Advertisement

Cancer II pp 75-104 | Cite as

Small-Molecule Inhibitors of Bruton’s Tyrosine Kinase

  • Yingying Zuo
  • Zhengying PanEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 28)

Abstract

Bruton’s tyrosine kinase has emerged as a promising drug target for multiple diseases, particularly hematopoietic malignancies. As a result of intensive efforts, many inhibitors have been developed to target BTK. Among them, considerable progress has been made in covalent inhibitors. In this chapter, example compounds will be discussed to highlight our current understanding of the functional and structural features of BTK inhibitors.

Keywords

B-cell malignancies BTK Inhibitors Signaling pathway Tec family kinase 

Abbreviations

BCR

B-cell receptor

BTK

Bruton’s tyrosine kinase

CLL

Chronic lymphocytic leukemia

CR

Complete response

DAG

Diacylglycerol

DLBCL

B-cell-like diffuse large B-cell lymphoma

FDA

Food and Drug Administration

IP3

Inositol triphosphate

ITAMs

Immunoreceptor tyrosine kinase activation motifs

LPS

Bacterial lipopolysaccharide

MCL

Mantle cell lymphoma

MM

Multiple myeloma

ORR

Overall response rate

OS

Overall survival

PFS

Progressive-free survival rate

PH

Pleckstrin homology

PID

Primary immunologic deficiency

SH

Src homology

Syk

Spleen tyrosine kinase

TH

TEC homology

TLR

Toll-like receptor

WM

Waldenström’s macroglobulinemia

XID

X-linked immunodeficiency

XLA

X-linked agammaglobulinemia

References

  1. 1.
    Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIE, Bentley DR (1993) The gene involved in X-linked agammaglobulinemia is a member of the SRC family of protein-tyrosine kinases. Nature 361:226–233PubMedGoogle Scholar
  2. 2.
    Vargas L, Hamasy A, Nore B, Smith C (2013) Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases. Scand J Immunol 78:130–139PubMedGoogle Scholar
  3. 3.
    Liu X, Zhan Z, Li D, Xu L, Ma F, Zhang P, Yao H, Cao X (2011) Intracellular MHC class II molecules promote TLR-triggered innate immune responses by maintaining activation of the kinase Btk. Nat Immunol 12:416–424PubMedGoogle Scholar
  4. 4.
    Quek LS, Bolen J, Watson SP (1998) A role for Bruton’s tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol 8:1137–1140PubMedGoogle Scholar
  5. 5.
    Honda F, Kano H, Kanegane H, Nonoyama S, Kim ES, Lee SK, Takagi M, Mizutani S, Morio T (2012) The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13:369–378PubMedGoogle Scholar
  6. 6.
    Genevier HC, Hinshelwood S, Gaspar HB, Rigley KP, Brown D, Saeland S, Rousset F, Levinsky RJ, Callard RE, Kinnon C, Lovering RC (1994) Expression of brutons tyrosine kinase protein within the B-cell lineage. Eur J Immunol 24:3100–3105PubMedGoogle Scholar
  7. 7.
    Smith CIE, Baskin B, Humiregreiff P, Zhou JN, Olsson PG, Maniar HS, Kjellen P, Lambris JD, Christensson B, Hammarstrom L, Bentley D, Vetrie D, Islam KB, Vorechovsky I, Sideras P (1994) Expression of brutons agammaglobulinemia tyrosine kinase gene, Btk, is selectively down-regulated in T-lymphocytes and plasma-cells. J Immunol 152:557–565PubMedGoogle Scholar
  8. 8.
    Bruton OC (1952) Agammaglobulinemia. Pediatrics 9:722–728PubMedGoogle Scholar
  9. 9.
    Bruton OC, Apt L, Gitlin D, Janeway CA (1952) Absence of serum gamma-globulins. AMA Am J Dis Child 84:632–636PubMedGoogle Scholar
  10. 10.
    Khan WN (2012) Colonel Bruton’s kinase defined the molecular basis of X-linked agammaglobulinemia, the first primary immunodeficiency. J Immunol 188:2933–2935PubMedGoogle Scholar
  11. 11.
    Smith CIE, Notarangelo LD (1997) Molecular basis for X-linked immunodeficiencies. Adv Genet 35:57–115PubMedGoogle Scholar
  12. 12.
    Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S, Belmont JW, Cooper MD, Conley ME, Witte ON (1993) Deficient expression of a B-cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 72:279–290PubMedGoogle Scholar
  13. 13.
    Conley ME, Parolini O, Rohrer J, Campana D (1994) X-linked agammaglobulinemia – new approaches to old questions based on the identification of the defective gene. Immunol Rev 138:5–21PubMedGoogle Scholar
  14. 14.
    Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, Mohr RN, Bazan JF, Howard M, Copeland NG, Jenkins NA, Witte ON (1993) Mutation of unique region of brutons tyrosine kinase in immunodeficient XID mice. Science 261:358–361PubMedGoogle Scholar
  15. 15.
    Hendriks RW, Yuvaraj S, Kil LP (2014) Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer 14:219–232PubMedGoogle Scholar
  16. 16.
    Mohamed AJ, Yu L, Backesjo C-M, Vargas L, Faryal R, Aints A, Christensson B, Berglof A, Vihinen M, Nore BF, Smith CIE (2009) Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 228:58–73PubMedGoogle Scholar
  17. 17.
    Hyvonen M, Saraste M (1997) Structure of the PH domain and Btk motif from Bruton’s tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. EMBO J 16:3396–3404PubMedPubMedCentralGoogle Scholar
  18. 18.
    Bradshaw JM (2010) The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 22:1175–1184PubMedGoogle Scholar
  19. 19.
    Park H, Wahl MI, Afar DEH, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON (1996) Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 4:515–525PubMedGoogle Scholar
  20. 20.
    Rawlings DJ, Scharenberg AM, Park H, Wahl MI, Lin SQ, Kato RM, Fluckiger AC, Witte ON, Kinet JP (1996) Activation of Btk by a phosphorylation mechanism initiated by SRC family kinases. Science 271:822–825PubMedGoogle Scholar
  21. 21.
    Saito K, Scharenberg AM, Kinet JP (2001) Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem 276:16201–16206PubMedGoogle Scholar
  22. 22.
    Vihinen M, Nore BF, Mattsson PT, Backesjo CM, Nars M, Koutaniemi S, Watanabe C, Lester T, Jones A, Ochs HD, Smith CIE (1997) Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. FEBS Lett 413:205–210PubMedGoogle Scholar
  23. 23.
    Smith CIE, Islam KB, Vorechovsky I, Olerup O, Wallin E, Rabbani H, Baskin B, Hammarstrom L (1994) X-linked agammaglobulinemia and other immunoglobulin deficiencies. Immunol Rev 138:159–183PubMedGoogle Scholar
  24. 24.
    Vihinen M, Nilsson L, Smith CIE (1994) TEC homology (TH) adjacent to the PH domain. FEBS Lett 350:263–265PubMedGoogle Scholar
  25. 25.
    Mohamed AJ, Nore BF, Christensson B, Smith CIE (1999) Signalling of Bruton’s tyrosine kinase, Btk. Scand J Immunol 49:113–118PubMedGoogle Scholar
  26. 26.
    Ponader S, Burger JA (2014) Bruton’s tyrosine kinase: from X-linked agammaglobulinemia toward targeted therapy for B-cell malignancies. J Clin Oncol 32:1830–1839PubMedPubMedCentralGoogle Scholar
  27. 27.
    Nore BF, Vargas L, Mohamed AJ, Branden LJ, Backesjo CM, Islam TC, Mattsson PT, Hultenby K, Christensson B, Smith CIE (2000) Redistribution of Bruton’s tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur J Immunol 30:145–154PubMedGoogle Scholar
  28. 28.
    Fruman DA, Snapper SB, Yballe CM, Davidson L, Yu JY, Alt FW, Cantley LC (1999) Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85 alpha. Science 283:393–397PubMedGoogle Scholar
  29. 29.
    Suzuki H, Matsuda S, Terauchi Y, Fujiwara M, Ohteki T, Asano T, Behrens TW, Kouro T, Takatsu K, Kadowaki T, Koyasu S (2003) PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat Immunol 4:280–286PubMedGoogle Scholar
  30. 30.
    Yang WY, Desiderio S (1997) BAP-135, a target for Bruton’s tyrosine kinase in response to B cell receptor engagement. Proc Natl Acad Sci U S A 94:604–609PubMedPubMedCentralGoogle Scholar
  31. 31.
    Kikuchi Y, Hirano M, Seto M, Takatsu K (2000) Identification and characterization of a molecule, BAM11, that associates with the pleckstrin homology domain of mouse Btk. Int Immunol 12:1397–1408PubMedGoogle Scholar
  32. 32.
    Yao LB, Janmey P, Frigeri LG, Han W, Fujita J, Kawakami Y, Apgar JR, Kawakami T (1999) Pleckstrin homology domains interact with filamentous actin. J Biol Chem 274:19752–19761PubMedGoogle Scholar
  33. 33.
    Vassilev A, Ozer Z, Navara C, Mahajan S, Uckun FM (1999) Bruton’s tyrosine kinase as an inhibitor of the Fas/CD95 death-inducing signaling complex. J Biol Chem 274:1646–1656PubMedGoogle Scholar
  34. 34.
    Tumang JR, Negm RS, Solt LA, Schneider TJ, Colarusso TP, Hastings WD, Woodland RT, Rothstein TL (2002) BCR engagement induces Fas resistance in primary B cells in the absence of functional Bruton’s tyrosine kinase. J Immunol 168:2712–2719PubMedGoogle Scholar
  35. 35.
    Yu L, Mohamed AJ, Vargas L, Berglof A, Finn G, Lu KP, Smith CI (2006) Regulation of Bruton tyrosine kinase by the peptidylprolyl isomerase Pin1. J Biol Chem 281:18201–18207PubMedGoogle Scholar
  36. 36.
    Yao L, Kawakami Y, Kawakami T (1994) The pleckstrin homology domain of bruton tyrosine kinase interacts with protein-kinase-C. Proc Natl Acad Sci U S A 91:9175–9179PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kang SW, Wahl MI, Chu J, Kitaura J, Kawakami Y, Kato RM, Tabuchi R, Tarakhovsky A, Kawakami T, Turck CW, Witte ON, Rawlings DJ (2001) PKC beta modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J 20:5692–5702PubMedPubMedCentralGoogle Scholar
  38. 38.
    Johannes FJ, Hausser A, Storz P, Truckenmuller L, Link G, Kawakami T, Pfizenmaier K (1999) Bruton’s tyrosine kinase (Btk) associates with protein kinase C mu. FEBS Lett 461:68–72PubMedGoogle Scholar
  39. 39.
    Crosby D, Poole AW (2002) Interaction of Bruton’s tyrosine kinase and protein kinase C theta in platelets – cross-talk between tyrosine and serine/threonine kinases. J Biol Chem 277:9958–9965PubMedGoogle Scholar
  40. 40.
    Saito K, Tolias KF, Saci A, Koon HB, Humphries LA, Scharenberg A, Rawlings DJ, Kinet JP, Carpenter CL (2003) Btk regulates Ptdlns-4,5-P-2 synthesis: importance for calcium signaling and PI3K activity. Immunity 19:669–678PubMedGoogle Scholar
  41. 41.
    Jiang Y, Ma W, Wan Y, Kozasa T, Hattori S, Huang XY (1998) The G protein G alpha 12 stimulates Bruton’s tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature 395:808–813PubMedGoogle Scholar
  42. 42.
    Tsukada S, Simon MI, Witte ON, Katz A (1994) Binding of beta-gamma-subunits of heterotrimeric G-proteins to the PH domain of bruton tyrosine kinase. Proc Natl Acad Sci U S A 91:11256–11260PubMedPubMedCentralGoogle Scholar
  43. 43.
    Liu WM, Quinto I, Chen XN, Palmieri C, Rabin RL, Schwartz OM, Nelson DL, Scala G (2001) Direct inhibition of Brurton’s tyrosine kinase by IBtk, a Btk-binding protein. Nat Immunol 2:939–946PubMedGoogle Scholar
  44. 44.
    Alexandropoulos K, Cheng GH, Baltimore D (1995) Proline-rich sequences that bind to Src homology-3 domains with individual specificities. Proc Natl Acad Sci U S A 92:3110–3114PubMedPubMedCentralGoogle Scholar
  45. 45.
    Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW (1997) SH3 domain of Bruton’s tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120(cbl). Proteins 29:545–552PubMedGoogle Scholar
  46. 46.
    Ma YC, Huang XY (1998) Identification of the binding site for Gq alpha on its effector Bruton’s tyrosine kinase. Proc Natl Acad Sci U S A 95:12197–12201PubMedPubMedCentralGoogle Scholar
  47. 47.
    Morrogh LM, Hinshelwood S, Costello P, Cory GOC, Kinnon C (1999) The SH3 domain of Bruton’s tyrosine kinase displays altered ligand binding properties when auto-phosphorylated in vitro. Eur J Immunol 29:2269–2279PubMedGoogle Scholar
  48. 48.
    Guinamard R, Aspenstrom P, Fougereau M, Chavrier P, Guillemot JC (1998) Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett 434:431–436PubMedGoogle Scholar
  49. 49.
    Matsushita M, Yamadori T, Kato S, Takemoto Y, Inazawa J, Baba Y, Hashimoto S, Sekine S, Arai S, Kunikata T, Kurimoto M, Kishimoto T, Tsukada S (1998) Identification and characterization of a novel SH3-domain binding protein, Sab, which preferentially associates with Bruton’s tyrosine kinase (Btk). Biochem Biophys Res Commun 245:337–343PubMedGoogle Scholar
  50. 50.
    Yamadori T, Baba Y, Matsushita M, Hashimoto S, Kurosaki M, Kurosaki T, Kishimoto T, Tsukada S (1999) Bruton’s tyrosine kinase activity is negatively regulated by Sab, the Btk-SH3 domain-binding protein. Proc Natl Acad Sci U S A 96:6341–6346PubMedPubMedCentralGoogle Scholar
  51. 51.
    Hashimoto S, Iwamatsu A, Ishiai M, Okawa K, Yamadori T, Matsushita M, Baba Y, Kishimoto T, Kurosaki T, Tsukada S (1999) Identification of the SH2 domain binding protein of Bruton’s tyrosine kinase as BLNK – functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94:2357–2364PubMedGoogle Scholar
  52. 52.
    Egloff AM, Desiderio S (2001) Identification of phosphorylation sites for Bruton’s tyrosine kinase within the transcriptional regulator BAP/TFII-I. J Biol Chem 276:27806–27815PubMedGoogle Scholar
  53. 53.
    Vargas L, Nore BF, Berglof A, Heinonen JE, Mattsson PT, Smith CIE, Mohamed AJ (2002) Functional interaction of caveolin-1 with Bruton’s tyrosine kinase and Bmx. J Biol Chem 277:9351–9357PubMedGoogle Scholar
  54. 54.
    Guinamard R, Fougereau M, Seckinger P (1997) The SH3 domain of Bruton’s tyrosine kinase interacts with Vav, Sam68 and EWS. Scand J Immunol 45:587–595PubMedGoogle Scholar
  55. 55.
    Rodriguez R, Matsuda M, Perisic O, Bravo J, Paul A, Jones NP, Light Y, Swann K, Williams RL, Katan M (2001) Tyrosine residues in phospholipase C gamma 2 essential for the enzyme function in B-cell signaling. J Biol Chem 276:47982–47992PubMedGoogle Scholar
  56. 56.
    Ponader S, Chen S-S, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG, Keating MJ, O’Brien S, Chiorazzi N, Burger JA (2012) The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 119:1182–1189PubMedPubMedCentralGoogle Scholar
  57. 57.
    Burger JA, Montserrat E (2013) Coming full circle: 70 years of chronic lymphocytic leukemia cell redistribution, from glucocorticoids to inhibitors of B-cell receptor signaling. Blood 121:1501–1509PubMedPubMedCentralGoogle Scholar
  58. 58.
    Khan WN, Alt FW, Gerstein RM, Malynn BA, Larsson I, Rathbun G, Davidson L, Muller S, Kantor AB, Herzenberg LA, Rosen FS, Sideras P (1995) Defective B-cell development and function in Btk-deficient mice. Immunity 3:283–299PubMedGoogle Scholar
  59. 59.
    Aoki Y, Isselbacher KJ, Pillai S (1994) Bruton tyrosine kinase is tyrosine-phosphorylated and activated in pre-B lymphocytes and receptor-ligated b-cells. Proc Natl Acad Sci U S A 91:10606–10609PubMedPubMedCentralGoogle Scholar
  60. 60.
    Deweers M, Brouns GS, Hinshelwood S, Kinnon C, Schuurman RKB, Hendriks RW, Borst J (1994) B-cell antigen receptor stimulation activates the human Brutons tyrosine kinase, which is deficient in X-linked agammaglobulinemia. J Biol Chem 269:23857–23860Google Scholar
  61. 61.
    Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WWA, Zurn C, Reth M (2002) Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 10:1057–1069PubMedGoogle Scholar
  62. 62.
    O’Rourke LM, Tooze R, Turner M, Sandoval DM, Carter RH, Tybulewicz VLJ, Fearon DT (1998) CD19 as a membrane-anchored adaptor protein of B lymphocytes: costimulation of lipid and protein kinases by recruitment of Vav. Immunity 8:635–645PubMedGoogle Scholar
  63. 63.
    Inabe K, Ishiai M, Scharenberg AM, Freshney N, Downward J, Kurosaki T (2002) Vav3 modulates B cell receptor responses by regulating phosphoinositide 3-kinase activation. J Exp Med 195:189–200PubMedPubMedCentralGoogle Scholar
  64. 64.
    Fu C, Turck CW, Kurosaki T, Chan AC (1998) BLNK: a central linker protein in B cell activation. Immunity 9:93–103PubMedGoogle Scholar
  65. 65.
    Oellerich T, Bremes V, Neumann K, Bohnenberger H, Dittmann K, Hsiao H-H, Engelke M, Schnyder T, Batista FD, Urlaub H, Wienands J (2011) The B-cell antigen receptor signals through a preformed transducer module of SLP65 and CIN85. EMBO J 30:3620–3634PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kim YJ, Sekiya F, Poulin B, Bae YS, Rhee SG (2004) Mechanism of B-cell receptor-induced phosphorylation and activation of phospholipase C-gamma 2. Mol Cell Biol 24:9986–9999PubMedPubMedCentralGoogle Scholar
  67. 67.
    Spaargaren M, Beuling EA, Rurup ML, Meijer HP, Klok MD, Middendorp S, Hendriks RW, Pals ST (2003) The B cell antigen receptor controls integrin activity through Btk and PLC gamma 2. J Exp Med 198:1539–1550PubMedPubMedCentralGoogle Scholar
  68. 68.
    Kuehn HS, Radinger M, Brown JM, Ali K, Vanhaesebroeck B, Beaven MA, Metcalfe DD, Gilfillan AM (2010) Btk-dependent Rac activation and actin rearrangement following Fc epsilon RI aggregation promotes enhanced chemotactic responses of mast cells. J Cell Sci 123:2576–2585PubMedPubMedCentralGoogle Scholar
  69. 69.
    Su W, Wynne J, Pinheiro EM, Strazza M, Mor A, Montenont E, Berger J, Paul DS, Bergmeier W, Gertler FB, Philips MR (2015) Rap1 and its effector RIAM are required for lymphocyte trafficking. Blood 126:2695–2703PubMedPubMedCentralGoogle Scholar
  70. 70.
    McLeod SJ, Ingham RJ, Bos JL, Kurosaki T, Gold MR (1998) Activation of the Rap1 GTPase by the B cell antigen receptor. J Biol Chem 273:29218–29223PubMedGoogle Scholar
  71. 71.
    de Gorter DJJ, Beuling EA, Kersseboom R, Middendorp S, van Gils JM, Hendriks RW, Pals ST, Spaargaren M (2007) Bruton’s tyrosine kinase and phospholipase C gamma 2 mediate chemokine-controlled B cell migration and homing. Immunity 26:93–104PubMedGoogle Scholar
  72. 72.
    de Rooij MFM, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ, Pals ST, Spaargaren M (2012) The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 119:2590–2594PubMedGoogle Scholar
  73. 73.
    Chang BY, Magadala P, Francesco M, Balasubramanian S, Elias L, Buggy JJ (2013) Mobilization of follicular lymphoma cells into peripheral blood following BTK inhibition by ibrutinib. Cancer Res 73:3519Google Scholar
  74. 74.
    Chang BY, Francesco M, De Rooij MFM, Magadala P, Steggerda SM, Huang MM, Kuil A, Herman SEM, Chang S, Pals ST, Wilson W, Wiestner A, Spaargaren M, Buggy JJ, Elias L (2013) Egress of CD19(+)CD5(+) cells into peripheral blood following treatment with the Bruton tyrosine kinase inhibitor ibrutinib in mantle cell lymphoma patients. Blood 122:2412–2424PubMedPubMedCentralGoogle Scholar
  75. 75.
    Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, Walch E, Wirth T, O’Neill LAJ (2003) Bruton’s tyrosine kinase is a toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappa B activation by toll-like receptor 4. J Biol Chem 278:26258–26264PubMedGoogle Scholar
  76. 76.
    Lee K-G, Xu S, Kang Z-H, Huo J, Huang M, Liu D, Takeuchi O, Akira S, Lam K-P (2012) Bruton’s tyrosine kinase phosphorylates Toll-like receptor 3 to initiate antiviral response. Proc Natl Acad Sci U S A 109:5791–5796PubMedPubMedCentralGoogle Scholar
  77. 77.
    Marron TU, Martinez-Gallo M, Yu JE, Cunningham-Rundles C (2012) Toll-like receptor 4-, 7-, and 8-activated myeloid cells from patients with X-linked agammaglobulinemia produce enhanced inflammatory cytokines. J Allergy Clin Immunol 129:184–184PubMedGoogle Scholar
  78. 78.
    Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang J-K, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463:88–88PubMedPubMedCentralGoogle Scholar
  79. 79.
    Muzio M, Apollonio B, Scielzo C, Frenquelli M, Vandoni I, Boussiotis V, Caligaris-Cappio F, Ghia P (2008) Constitutive activation of distinct BCR-signaling pathways in a subset of CLL patients: a molecular signature of anergy. Blood 112:188–195PubMedGoogle Scholar
  80. 80.
    Mockridge CI, Potter KN, Wheatley I, Neville LA, Packham G, Stevenson FK (2007) Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by V-H-gene mutational status. Blood 109:4424–4431PubMedGoogle Scholar
  81. 81.
    Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, Gibellini F, Njuguna N, Lee E, Stennett L, Raghavachari N, Liu P, McCoy JP, Raffeld M, Stetler-Stevenson M, Yuan C, Sherry R, Arthur DC, Maric I, White T, Marti GE, Munson P, Wilson WH, Wiestner A (2011) The lymph node microenvironment promotes B-cell receptor signaling, NF-kappa B activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 117:563–574PubMedPubMedCentralGoogle Scholar
  82. 82.
    Herman SEM, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, Flynn J, Jones J, Blum KA, Buggy JJ, Hamdy A, Johnson AJ, Byrd JC (2011) Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 117:6287–6296PubMedPubMedCentralGoogle Scholar
  83. 83.
    Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao WQ, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O’Brien S (2013) Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. New Engl J Med 369:32–42PubMedGoogle Scholar
  84. 84.
    Boyd RS, Jukes-Jones R, Walewska R, Brown D, Dyer MJS, Cain K (2009) Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol Cell Proteomics 8:1501–1515PubMedPubMedCentralGoogle Scholar
  85. 85.
    Pighi C, Gu T-L, Dalai I, Barbi S, Parolini C, Bertolaso A, Pedron S, Parisi A, Ren J, Cecconi D, Chilosi M, Menestrina F, Zamo A (2011) Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol 34:141–153Google Scholar
  86. 86.
    Rinaldi A, Kwee I, Taborelli M, Largo C, Uccella S, Martin V, Poretti G, Gaidano G, Calabrese G, Martinelli G, Baldini L, Pruneri G, Capella C, Zucca E, Cotter FE, Cigudosa JC, Catapano CV, Tibiletti MG, Bertoni F (2006) Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 132:303–316PubMedGoogle Scholar
  87. 87.
    Jares P, Colomer D, Campo E (2012) Molecular pathogenesis of mantle cell lymphoma. J Clin Invest 122:3416–3423PubMedPubMedCentralGoogle Scholar
  88. 88.
    Cinar M, Hamedani FS, Mo Z, Cinar B, Amin HM, Alkan S (2013) Bruton tyrosine kinase is commonly expressed in mantle cell lymphoma and its attenuation by Ibrutinib induces apoptosis of mantle cell lymphoma cells. Mod Pathol 26:325AGoogle Scholar
  89. 89.
    Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JG, Sabet H, Tran T, Yu X, Powell JI, Yang LM, Marti GE, Moore T, Hudson J, Lu LS, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511PubMedGoogle Scholar
  90. 90.
    Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappa B activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874PubMedPubMedCentralGoogle Scholar
  91. 91.
    Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G, Lam LT, Dave S, Yang LM, Powell J, Staudt LM (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110PubMedGoogle Scholar
  92. 92.
    Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679PubMedGoogle Scholar
  93. 93.
    Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-kappa B in diffuse large B-cell lymphoma. Nature 459:717–717PubMedPubMedCentralGoogle Scholar
  94. 94.
    Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, Arcaini L, Pinkus GS, Rodig SJ, Sohani AR, Harris NL, Laramie JM, Skifter DA, Lincoln SE, Hunter ZR (2012) MYD88 L265P somatic mutation in Waldenstrom’s macroglobulinemia. New Engl J Med 367:826–833PubMedGoogle Scholar
  95. 95.
    Yang G, Zhou Y, Liu X, Xu L, Cao Y, Manning RJ, Patterson CJ, Buhrlage SJ, Gray N, Tai Y-T, Anderson KC, Hunter ZR, Treon SP (2013) A mutation in MYD88 (L265P) supports the survival of lymphoplasmacytic cells by activation of Bruton tyrosine kinase in Waldenstrom macroglobulinemia. Blood 122:1222–1232PubMedGoogle Scholar
  96. 96.
    Raje N, Roodman GD (2011) Advances in the biology and treatment of bone disease in multiple myeloma. Clin Cancer Res 17:1278–1286Google Scholar
  97. 97.
    Kuehl WM, Bergsagel PL (2012) Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 122:3456–3463PubMedPubMedCentralGoogle Scholar
  98. 98.
    Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H, Takai T, Kodama T, Morio T, Geha RS, Kitamura D, Kurosaki T, Ellmeier W, Takayanagi H (2008) Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 132:794–806PubMedGoogle Scholar
  99. 99.
    Lee SH, Kim T, Jeong D, Kim N, Choi Y (2008) The Tec family tyrosine kinase Btk regulates RANKL-induced osteoclast maturation. J Biol Chem 283:11526–11534PubMedPubMedCentralGoogle Scholar
  100. 100.
    Tai Y-T, Chang BY, Kong S-Y, Fulciniti M, Yang G, Calle Y, Hu Y, Lin J, Zhao J-J, Cagnetta A, Cea M, Sellitto MA, Zhong MY, Wang Q, Acharya C, Carrasco DR, Buggy JJ, Elias L, Treon SP, Matsui W, Richardson P, Munshi NC, Anderson KC (2012) Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 120:1877–1887PubMedPubMedCentralGoogle Scholar
  101. 101.
    Hasan M, Lopez-Herrera G, Blomberg KEM, Lindvall JM, Berglof A, Smith CIE, Vargas L (2008) Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123:239–249PubMedPubMedCentralGoogle Scholar
  102. 102.
    Kil LP, de Bruijn MJW, van Nimwegen M, Corneth OBJ, van Hamburg JP, Dingjan GM, Thaiss F, Rimmelzwaan GF, Elewaut D, Delsing D, van Loo PF, Hendriks RW (2012) Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 119:3744–3756PubMedGoogle Scholar
  103. 103.
    Honigberg LA, Smith AM, Sirisawad M, Verner E, Loury D, Chang B, Li S, Pan Z, Thamm DH, Miller RA, Buggy JJ (2010) The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A 107:13075–13080PubMedPubMedCentralGoogle Scholar
  104. 104.
    Di Paolo JA, Huang T, Balazs M, Barbosa J, Barck KH, Bravo BJ, Carano RAD, Darrow J, Davies DR, DeForge LE, Diehl L, Ferrando R, Gallion SL, Giannetti AM, Gribling P, Hurez V, Hymowitz SG, Jones R, Kropf JE, Lee WP, Maciejewski PM, Mitchell SA, Rong H, Staker BL, Whitney JA, Yeh S, Young WB, Yu C, Zhang J, Reif K, Currie KS (2011) Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 7:41–50PubMedGoogle Scholar
  105. 105.
    Chang BY, Huang MM, Francesco M, Chen J, Sokolove J, Magadala P, Robinson WH, Buggy JJ (2011) The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 13:R115PubMedPubMedCentralGoogle Scholar
  106. 106.
    Hutcheson J, Vanarsa K, Bashmakov A, Grewal S, Sajitharan D, Chang BY, Buggy JJ, Zhou XJ, Du Y, Satterthwaite AB, Mohan C (2012) Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Res Ther 14:R243PubMedPubMedCentralGoogle Scholar
  107. 107.
    McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK (1998) Rituximab chimeric Anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 16:2825–2833PubMedGoogle Scholar
  108. 108.
    Colombat P, Salles G, Brousse N, Eftekhari P, Soubeyran P, Delwail V, Deconinck E, Haioun C, Foussard C, Sebban C, Stamatoullas A, Milpied N, Boue F, Taillan B, Lederlin P, Najman A, Thieblemont C, Montestruc F, Mathieu-Boue A, Benzohra A, Solal-Celigny P (2001) Rituximab (anti-CD20 monoclonal antibody) as single first-line therapy for patients with follicular lymphoma with a low tumor burden: clinical and molecular evaluation. Blood 97:101–106PubMedGoogle Scholar
  109. 109.
    Cang S, Mukhi N, Wang K, Liu D (2012) Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol 5:64Google Scholar
  110. 110.
    Wang K, Wei G, Liu D (2012) CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol 1:36PubMedPubMedCentralGoogle Scholar
  111. 111.
    Yoon Y (2014) Small chemicals with inhibitory effects on PtdIns(3,4,5) P-3 binding of Btk PH domain. Bioorg Med Chem Lett 24:2334–2339PubMedGoogle Scholar
  112. 112.
    Arup KG, Torsten H, Douglas AP, Joseph MS, John PM (2008) Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 51:5149–5171Google Scholar
  113. 113.
    Pan Z, Scheerens H, Li SJ, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KC, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT (2007) Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. Chem Med Chem 2:58–61PubMedGoogle Scholar
  114. 114.
    Barf T, Kaptein A (2012) Irreversible protein kinase inhibitors: balancing the benefits and risks. J Med Chem 55:6243–6262PubMedGoogle Scholar
  115. 115.
    Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH, Gray NS (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20:146–159PubMedPubMedCentralGoogle Scholar
  116. 116.
    Cowan-Jacob SW, Moebitz H, Fabbro D (2009) Structural biology contributions to tyrosine kinase drug discovery. Curr Opin Cell Biol 21:280–287PubMedGoogle Scholar
  117. 117.
    Lou Y, Owens TD, Kuglstatter A, Kondru RK, Goldstein DM (2012) Bruton’s tyrosine kinase inhibitors: approaches to potent and selective inhibition, preclinical and clinical evaluation for inflammatory diseases and B cell malignancies. J Med Chem 55:4539–4550PubMedGoogle Scholar
  118. 118.
    Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, Wildes CP, Cullen PF, Hong V, Hopkins BT, Mertsching E, Jenkins TJ, Romanowski MJ, Baker DP, Silvian LF (2010) Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci 19:429–439PubMedPubMedCentralGoogle Scholar
  119. 119.
    Wu P, Nielsen TE, Clausen MH (2015) FDA-approved small-molecule kinase inhibitors. Trends Pharmacol Sci 36:422–439PubMedGoogle Scholar
  120. 120.
    Burger J, Buggy J (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) Leuk. Lymphoma 54:2385–2391Google Scholar
  121. 121.
    Advani R, Buggy J, Sharman J, Smith S, Boyd T, Grant B, Kolibaba K, Furman R, Rodriguez S, Chang B, Sukbuntherng J, Izumi R, Hamdy A, Hedrick E, Fowler N (2013) Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) Has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 31:88PubMedGoogle Scholar
  122. 122.
    Byrd JC, Brown JR, O’Brien S, Barrientos JC, Kay NE, Reddy NM, Coutre S, Tam CS, Mulligan SP, Jaeger U, Devereux S, Barr PM, Furman RR, Kipps TJ, Cymbalista F, Pocock C, Thornton P, Caligaris-Cappio F, Robak T, Delgado J, Schuster SJ, Montillo M, Schuh A, de Vos S, Gill D, Bloor A, Dearden C, Moreno C, Jones JJ, Chu AD, Fardis M, McGreivy J, Clow F, James DF, Hillmen P, Investigators R (2014) Ibrutinib versus Ofatumumab in previously treated chronic lymphoid leukemia. New Engl J Med 371:213–223PubMedGoogle Scholar
  123. 123.
    Spaargaren M, de Rooij MF, Kater AP, Eldering E (2014) BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future. Oncogene 34:2426–2436PubMedGoogle Scholar
  124. 124.
    Wodarz D, Garg N, Komarova NL, Benjamini O, Keating MJ, Wierda WG, Kantarjian H, James D, O’Brien S, Burger JA (2014) Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib. Blood 123:4132–4135PubMedPubMedCentralGoogle Scholar
  125. 125.
    Mustafa RZ, Herman SEM, Jones J, Gyamfi J, Farooqui M, Wiestner A (2013) Ibrutinib inhibits B-cell adhesion and causes an efflux of chronic lymphocytic leukemia cells from the tissue microenvironment into the blood leading to a transient treatment-induced lymphocytosis. Blood 122:671Google Scholar
  126. 126.
    Rossi D, Gaidano G (2014) Lymphocytosis and ibrutinib treatment of CLL. Blood 123:1772–1774PubMedGoogle Scholar
  127. 127.
    Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong YM, Ruppert AS, Lucas D, Williams K, Zhao WQ, Rassenti L, Ghia E, Kipps TJ, Mantel R, Jones J, Flynn J, Maddocks K, O’Brien S, Furman RR, James DF, Clow F, Lozanski G, Johnson AJ, Byrd JC (2014) Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood 123:1810–1817PubMedPubMedCentralGoogle Scholar
  128. 128.
    Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, Jurczak W, Advani RH, Romaguera JE, Williams ME, Barrientos JC, Chmielowska E, Radford J, Stilgenbauer S, Dreyling M, Jedrzejczak WW, Johnson P, Spurgeon SE, Li L, Zhang L, Newberry K, Ou ZS, Cheng N, Fang BL, McGreivy J, Clow F, Buggy JJ, Chang BY, Beaupre DM, Kunkel LA, Blum KA (2013) Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. New Engl J Med 369:507–516PubMedGoogle Scholar
  129. 129.
    Lee CS, Rattu MA and Kim SS (2014) A review of a novel, Bruton’s tyrosine kinase inhibitor, ibrutinib. J Oncol Pharm Pract 22:92–104PubMedGoogle Scholar
  130. 130.
    Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SEM, Butchar JP, Cheney C, Zhang XL, Buggy JJ, Muthusamy N, Levy R, Johnson AJ, Byrd JC (2014) Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood 123:1957–1960PubMedPubMedCentralGoogle Scholar
  131. 131.
    Younes A, Flinn I, Berdeja J, Friedberg JW, Casulo C, Thieblemont C, Morschhauser F, Westin JR, Seetharam S, Hellemans P, Smit H, de Vries R, Dauphinee E, Badamo-Dotzis J, Fourneau N, Oki Y (2013) Combining ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP): updated results from a phase 1b study in treatment-naive patients with CD20-positive B-cell non-Hodgkin’s lymphoma (NHL). Blood 122:852Google Scholar
  132. 132.
    Grabinski N, Ewald F (2014) Ibrutinib (Imbruvica TM) potently inhibits ErbB receptor phosphorylation and cell viability of ErbB2-positive breast cancer cells. Invest New Drugs 32:1096–1104PubMedGoogle Scholar
  133. 133.
    Gao W, Wang M, Wang L, Lu H, Wu S, Dai B, Ou Z, Zhang L, Heymach J, Gold K, Minna J, Roth J, Hofstetter W, Swisher S, Fang B (2014) Selective antitumor activity of ibrutinib in EGFR-mutant non-small cell lung cancer cells. J Natl Cancer Inst 106:dju204PubMedPubMedCentralGoogle Scholar
  134. 134.
    Davids MS, Brown JR (2014) Ibrutinib: a first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol 10:957–967PubMedPubMedCentralGoogle Scholar
  135. 135.
    Liu J, Fitzgerald ME, Berndt MC, Jackson CW, Gartner TK (2006) Bruton tyrosine kinase is essential for botrocetin/VWF-induced signaling and GPIb-dependent thrombus formation in vivo. Blood 108:2596–2603PubMedPubMedCentralGoogle Scholar
  136. 136.
    Farooqui M, Lozier JN, Valdez J, Saba N, Wells A, Soto S, Liu DL, Aue G, Wiestner A (2012) Ibrutinib (PCI 32765) rapidly improves platelet counts in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) patients and Has minimal effects on platelet aggregation. Blood 120:1789Google Scholar
  137. 137.
    Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, Xue L, Li DHH, Steggerda SM, Versele M, Dave SS, Zhang J, Yilmaz AS, Jaglowski SM, Blum KA, Lozanski A, Lozanski G, James DF, Barrientos JC, Lichter P, Stilgenbauer S, Buggy JJ, Chang BY, Johnson AJ, Byrd JC (2014) Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. New Engl J Med 370:2286–2294PubMedGoogle Scholar
  138. 138.
    Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT, Witowski SR, Lounsbury H, Chaturvedi P, Mazdiyasni H, Zhu Z, Nacht M, Freed MI, Petter RC, Dubrovskiy A, Singh J, Westlin WF (2013) Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. J Pharmacol Exp Ther 346:219–228PubMedGoogle Scholar
  139. 139.
    Yamamoto S, Yoshizawa T Inventors, Ono Pharmaceutical Co., Ltd., Assignee. Purinone derivative. United States Patent US 8,940,725. Accessed 27 Jan 2015Google Scholar
  140. 140.
    Yasuhiro T, Yoshizawa T, Daub H, Weber C, Narita M and Kawabata K (2012) ONO-WG-307, a novel, potent and selective inhibitor of Bruton’s tyrosine kinase (Btk), results in sustained inhibition of the ERK, AKT and PKD signaling pathways. Cancer Res 72. doi: 10.1158/1538-7445.am2012-2021Google Scholar
  141. 141.
    Kozaki R, Hutchinson C, Sandrine J, Dyer MJS (2014) Kinome reprogramming in DLBCL by the Btk-specific inhibitor ONO-4059 highlights synergistic combinations for clinical application. Haematologica 99:137–138Google Scholar
  142. 142.
    Kozaki R, Yoshizawa T, Tohda S, Yasuhiro T, Hotta S, Ariza Y, Ueda Y, Narita M, Kawabata K (2011) Development of a Bruton’s tyrosine kinase (Btk) inhibitor, ONO-WG-307: efficacy in ABC-DLBCL xenograft model potential treatment for B-Cell malignancies. Blood 118:1593–1593Google Scholar
  143. 143.
    Walter HS, Rule SA, Dyer MJS, Karlin L, Jones C, Cazin B, Quittet P, Shah N, Hutchinson CV, Honda H, Duffy K, Birkett J, Jamieson V, Courtenay-Luck N, Yoshizawa T, Sharpe J, Ohno T, Abe S, Nishimura A, Cartron G, Morschhauser F, Fegan C, Salles G (2016) A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 127:411–419. doi:10.1182/blood-2015-08-664086CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
  145. 145.
    Barf TA, Jans CGJM, Man DAPA, Oubrie AA, Raaijmakers HCA, Rewinkel JBM, Sterrenburg J-G and JCHM W (2013) PCT Int Appl WO Patent WO 2013010868Google Scholar
  146. 146.
    Covey T, Barf T, Gulrajani M, Krantz F, van Lith B, Bibikova E, van de Kar B, de Zwart E, Hamdy A, Izumi R and Kaptein A (2015) ACP-196: a novel covalent Bruton’s tyrosine kinase (Btk) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia (CLL) patients. Cancer Res 75. doi: 10.1158/1538-7445.am2015-2596Google Scholar
  147. 147.
    Byrd JC, Harrington B, O’Brien S, Jones JA, Schuh A, Devereux S, Chaves J, Wierda WG, Awan FT, Brown JR, Hillmen P, Stephens DM, Ghia P, Barrientos JC, Pagel JM, Woyach J, Johnson D, Huang J, Wang X, Kaptein A, Lannutti BJ, Covey T, Fardis M, McGreivy J, Hamdy A, Rothbaum W, Izumi R, Diacovo TG, Johnson AJ, Furman RR (2016) Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med 374:323–332PubMedGoogle Scholar
  148. 148.
    Niemann CU, Montraveta A, Herman SEM, Ingallinera T, Barf T, Colomer D and Wiestner A (2014) The novel Bruton’s tyrosine kinase inhibitor ACP-196 shows in vivo efficacy against human chronic lymphocytic leukemia cells xenografted to the NSG mouse model. Cancer Res 74. doi: 10.1158/1538-7445.am2014-2624Google Scholar
  149. 149.
    Herman SEM, Montraveta A, Niemann CU, Mora-Jensen H, Gulrajani M, Krantz F, Harrington BK, Covey T, Lannutti BJ, Izumi R, Ulrich RG, Byrd JC, Wiestner A, Johnson AJ, Woyach JA (2015) The Bruton tyrosine kinase (BTK) inhibitor ACP-196 demonstrates clinical activity in two mouse models of chronic lymphocytic leukemia. Blood 126:23Google Scholar
  150. 150.
    Herman SEM, Sun X, McAuley EM, Hsieh MM, Pittaluga S, Raffeld M, Liu D, Keyvanfar K, Chapman CM, Chen J, Buggy JJ, Aue G, Tisdale JF, Perez-Galan P, Wiestner A (2013) Modeling tumor-host interactions of chronic lymphocytic leukemia in xenografted mice to study tumor biology and evaluate targeted therapy. Leukemia 27:2311–2321. doi:10.1038/leu.2013.131CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
  152. 152.
    Liu J, Guiadeen D, Krikorian A, Gao X, Wang J, Boga SB, Alhassan A-B, Yu Y, Vaccaro H, Liu S, Yang C, Wu H, Cooper A, de Man J, Kaptein A, Maloney K, Hornak V, Gao Y-D, Fischmann TO, Raaijmakers H, Vu-Pham D, Presland J, Mansueto M, Xu Z, Leccese E, Zhang-Hoover J, Knemeyer I, Garlisi CG, Bays N, Stivers P, Brandish PE, Hicks A, Kim R, Kozlowski JA (2016) Discovery of 8-amino-imidazo[1,5-a]pyrazines as reversible BTK inhibitors for the treatment of rheumatoid arthritis. ACS Med Chem Lett 7:198–203PubMedGoogle Scholar
  153. 153.
    Juswinder S, Russell C, Deqiang N, Lixin Q, Arthur K, Roy L, Shomir G, Zhendong Z (2011) United States patent US20110117073Google Scholar
  154. 154.
    Evans E, Tester R, Aslanian S, Chaturvedi P, Mazdiyasni H, Ponader S, Tesar B, Sheets M, Nacht M, Stiede K, Witowski S, Lounsbury H, Petter R, Brown JR, Burger JA, Singh J, Westlin WF (2011) Clinical development of AVL-292; a potent, selective covalent Btk inhibitor for the treatment of B cell malignancies. Blood 118:1487–1487Google Scholar
  155. 155.
    Eda H, Santo L, Cirstea DD, Yee AJ, Scullen TA, Nemani N, Mishima Y, Arastu-Kapur S, Evans E, Singh J, Kirk CJ, Westlin WF, Raje NS (2013) A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts multiple myeloma bone microenviroment with resultant anti-myeloma activity. Blood 122:682Google Scholar
  156. 156.
    Brown JR, Harb WA, Hill BT, Gabrilove J, Sharman JP, Schreeder MT, Barr PM, Foran JM, Miller TP, Burger JA, Kelly KR, Mahadevan D, Ma S, Barnett E, Marine J, Nava-Parada P, Azaryan A, Mei J, Kipps TJ (2013) Phase 1 study of single agent CC-292, a highly selective Bruton’s tyrosine kinase (BTK) inhibitor, in relapsed/refractory chronic lyrnphocytic leukemia (CLL). Blood 122:1630Google Scholar
  157. 157.
    Brittelli DR, Currie KS, Darrow JW, Kropf JE, Lee SH, Gallion SL Mitchell SA (2006) PCT Int Appl WO Patent WO2006099075Google Scholar
  158. 158.
    Young W, Barbosa J, Blomgren P, Bremer M, Crawford J, Dambach D, Gallion S, Hymowitz S, Kropf J, Lee S, Liu L, Lubach J, Macaluso J, Maciejewski P, Maurer B, Mitchell S, Ortwine D, Di Paolo J, Reif K, Scheerens H, Schmitt A, Sowell C, Wang X, Wong H, Xiong J, Xu J, Zhao Z, Currie K (2015) Potent and selective Bruton’s tyrosine kinase inhibitors: discovery of GDC-0834. Bioorg Med Chem Lett 25:1333–1337PubMedGoogle Scholar
  159. 159.
    Liu L, Di Paolo J, Barbosa J, Rong H, Reif K, Wong H (2011) Antiarthritis effect of a novel Bruton’s tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther 338:154–163PubMedGoogle Scholar
  160. 160.
    Liu L, Halladay JS, Shin Y, Wong S, Coraggio M, La H, Baumgardner M, Le H, Gopaul S, Boggs J, Kuebler P, Davis JC Jr, Liao XC, Lubach JW, Deese A, Sowell CG, Currie KS, Young WB, Khojasteh SC, Hop CE, Wong H (2011) Significant species difference in amide hydrolysis of GDC-0834, a novel potent and selective Bruton’s tyrosine kinase inhibitor. Drug Metab Dispos 39:1840–1849PubMedGoogle Scholar
  161. 161.
    Lou Y, Han X, Kuglstatter A, Kondru R, Sweeney Z, Soth M, McIntosh J, Litman R, Suh J, Kocer B, Davis D, Park J, Frauchiger S, Dewdney N, Zecic H, Taygerly J, Sarma K, Hong J, Hill R, Gabriel T, Goldstein D, Owens T (2015) Structure-based drug design of RN486, a potent and selective Bruton’s tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. J Med Chem 58:512–516PubMedGoogle Scholar
  162. 162.
    Xu D, Kim Y, Postelnek J, Minh Diem V, Hu D-Q, Liao C, Bradshaw M, Hsu J, Zhang J, Pashine A, Srinivasan D, Woods J, Levin A, O’Mahony A, Owens TD, Lou Y, Hill RJ, Narula S, DeMartino J, Fine JS (2012) RN486, a selective Bruton’s tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J Pharmacol Exp Ther 341:90–103PubMedGoogle Scholar
  163. 163.
    Mina-Osorio P, LaStant J, Keirstead N, Whittard T, Ayala J, Stefanova S, Garrido R, Dimaano N, Hilton H, Giron M, Lau K-Y, Hang J, Postelnek J, Kim Y, Min S, Patel A, Woods J, Ramanujam M, DeMartino J, Narula S, Xu D (2013) Suppression of glomerulonephritis in lupus-prone NZB x NZW mice by RN486, a selective inhibitor of Bruton’s tyrosine kinase. Arthritis Rheum 65:2380–2391PubMedGoogle Scholar
  164. 164.
    Bradshaw JM, McFarland JM, Paavilainen VO, Bisconte A, Tam D, Phan VT, Romanov S, Finkle D, Shu J, Patel V, Ton T, Li X, Loughhead DG, Nunn PA, Karr DE, Gerritsen ME, Funk JO, Owens TD, Verner E, Brameld KA, Hill RJ, Goldstein DM, Taunton J (2015) Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11:525–531PubMedPubMedCentralGoogle Scholar
  165. 165.
    Hill RJ, Smith P, Krishnarajah J, Bradshaw JM, Masjedizadeh M, Bisconte A, Karr D, Owens TD, Brameld K, Funk JO, Goldstein DM, Nunn PA, Gourlay SG (2015) Discovery of PRN1008, a novel, reversible covalent BTK inhibitor in clinical development for rheumatoid arthritis [abstract]. Arthritis Rheumatol 67(suppl 10):1671Google Scholar
  166. 166.
    Li XT, Zuo YY, Tang GH, Wang Y, Zhou YQ, Wang XY, Guo TL, Xia MY, Ding N, Pan ZY (2014) Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton’s tyrosine kinase with in vivo antitumor activity. J Med Chem 57:5112–5128PubMedGoogle Scholar
  167. 167.
    Ding N, Li X, Shi Y, Ping L, Wu L, Fu K, Feng L, Zheng X, Song Y, Pan Z, Zhu J (2015) Irreversible dual inhibitory mode: the novel Btk inhibitor PLS-123 demonstrates promising anti-tumor activity in human B-cell lymphoma. Oncotarget 6:15122–15136PubMedPubMedCentralGoogle Scholar
  168. 168.
    Wu H, Wang WC, Liu FY, Weisberg EL, Tian B, Chen YF, Li BH, Wang AL, Wang BL, Zhao Z, McMillin DW, Hu C, Li H, Wang JH, Liang YK, Buhrlage SJ, Liang JT, Liu J, Yang G, Brown JR, Treon SP, Mitsiades CS, Griffin JD, Liu QS, Gray NS (2014) Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem Biol 9:1086–1091PubMedPubMedCentralGoogle Scholar
  169. 169.
    Smith CR, Dougan DR, Komandla M, Kanouni T, Knight B, Lawson JD, Sabat M, Taylor ER, Vu P, Wyrick C (2015) Fragment-based discovery of a small molecule inhibitor of Bruton’s tyrosine kinase. J Med Chem 58:5437–5444PubMedGoogle Scholar
  170. 170.
  171. 171.
    Tam C, Grigg AP, Opat S, Ku M, Gilbertson M, Anderson MA, Seymour JF, Ritchie DS, Dicorleto C, Dimovski B, Hedrick E, Yang J, Wang L, Luo L, Xue L and Roberts AW (2015) The BTK inhibitor, Bgb-3111, is safe, tolerable, and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood 126:23Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Chemical Biology and Biotechnology, Shenzhen Graduate SchoolPeking UniversityShenzhenChina

Personalised recommendations