Fluorescent-Based Strategies to Investigate G Protein-Coupled Receptors: Evolution of the Techniques to a Better Understanding

Part of the Topics in Medicinal Chemistry book series (TMC, volume 30)


G protein-coupled receptors are key proteins in the regulation of most of the physiological responses. Their conformations are generally oscillating between inactive and active forms leading to the activation of no, a few, or many signaling pathways. Although receptors can spontaneously adopt these various conformations, their interactions with ligands, other G protein-coupled receptors, or intracellular proteins (G proteins, arrestins, etc.) can stabilize one of these conformations, leading to specific cellular responses. The identification of the partners interacting with the G protein-coupled receptors and the dynamics of these interactions is therefore crucial to fully understand receptor functioning. Although it is crucial, it remains nevertheless ambitious and difficult to achieve this goal. In the last two decades, various technical strategies have been developed to investigate molecular complexes and their dynamics. In this review, we will focus on recent technological breakthroughs in fluorescent-based techniques and their impact on the understanding of G protein-coupled receptor functioning. We will give particular attention to resonance energy transfer-based strategies, their advantages, and drawbacks and to other microscopy based techniques which are efficient to investigate stability, mobility, and dynamics of molecular complexes at the cell surface.


G-protein coupled receptors Luminescence-based strategy developments Protein–protein interactions Resonance energy transfer Single particule tracking Spatio-temporal network 



This work was supported by research grants from the Centre National de la Recherche Scientifique, Institut National de la Santé (to J.-P.P., B.M., J.P., T.D.). This work was also supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (to JP, grant agreement No. 646788), the Agence Nationale de la Recherche (to JP, ANR-13-JSV4-0005-01) and the Reǵion Languedoc-Roussillon (Chercheur d’Avenir), by the European Consortium Oncornet (HORIZON 2020 MSCA–ITN–2014–ETN–Project 641833 ONCORNET (to J.H., and J.-P.P. and T.D.).


  1. 1.
    Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700PubMedPubMedCentralGoogle Scholar
  2. 2.
    Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594PubMedPubMedCentralGoogle Scholar
  3. 3.
    Fernandez-Duenas V, Taura JJ, Cottet M, Gomez-Soler M, Lopez-Cano M, Ledent C, Watanabe M, Trinquet E, Pin JP, Lujan R, Durroux T, Ciruela F (2015) Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis Model Mech 8:57–63PubMedGoogle Scholar
  4. 4.
    Kern A, Albarran-Zeckler R, Walsh HE, Smith RG (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron 73:317–332PubMedPubMedCentralGoogle Scholar
  5. 5.
    Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, Parenti M, Chini B (2003) Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 22:6054–6060PubMedGoogle Scholar
  6. 6.
    Luttrell LM (2014) Minireview: more than just a hammer: ligand “bias” and pharmaceutical discovery. Mol Endocrinol 28:281–294PubMedPubMedCentralGoogle Scholar
  7. 7.
    Terrillon S, Barberis C, Bouvier M (2004) Heterodimerization of V1a and V2 vasopressin receptors determines the interaction with beta-arrestin and their trafficking patterns. Proc Natl Acad Sci U S A 101:1548–1553PubMedPubMedCentralGoogle Scholar
  8. 8.
    Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen des Physik (Leipzig) 2:55–75Google Scholar
  9. 9.
    Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23:351–354PubMedGoogle Scholar
  10. 10.
    Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci U S A 97:3684–3689PubMedPubMedCentralGoogle Scholar
  11. 11.
    Xu Y, Piston DW, Johnson CH (1999) A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc Natl Acad Sci U S A 96:151–156PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dionne P, Mireille C, Labonte A, Carter-Allen K, Houle B, Joly E, Taylor SC, Menard L (2002) BRET2: efficient energy transfer from Renilla luciferase to GFP2 to measure protein-protein interactions and intracellular signaling events in live cells. In: van Dyke K, van Dyke C, Woodfork K (eds) Luminescence bio/technology: instruments and applications. CRC Press, Boca Ranton, pp 539–555Google Scholar
  13. 13.
    De A, Ray P, Loening AM, Gambhir SS (2009) BRET3: a red-shifted bioluminescence resonance energy transfer (BRET)-based integrated platform for imaging protein-protein interactions from single live cells and living animals. FASEB J 23:2702–2709PubMedPubMedCentralGoogle Scholar
  14. 14.
    Breton B, Sauvageau E, Zhou J, Bonin H, Le Gouill C, Bouvier M (2010) Multiplexing of multicolor bioluminescence resonance energy transfer. Biophys J 99:4037–4046PubMedPubMedCentralGoogle Scholar
  15. 15.
    Perroy J, Pontier S, Charest PG, Aubry M, Bouvier M (2004) Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods 1:203–208PubMedGoogle Scholar
  16. 16.
    Heroux M, Hogue M, Lemieux S, Bouvier M (2007) Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1. J Biol Chem 282:31610–31620PubMedGoogle Scholar
  17. 17.
    Navarro G, Carriba P, Gandia J, Ciruela F, Casado V, Cortes A, Mallol J, Canela EI, Lluis C, Franco R (2008) Detection of heteromers formed by cannabinoid CB1, dopamine D2, and adenosine A2A G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. Sci World J 8:1088–1097Google Scholar
  18. 18.
    Drinovec L, Kubale V, Nohr Larsen J, Vrecl M (2012) Mathematical models for quantitative assessment of bioluminescence resonance energy transfer: application to seven transmembrane receptors oligomerization. Front Endocrinol 3:104Google Scholar
  19. 19.
    Guo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA (2008) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27:2293–2304PubMedPubMedCentralGoogle Scholar
  20. 20.
    Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA (2011) CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 7:624–630PubMedPubMedCentralGoogle Scholar
  21. 21.
    De A, Loening AM, Gambhir SS (2007) An improved bioluminescence resonance energy transfer strategy for imaging intracellular events in single cells and living subjects. Cancer Res 67:7175–7183PubMedPubMedCentralGoogle Scholar
  22. 22.
    Levi J, De A, Cheng Z, Gambhir SS (2007) Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. J Am Chem Soc 129:11900–11901PubMedPubMedCentralGoogle Scholar
  23. 23.
    Otto-Duessel M, Khankaldyyan V, Gonzalez-Gomez I, Jensen MC, Laug WE, Rosol M (2006) In vivo testing of Renilla luciferase substrate analogs in an orthotopic murine model of human glioblastoma. Mol Imaging 5:57–64PubMedGoogle Scholar
  24. 24.
    Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, Otto P, Zimmerman K, Vidugiris G, Machleidt T, Robers MB, Benink HA, Eggers CT, Slater MR, Meisenheimer PL, Klaubert DH, Fan F, Encell LP, Wood KV (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857PubMedPubMedCentralGoogle Scholar
  25. 25.
    Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB, Zimmerman K, Otto P, Daniels DL, Kirkland TA, Wood KV (2015) NanoBRET – a novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10:1797–1804PubMedGoogle Scholar
  26. 26.
    Goyet E, Bouquier N, Ollendorff V, Perroy J (2016) Fast and high resolution single-cell BRET imaging. Sci Rep 6:28231PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bazin H, Trinquet E, Mathis G (2002) Time resolved amplification of cryptate emission: a versatile technology to trace biomolecular interactions. J Biotechnol 82:233–250PubMedGoogle Scholar
  28. 28.
    Mathis G (1995) Probing molecular interactions with homogeneous techniques based on rare earth cryptates and fluorescence energy transfer. Clin Chem 41:1391–1397PubMedGoogle Scholar
  29. 29.
    Selvin PR (2002) Principles and biophysical applications of lanthanide-based probes. Annu Rev Biophys Biomol Struct 31:275–302PubMedGoogle Scholar
  30. 30.
    Zwier JM, Bazin H, Lamarque L, Mathis G (2014) Luminescent lanthanide cryptates: from the bench to the bedside. Inorg Chem 53:1854–1866PubMedGoogle Scholar
  31. 31.
    Trinquet E, Fink M, Bazin H, Grillet F, Maurin F, Bourrier E, Ansanay H, Leroy C, Michaud A, Durroux T, Maurel D, Malhaire F, Goudet C, Pin JP, Naval M, Hernout O, Chretien F, Chapleur Y, Mathis G (2006) D-myo-inositol 1-phosphate as a surrogate of D-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal Biochem 358:126–135PubMedGoogle Scholar
  32. 32.
    Durroux T, Peter M, Turcatti G, Chollet A, Balestre MN, Barberis C, Seyer R (1999) Fluorescent pseudo-peptide linear vasopressin antagonists: design, synthesis, and applications. J Med Chem 42:1312–1319PubMedGoogle Scholar
  33. 33.
    Mouillac B, Manning M, Durroux T (2008) Fluorescent agonists and antagonists for vasopressin/oxytocin G protein-coupled receptors: usefulness in ligand screening assays and receptor studies. Mini Rev Med Chem 8:996–1005PubMedPubMedCentralGoogle Scholar
  34. 34.
    Terrillon S, Cheng LL, Stoev S, Mouillac B, Barberis C, Manning M, Durroux T (2002) Synthesis and characterization of fluorescent antagonists and agonists for human oxytocin and vasopressin V(1)(a) receptors. J Med Chem 45:2579–2588PubMedGoogle Scholar
  35. 35.
    Zwier JM, Roux T, Cottet M, Durroux T, Douzon S, Bdioui S, Gregor N, Bourrier E, Oueslati N, Nicolas L, Tinel N, Boisseau C, Yverneau P, Charrier-Savournin F, Fink M, Trinquet E (2010) A fluorescent ligand-binding alternative using Tag-lite(R) technology. J Biomol Screen 15:1248–1259PubMedGoogle Scholar
  36. 36.
    Blanc E, Wagner P, Plaisier F, Schmitt M, Durroux T, Bourguignon JJ, Partiseti M, Dupuis E, Bihel F (2015) Design and validation of a homogeneous time-resolved fluorescence cell-based assay targeting the ligand-gated ion channel 5-HT3A. Anal Biochem 484:105–112PubMedGoogle Scholar
  37. 37.
    Hounsou C, Margathe JF, Oueslati N, Belhocine A, Dupuis E, Thomas C, Mann A, Ilien B, Rognan D, Trinquet E, Hibert M, Pin JP, Bonnet D, Durroux T (2015) Time-resolved FRET binding assay to investigate hetero-oligomer binding properties: proof of concept with dopamine D1/D3 heterodimer. ACS Chem Biol 10:466–474PubMedGoogle Scholar
  38. 38.
    Loison S, Cottet M, Orcel H, Adihou H, Rahmeh R, Lamarque L, Trinquet E, Kellenberger E, Hibert M, Durroux T, Mouillac B, Bonnet D (2012) Selective fluorescent nonpeptidic antagonists for vasopressin V(2) GPCR: application to ligand screening and oligomerization assays. J Med Chem 55:8588–8602PubMedGoogle Scholar
  39. 39.
    Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253PubMedGoogle Scholar
  40. 40.
    Rahmeh R, Damian M, Cottet M, Orcel H, Mendre C, Durroux T, Sharma KS, Durand G, Pucci B, Trinquet E, Zwier JM, Deupi X, Bron P, Baneres JL, Mouillac B, Granier S (2012) Structural insights into biased G protein-coupled receptor signaling revealed by fluorescence spectroscopy. Proc Natl Acad Sci U S A 109:6733–6738PubMedPubMedCentralGoogle Scholar
  41. 41.
    Zurn A, Klenk C, Zabel U, Reiner S, Lohse MJ, Hoffmann C (2010) Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores. Bioconjug Chem 21:853–859PubMedGoogle Scholar
  42. 42.
    Reiner S, Ambrosio M, Hoffmann C, Lohse MJ (2010) Differential signaling of the endogenous agonists at the beta2-adrenergic receptor. J Biol Chem 285:36188–36198PubMedPubMedCentralGoogle Scholar
  43. 43.
    Juillerat A, Gronemeyer T, Keppler A, Gendreizig S, Pick H, Vogel H, Johnsson K (2003) Directed evolution of O6-alkylguanine-DNA alkyltransferase for efficient labeling of fusion proteins with small molecules in vivo. Chem Biol 10:313–317PubMedGoogle Scholar
  44. 44.
    Juillerat A, Heinis C, Sielaff I, Barnikow J, Jaccard H, Kunz B, Terskikh A, Johnsson K (2005) Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells. Chembiochem 6:1263–1269PubMedGoogle Scholar
  45. 45.
    Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21:86–89PubMedGoogle Scholar
  46. 46.
    Gronemeyer T, Chidley C, Juillerat A, Heinis C, Johnsson K (2006) Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling. Protein Eng Des Sel 19:309–316PubMedGoogle Scholar
  47. 47.
    Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101:9955–9959PubMedPubMedCentralGoogle Scholar
  48. 48.
    Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prezeau L, Bettler B, Durroux T, Trinquet E, Pin JP (2011) The oligomeric state sets GABA(B) receptor signalling efficacy. EMBO J 30:2336–2349PubMedPubMedCentralGoogle Scholar
  49. 49.
    Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567PubMedPubMedCentralGoogle Scholar
  50. 50.
    Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329:253–262PubMedGoogle Scholar
  51. 51.
    Delbianco M, Sadovnikova V, Bourrier E, Mathis G, Lamarque L, Zwier JM, Parker D (2014) Bright, highly water-soluble triazacyclononane europium complexes to detect ligand binding with time-resolved FRET microscopy. Angew Chem Int Ed Engl 53:10718–10722PubMedGoogle Scholar
  52. 52.
    Gautier A, Juillerat A, Heinis C, Correa Jr IR, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136PubMedGoogle Scholar
  53. 53.
    Zhang Y, So MK, Loening AM, Yao H, Gambhir SS, Rao J (2006) HaloTag protein-mediated site-specific conjugation of bioluminescent proteins to quantum dots. Angew Chem Int Ed Engl 45:4936–4940PubMedGoogle Scholar
  54. 54.
    Cottet M, Faklaris O, Falco A, Trinquet E, Pin JP, Mouillac B, Durroux T (2013) Fluorescent ligands to investigate GPCR binding properties and oligomerization. Biochem Soc Trans 41:148–153PubMedGoogle Scholar
  55. 55.
    Lohse MJ, Nuber S, Hoffmann C (2012) Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling. Pharmacol Rev 64:299–336PubMedGoogle Scholar
  56. 56.
    Milligan G (2013) The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 84:158–169PubMedPubMedCentralGoogle Scholar
  57. 57.
    Vischer HF, Castro M, Pin JP (2015) G protein-coupled receptor multimers: a question still open despite the use of novel approaches. Mol Pharmacol 88:561–571PubMedGoogle Scholar
  58. 58.
    Handl HL, Vagner J, Yamamura HI, Hruby VJ, Gillies RJ (2005) Development of a lanthanide-based assay for detection of receptor-ligand interactions at the delta-opioid receptor. Anal Biochem 343:299–307PubMedGoogle Scholar
  59. 59.
    Albizu L, Teppaz G, Seyer R, Bazin H, Ansanay H, Manning M, Mouillac B, Durroux T (2007) Toward efficient drug screening by homogeneous assays based on the development of new fluorescent vasopressin and oxytocin receptor ligands. J Med Chem 50:4976–4985PubMedGoogle Scholar
  60. 60.
    Emami-Nemini A, Roux T, Leblay M, Bourrier E, Lamarque L, Trinquet E, Lohse MJ (2013) Time-resolved fluorescence ligand binding for G protein-coupled receptors. Nat Protoc 8:1307–1320PubMedGoogle Scholar
  61. 61.
    Leyris JP, Roux T, Trinquet E, Verdie P, Fehrentz JA, Oueslati N, Douzon S, Bourrier E, Lamarque L, Gagne D, Galleyrand JC, M'Kadmi C, Martinez J, Mary S, Baneres JL, Marie J (2011) Homogeneous time-resolved fluorescence-based assay to screen for ligands targeting the growth hormone secretagogue receptor type 1a. Anal Biochem 408:253–262PubMedGoogle Scholar
  62. 62.
    Oueslati N, Hounsou C, Belhocine A, Rodriguez T, Dupuis E, Zwier JM, Trinquet E, Pin JP, Durroux T (2015) Time-resolved FRET strategy to screen GPCR ligand library. Methods Mol Biol 1272:23–36PubMedGoogle Scholar
  63. 63.
    Klein Herenbrink C, Sykes DA, Donthamsetti P, Canals M, Coudrat T, Shonberg J, Scammells PJ, Capuano B, Sexton PM, Charlton SJ, Javitch JA, Christopoulos A, Lane JR (2016) The role of kinetic context in apparent biased agonism at GPCRs. Nat Commun 7:10842PubMedPubMedCentralGoogle Scholar
  64. 64.
    Stoddart LA, Johnstone EK, Wheal AJ, Goulding J, Robers MB, Machleidt T, Wood KV, Hill SJ, Pfleger KD (2015) Application of BRET to monitor ligand binding to GPCRs. Nat Methods 12:661–663PubMedPubMedCentralGoogle Scholar
  65. 65.
    Stoddart LA, White CW, Nguyen K, Hill SJ, Pfleger KD (2016) Fluorescence- and bioluminescence-based approaches to study GPCR ligand binding. Br J Pharmacol 173(20):3028–3037PubMedGoogle Scholar
  66. 66.
    Doumazane E, Scholler P, Fabre L, Zwier JM, Trinquet E, Pin JP, Rondard P (2013) Illuminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proc Natl Acad Sci U S A 110:E1416–E1425PubMedPubMedCentralGoogle Scholar
  67. 67.
    Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zurn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748PubMedGoogle Scholar
  68. 68.
    Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25:66–77PubMedGoogle Scholar
  69. 69.
    Faklaris O, Cottet M, Falco A, Villier B, Laget M, Zwier JM, Trinquet E, Mouillac B, Pin JP, Durroux T (2015) Multicolor time-resolved Forster resonance energy transfer microscopy reveals the impact of GPCR oligomerization on internalization processes. FASEB J 29:2235–2246PubMedGoogle Scholar
  70. 70.
    Pradhan AA, Perroy J, Walwyn WM, Smith ML, Vicente-Sanchez A, Segura L, Bana A, Kieffer BL, Evans CJ (2016) Agonist-specific recruitment of arrestin isoforms differentially modify delta opioid receptor function. J Neurosci 36:3541–3551PubMedPubMedCentralGoogle Scholar
  71. 71.
    Ayoub MA, Trinquet E, Pfleger KD, Pin JP (2010) Differential association modes of the thrombin receptor PAR1 with Galphai1, Galpha12, and beta-arrestin 1. FASEB J 24:3522–3535PubMedGoogle Scholar
  72. 72.
    Jiang LI, Collins J, Davis R, Lin KM, DeCamp D, Roach T, Hsueh R, Rebres RA, Ross EM, Taussig R, Fraser I, Sternweis PC (2007) Use of a cAMP BRET sensor to characterize a novel regulation of cAMP by the sphingosine 1-phosphate/G13 pathway. J Biol Chem 282:10576–10584PubMedPubMedCentralGoogle Scholar
  73. 73.
    Xu C, Peter M, Bouquier N, Ollendorff V, Villamil I, Liu J, Fagni L, Perroy J (2013) REV, a BRET-based sensor of ERK activity. Front Endocrinol (Lausanne) 4:95Google Scholar
  74. 74.
    Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD, Lohse MJ, Hoffmann C, Tobin AB, Milligan G (2011) Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol Pharmacol 80:1033–1046PubMedPubMedCentralGoogle Scholar
  75. 75.
    Levoye A, Zwier JM, Jaracz-Ros A, Klipfel L, Cottet M, Maurel D, Bdioui S, Balabanian K, Prezeau L, Trinquet E, Durroux T, Bachelerie F (2015) A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate. Front Endocrinol (Lausanne) 6:167Google Scholar
  76. 76.
    Roed SN, Nohr AC, Wismann P, Iversen H, Brauner-Osborne H, Knudsen SM, Waldhoer M (2015) Functional consequences of glucagon-like peptide-1 receptor cross-talk and trafficking. J Biol Chem 290:1233–1243PubMedGoogle Scholar
  77. 77.
    Roed SN, Wismann P, Underwood CR, Kulahin N, Iversen H, Cappelen KA, Schaffer L, Lehtonen J, Hecksher-Soerensen J, Secher A, Mathiesen JM, Brauner-Osborne H, Whistler JL, Knudsen SM, Waldhoer M (2014) Real-time trafficking and signaling of the glucagon-like peptide-1 receptor. Mol Cell Endocrinol 382:938–949PubMedGoogle Scholar
  78. 78.
    Coulon V, Audet M, Homburger V, Bockaert J, Fagni L, Bouvier M, Perroy J (2008) Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys J 94:1001–1009PubMedPubMedCentralGoogle Scholar
  79. 79.
    Perroy J (2010) Subcellular dynamic imaging of protein-protein interactions in live cells by bioluminescence resonance energy transfer. Methods Mol Biol 591:325–333PubMedGoogle Scholar
  80. 80.
    England CG, Ehlerding EB, Cai W (2016) Imaging the biodistribution and performance of transplanted stem cells with PET. J Nucl Med 57(9):1331–1332PubMedPubMedCentralGoogle Scholar
  81. 81.
    Karlsson EA, Meliopoulos VA, Savage C, Livingston B, Mehle A, Schultz-Cherry S (2015) Visualizing real-time influenza virus infection, transmission and protection in ferrets. Nat Commun 6:6378PubMedPubMedCentralGoogle Scholar
  82. 82.
    Germain-Genevois C, Garandeau O, Couillaud F (2016) Detection of brain tumors and systemic metastases using NanoLuc and Fluc for dual reporter imaging. Mol Imaging Biol 18:62–69PubMedGoogle Scholar
  83. 83.
    Boute N, Lowe P, Berger S, Malissard M, Robert A, Tesar M (2016) NanoLuc luciferase – a multifunctional tool for high throughput antibody screening. Front Pharmacol 7:27PubMedPubMedCentralGoogle Scholar
  84. 84.
    Robertson DN, Sleno R, Nagi K, Petrin D, Hebert TE, Pineyro G (2016) Design and construction of conformational biosensors to monitor ion channel activation: a prototype FlAsH/BRET-approach to Kir3 channels. Methods 92:19–35PubMedGoogle Scholar
  85. 85.
    Shigeto H, Ikeda T, Kuroda A, Funabashi H (2015) A BRET-based homogeneous insulin assay using interacting domains in the primary binding site of the insulin receptor. Anal Chem 87:2764–2770PubMedGoogle Scholar
  86. 86.
    Compan V, Baroja-Mazo A, Bragg L, Verkhratsky A, Perroy J, Pelegrin P (2012) A genetically encoded IL-1beta bioluminescence resonance energy transfer sensor to monitor inflammasome activity. J Immunol 189:2131–2137PubMedPubMedCentralGoogle Scholar
  87. 87.
    Moutin E, Raynaud F, Roger J, Pellegrino E, Homburger V, Bertaso F, Ollendorff V, Bockaert J, Fagni L, Perroy J (2012) Dynamic remodeling of scaffold interactions in dendritic spines controls synaptic excitability. J Cell Biol 198:251–263PubMedPubMedCentralGoogle Scholar
  88. 88.
    Moutin E, Raynaud F, Fagni L, Perroy J (2012) GKAP-DLC2 interaction organizes the postsynaptic scaffold complex to enhance synaptic NMDA receptor activity. J Cell Sci 125:2030–2040PubMedGoogle Scholar
  89. 89.
    Mulero M, Perroy J, Federici C, Cabello G, Ollendorff V (2013) Analysis of RXR/THR and RXR/PPARG2 heterodimerization by bioluminescence resonance energy transfer (BRET). PLoS One 8:e84569PubMedPubMedCentralGoogle Scholar
  90. 90.
    Xu X, Soutto M, Xie Q, Servick S, Subramanian C, von Arnim AG, Johnson CH (2007) Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc Natl Acad Sci U S A 104:10264–10269PubMedPubMedCentralGoogle Scholar
  91. 91.
    Geissler D, Linden S, Liermann K, Wegner KD, Charbonniere LJ, Hildebrandt N (2014) Lanthanides and quantum dots as Forster resonance energy transfer agents for diagnostics and cellular imaging. Inorg Chem 53(4):1824–1838PubMedGoogle Scholar
  92. 92.
    Rajapakse HE, Gahlaut N, Mohandessi S, Yu D, Turner JR, Miller LW (2010) Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Proc Natl Acad Sci U S A 107:13582–13587PubMedPubMedCentralGoogle Scholar
  93. 93.
    Rajapakse HE, Reddy DR, Mohandessi S, Butlin NG, Miller LW (2009) Luminescent terbium protein labels for time-resolved microscopy and screening. Angew Chem Int Ed Engl 48:4990–4992PubMedPubMedCentralGoogle Scholar
  94. 94.
    Rajapakse HE, Miller LW (2012) Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Methods Enzymol 505:329–345PubMedGoogle Scholar
  95. 95.
    Geissler D, Charbonniere LJ, Ziessel RF, Butlin NG, Lohmannsroben HG, Hildebrandt N (2010) Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angew Chem Int Ed Engl 49:1396–1401PubMedGoogle Scholar
  96. 96.
    Comps-Agrar L, Kniazeff J, Brock C, Trinquet E, Pin JP (2012) Stability of GABAB receptor oligomers revealed by dual TR-FRET and drug-induced cell surface targeting. FASEB J 26:3430–3439PubMedGoogle Scholar
  97. 97.
    George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O'Dowd BF (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 275:26128–26135PubMedGoogle Scholar
  98. 98.
    Lin H, Trejo J (2013) Transactivation of the PAR1-PAR2 heterodimer by thrombin elicits beta-arrestin-mediated endosomal signaling. J Biol Chem 288:11203–11215PubMedPubMedCentralGoogle Scholar
  99. 99.
    Rocheville M, Lange DC, Kumar U, Sasi R, Patel RC, Patel YC (2000) Subtypes of the somatostatin receptor assemble as functional homo- and heterodimers. J Biol Chem 275:7862–7869PubMedGoogle Scholar
  100. 100.
    Sartania N, Appelbe S, Pediani JD, Milligan G (2007) Agonist occupancy of a single monomeric element is sufficient to cause internalization of the dimeric beta2-adrenoceptor. Cell Signal 19:1928–1938PubMedGoogle Scholar
  101. 101.
    Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE (2006) Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem 281:27109–27116PubMedGoogle Scholar
  102. 102.
    Zou X, Rajendran M, Magda D, Miller LW (2015) Cytoplasmic delivery and selective, multicomponent labeling with oligoarginine-linked protein tags. Bioconjug Chem 26:460–465PubMedPubMedCentralGoogle Scholar
  103. 103.
    Pontier SM, Percherancier Y, Galandrin S, Breit A, Gales C, Bouvier M (2008) Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction. J Biol Chem 283:24659–24672PubMedPubMedCentralGoogle Scholar
  104. 104.
    Kniazeff J, Prezeau L, Rondard P, Pin JP, Goudet C (2011) Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther 130:9–25PubMedGoogle Scholar
  105. 105.
    Maurice P, Kamal M, Jockers R (2011) Asymmetry of GPCR oligomers supports their functional relevance. Trends Pharmacol Sci 32:514–520PubMedGoogle Scholar
  106. 106.
    Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469:241–244PubMedPubMedCentralGoogle Scholar
  107. 107.
    Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454:486–491PubMedPubMedCentralGoogle Scholar
  108. 108.
    Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6:225–230PubMedGoogle Scholar
  109. 109.
    Rybin VO, Xu X, Lisanti MP, Steinberg SF (2000) Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 275:41447–41457PubMedGoogle Scholar
  110. 110.
    Ilien B, Glasser N, Clamme JP, Didier P, Piemont E, Chinnappan R, Daval SB, Galzi JL, Mely Y (2009) Pirenzepine promotes the dimerization of muscarinic M1 receptors through a three-step binding process. J Biol Chem 284:19533–19543PubMedPubMedCentralGoogle Scholar
  111. 111.
    Goin JC, Nathanson NM (2006) Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J Biol Chem 281:5416–5425PubMedGoogle Scholar
  112. 112.
    Zeng FY, Wess J (1999) Identification and molecular characterization of m3 muscarinic receptor dimers. J Biol Chem 274:19487–19497PubMedGoogle Scholar
  113. 113.
    Grant M, Collier B, Kumar U (2004) Agonist-dependent dissociation of human somatostatin receptor 2 dimers: a role in receptor trafficking. J Biol Chem 279:36179–36183PubMedGoogle Scholar
  114. 114.
    Briddon SJ, Middleton RJ, Cordeaux Y, Flavin FM, Weinstein JA, George MW, Kellam B, Hill SJ (2004) Quantitative analysis of the formation and diffusion of A1-adenosine receptor-antagonist complexes in single living cells. Proc Natl Acad Sci U S A 101:4673–4678PubMedPubMedCentralGoogle Scholar
  115. 115.
    Cordeaux Y, Briddon SJ, Alexander SP, Kellam B, Hill SJ (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22:850–860PubMedGoogle Scholar
  116. 116.
    Corriden R, Kilpatrick LE, Kellam B, Briddon SJ, Hill SJ (2014) Kinetic analysis of antagonist-occupied adenosine-A3 receptors within membrane microdomains of individual cells provides evidence of receptor dimerization and allosterism. FASEB J 28:4211–4222PubMedPubMedCentralGoogle Scholar
  117. 117.
    Briddon SJ, Gandia J, Amaral OB, Ferre S, Lluis C, Franco R, Hill SJ, Ciruela F (2008) Plasma membrane diffusion of G protein-coupled receptor oligomers. Biochim Biophys Acta 1783:2262–2268PubMedGoogle Scholar
  118. 118.
    Patel RC, Kumar U, Lamb DC, Eid JS, Rocheville M, Grant M, Rani A, Hazlett T, Patel SC, Gratton E, Patel YC (2002) Ligand binding to somatostatin receptors induces receptor-specific oligomer formation in live cells. Proc Natl Acad Sci U S A 99:3294–3299PubMedPubMedCentralGoogle Scholar
  119. 119.
    Comar WD, Schubert SM, Jastrzebska B, Palczewski K, Smith AW (2014) Time-resolved fluorescence spectroscopy measures clustering and mobility of a G protein-coupled receptor opsin in live cell membranes. J Am Chem Soc 136:8342–8349PubMedPubMedCentralGoogle Scholar
  120. 120.
    Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480PubMedPubMedCentralGoogle Scholar
  121. 121.
    Moutin E, Compan V, Raynaud F, Clerte C, Bouquier N, Labesse G, Ferguson ML, Fagni L, Royer CA, Perroy J (2014) The stoichiometry of scaffold complexes in living neurons – DLC2 functions as a dimerization engine for GKAP. J Cell Sci 127:3451–3462PubMedGoogle Scholar
  122. 122.
    Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci U S A 107:2693–2698PubMedPubMedCentralGoogle Scholar
  123. 123.
    Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E (2014) Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun 5:5206PubMedGoogle Scholar
  124. 124.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedGoogle Scholar
  125. 125.
    Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8:345–354PubMedPubMedCentralGoogle Scholar
  126. 126.
    Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. The AAAI Press, Menlo Park, CAGoogle Scholar
  127. 127.
    Scarselli M, Annibale P, Gerace C, Radenovic A (2013) Enlightening G-protein-coupled receptors on the plasma membrane using super-resolution photoactivated localization microscopy. Biochem Soc Trans 41:191–196PubMedGoogle Scholar
  128. 128.
    Scarselli M, Annibale P, Radenovic A (2012) Cell type-specific beta2-adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. J Biol Chem 287:16768–16780PubMedPubMedCentralGoogle Scholar
  129. 129.
    Patowary S, Alvarez-Curto E, Xu TR, Holz JD, Oliver JA, Milligan G, Raicu V (2013) The muscarinic M3 acetylcholine receptor exists as two differently sized complexes at the plasma membrane. Biochem J 452:303–312PubMedGoogle Scholar
  130. 130.
    Rondard P, Pin JP (2015) Dynamics and modulation of metabotropic glutamate receptors. Curr Opin Pharmacol 20:95–101PubMedGoogle Scholar
  131. 131.
    Sakon JJ, Weninger KR (2010) Detecting the conformation of individual proteins in live cells. Nat Methods 7:203–205PubMedPubMedCentralGoogle Scholar
  132. 132.
    Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, Rasmussen SG, Sunahara RK, El-Samad H, Huang B, von Zastrow M (2013) Conformational biosensors reveal GPCR signalling from endosomes. Nature 495:534–538PubMedGoogle Scholar
  133. 133.
    Jonas KC, Fanelli F, Huhtaniemi IT, Hanyaloglu AC (2015) Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J Biol Chem 290:3875–3892PubMedGoogle Scholar
  134. 134.
    Benke A, Olivier N, Gunzenhauser J, Manley S (2012) Multicolor single molecule tracking of stochastically active synthetic dyes. Nano Lett 12:2619–2624PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ImagoSeine core facility – Institut Jacques Monod – Université Paris Diderot/CNRS – UMR 7592Paris Cedex 13France
  2. 2.IGF, CNRS, INSERM, Université de MontpellierMontpellierFrance
  3. 3.Université Montpellier 1 and 2MontpellierFrance
  4. 4.Cisbio BioassaysCodoletFrance

Personalised recommendations