatives as hepatitis C virus NS3 protease inhibitors. Bioorg Med Chem Lett 19:3453–3457PubMedGoogle Scholar
  76. 76.
    Clarke MO, Chen X, Cho A et al (2011) Novel, potent, and orally bioavailable phosphinic acid inhibitors of the hepatitis C virus NS3 protease. Bioorg Med Chem Lett 21:3568–3572PubMedGoogle Scholar
  77. 77.
    Sheng XC, Casarez A, Cai R et al (2012) Discovery of GS-9256: a novel phosphinic acid derived inhibitor of the hepatitis C virus NS3/4A protease with potent clinical activity. Bioorg Med Chem Lett 22:1394–1396PubMedGoogle Scholar
  78. 78.
    Hotho DM, de Bruijne J, O’Farrell AM et al (2012) Pharmacokinetics and antiviral activity of PHX1766, a novel HCV protease inhibitor, using an accelerated phase I study design. Antivir Ther 17:365–375PubMedGoogle Scholar
  79. 79.
    Marchetti A, Ontoria JM, Matassa VG (1999) Synthesis of two novel cyclic biphenyl ether analogs of an inhibitor of HCV NS3 protease. Synlett S1:1000–1002Google Scholar
  80. 80.
    Venkatram S, Njoroge FG (2007) Macrocyclic inhibitors of HCV NS3-4A protease: design and structure activity relationship. Curr Top Med Chem 7:1290–1301Google Scholar
  81. 81.
    Chen KX, Njoroge FG, Pichardo J et al (2005) Design, synthesis, and biological activity of m-tyrosine-based 16- and 17-membered macrocyclic inhibitors of hepatitis C virus NS3 serine protease. J Med Chem 48:6229–6235PubMedGoogle Scholar
  82. 82.
    Venkatraman S, Njoroge FG, Girijavallabhan VM et al (2005) Design and synthesis of depeptidized macrocyclic inhibitors of hepatitis C NS3-4A protease using structure-based drug design. J Med Chem 48:5088–5091PubMedGoogle Scholar
  83. 83.
    Chen KX, Njoroge FG, Arasappan A et al (2006) Novel potent hepatitis C virus NS3 serine protease inhibitors derived from proline-based macrocycles. J Med Chem 49:995–1005PubMedGoogle Scholar
  84. 84.
    Chen KX, Njoroge FG, Pichardo J et al (2006) Potent 7-hydroxy-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid-based macrocyclic inhibitors of hepatitis C virus NS3 protease. J Med Chem 49:567–574PubMedGoogle Scholar
  85. 85.
    Liverton NJ, Holloway MK, McCauley JA et al (2008) Molecular modeling based approach to potent P2–P4 macrocyclic inhibitors of hepatitis C NS3/4A protease. J Am Chem Soc 130:4607–4609PubMedGoogle Scholar
  86. 86.
    Brown AN, McSharry JJ, Adams JR et al (2016) Pharmacodynamic analysis of a serine protease inhibitor, MK-4519, against hepatitis C virus using a novel in vitro pharmacodynamic system. Antimicrob Agents Chemother 56:1170–1181Google Scholar
  87. 87.
    McCauley JA, McIntyre CJ, Rudd MT et al (2010) Discovery of vaniprevir (MK-7009), a macrocyclic hepatitis C virus NS3/4A protease inhibitor. J Med Chem 53:2443–2463PubMedGoogle Scholar
  88. 88.
    Liverton NJ, Carroll SS, Di Muzio J et al (2010) MK-7009, a potent and selective inhibitor of hepatitis C virus NS3/4A protease. Antimicrob Agents Chemother 54:305–311PubMedGoogle Scholar
  89. 89.
    Rudd MT, McCauley JA, Butcher JW et al (2011) Discovery of MK-1220: a macrocyclic inhibitor of hepatitis C virus NS3/4a protease with improved preclinical plasma exposure. ACS Med Chem Lett 2:207–212PubMedPubMedCentralGoogle Scholar
  90. 90.
    Harper S, McCauley JA, Rudd MT et al (2012) Discovery of MK-5172, a macrocyclic hepatitis C virus NS3/4a protease inhibitor. ACS Med Chem Lett 3:332–336PubMedPubMedCentralGoogle Scholar
  91. 91.
    Romano KP, Ali A, Aydin C et al (2012) The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 8:e1002832PubMedPubMedCentralGoogle Scholar
  92. 92.
    Shimakami T, Welsch C, Yamane D (2011) Protease inhibitor-resistant hepatitis C virus mutants with reduced fitness from impaired production of infectious virus. Gastroenterology 140:667–675PubMedGoogle Scholar
  93. 93.
    Summa V, Ludmerer SW, McCauley JA et al (2012) MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother 56:4161–4167PubMedPubMedCentralGoogle Scholar
  94. 94.
    Lahser FC, Bystol K, Curry S, et al (2016) The combination of grazoprevir, a hepatitis C virus (HCV) NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor, demonstrates a high genetic barrier to resistance in HCV genotype 1a replicons. Antimicrob Agents Chemother 60:2954–2964PubMedPubMedCentralGoogle Scholar
  95. 95.
    Rudd MT, Butcher JW, Nguyen KT et al (2015) P2-quinazolinones and bis-macrocycles as new templates for next-generation hepatitis C virus NS3/4a protease inhibitors: discovery of MK-2748 and MK-6325. ChemMedChem 10:727–735PubMedGoogle Scholar
  96. 96.
    Voaklander R, Jacobson IM (2017) Sofosbuvir, velpatasvir and voxilaprevir combination for the treatment of hepatitis C. Expert Rev Gastroenterol Hepatol 11:789–795PubMedGoogle Scholar
  97. 97.
    Zheng B, D’Andrea SV, Sun L-Q et al (2018) Potent inhibitors of hepatitis C virus NS3 protease: employment of a difluoromethyl group as a hydrogen-bond donor. ACS Med Chem Lett 9:143.  https://doi.org/10.1021/acsmedchemlett.7b00503 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ng T, Tripathi R, Reisch T et al (2018) In vitro antiviral activity and resistance profile of the next-generation hepatitis C virus NS3/4A protease inhibitor glecaprevir. Antimicrob Agents Chemother 62:1–16Google Scholar
  99. 99.
    McCauley JA, Rudd MT, Nguyen KT et al (2008) Bismacrocyclic inhibitors of hepatitis C NS3/4a protease. Angew Chem Int Ed 47:9104–9107Google Scholar
  100. 100.
    Li H, Scott JP, Chen C-Y et al (2015) Synthesis of bis-macrocyclic HCV protease inhibitor MK-6325 via intramolecular sp2–sp3 Suzuki–Miyaura coupling and ring closing metathesis. Org Lett 17:1533–1536PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tri-Institutional Therapeutics Discovery InstituteNew YorkUSA

Personalised recommendations