Advertisement

Cancer II pp 435-467 | Cite as

Small Molecule Inhibitors of ALK

  • John M. Hatcher
  • Nathanael S. GrayEmail author
Part of the Topics in Medicinal Chemistry book series (TMC, volume 28)

Abstract

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that has attracted a great deal of attention due to its oncogenic potential and essential role in the pathogenesis of a wide variety of human cancers, such as anaplastic large cell lymphomas (ALCLs), non-small cell lung cancer (NSCLC), breast cancer, colorectal cancer, neuroblastoma, and ovarian cancer. Despite the remarkable clinical success of crizotinib (Xalkori), the first ALK inhibitor approved in 2011 for the treatment of NSCLC, the emergence of resistance mutations frequently causes relapse in patients. As a result, a variety of second and third generation ALK inhibitors have been developed to overcome these mutations. This chapter presents an overview of the hit-to-drug evolution strategies as well as the biological activities of several second and third generation ALK inhibitors.

Keywords

ALK inhibitor Anaplastic large cell lymphomas (ALCLs) Anaplastic lymphoma kinase (ALK) Non-small cell lung cancer (NSCLC) 

Notes

Acknowledgment

We wish to thank Chelsea Powell for critical reading and editing of this chapter.

References

  1. 1.
    Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC (1995) Large-cell anaplastic lymphoma-specific translocation (T2-5:P23-Q35) in Hodgkins-disease – indication of a common pathogenesis. Lancet 345(8942):87–90PubMedCrossRefGoogle Scholar
  2. 2.
    Roskoski R (2013) Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 68(1):68–94PubMedCrossRefGoogle Scholar
  3. 3.
    Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase-activity. Cell 61(2):203–212PubMedCrossRefGoogle Scholar
  4. 4.
    Pillay K, Govender D, Chetty R (2002) ALK protein expression in rhabdomyosarcomas. Histopathology 41(5):461–467PubMedCrossRefGoogle Scholar
  5. 5.
    Cessna MH, Zhou H, Sanger WG, Perkins SL, Tripp S, Pickering D, Daines C, Coffin CM (2002) Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 15(9):931–938PubMedCrossRefGoogle Scholar
  6. 6.
    Chen YY, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang LL, Soda M, Kikuchi A, Igarashi T, Nakagawara A, Hayashi Y, Mano H, Ogawa S (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–U56PubMedCrossRefGoogle Scholar
  7. 7.
    Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T, Takamochi K, Suzuki K, Tanahashi M, Niwa H, Ogawa H, Sugimura H (2008) EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 61(2):163–169PubMedCrossRefGoogle Scholar
  8. 8.
    Lebeau MM, Bitter MA, Larson RA, Doane LA, Ellis ED, Franklin WA, Rubin CM, Kadin ME, Vardiman JW (1989) The t(2-5)(p23-q35) – a recurring chromosomal abnormality in ki-1-positive anaplastic large cell lymphoma. Leukemia 3(12):866–870Google Scholar
  9. 9.
    Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, Yamamoto T (1996) Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci U S A 93(9):4181–4186PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nieborowska-Skorska M, Slupianek A, Xue LQ, Zhang Q, Raghunath PN, Hoser G, Wasik MA, Morris SW, Skorski T (2001) Role of signal transducer and activator of transcription 5 in nucleophosmin/anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res 61(17):6517–6523PubMedGoogle Scholar
  11. 11.
    Chiarle R, Simmons WJ, Cai HY, Dhall G, Zamo A, Raz R, Karras JG, Levy DE, Inghirami G (2005) Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11(6):623–629PubMedCrossRefGoogle Scholar
  12. 12.
    Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, Levy DE, Inghirami G (2002) Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21(7):1038–1047PubMedCrossRefGoogle Scholar
  13. 13.
    Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara SI, Watanabe H, Kurashina K, Hatanaka H, Bando M, Ohno S, Ishikawa Y, Aburatani H, Niki T, Sohara Y, Sugiyama Y, Mano H (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–5U3PubMedCrossRefGoogle Scholar
  14. 14.
    Mano H (2008) Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci 99(12):2349–2355PubMedCrossRefGoogle Scholar
  15. 15.
    Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, Satoh Y, Okumura S, Nakagawa K, Soda M, Choi YL, Niki T, Mano H, Ishikawa Y (2008) EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 3(1):13–17PubMedCrossRefGoogle Scholar
  16. 16.
    Amin HM, Lai R (2007) Pathobiology of ALK(+) anaplastic large-cell lymphoma. Blood 110(7):2259–2267PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23PubMedCrossRefGoogle Scholar
  18. 18.
    Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 225(1):1–26PubMedCrossRefGoogle Scholar
  19. 19.
    Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, Jia L, Meng J, Funk L, Botrous I, McTigue M, Grodsky N, Ryan K, Padrique E, Alton G, Timofeevski S, Yamazaki S, Li QH, Zou HL, Christensen J, Mroczkowski B, Bender S, Kania RS, Edwards MP (2011) Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 54(18):6342–6363PubMedCrossRefGoogle Scholar
  20. 20.
    Leeson PD, Springthorpe B (2007) The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 6(11):881–890PubMedCrossRefGoogle Scholar
  21. 21.
    Ryckmans T, Edwards MP, Horne VA, Correia AM, Owen DR, Thompson LR, Tran I, Tutt MF, Young T (2009) Rapid assessment of a novel series of selective CB2 agonists using parallel synthesis protocols: a lipophilic efficiency (LipE) analysis. Bioorg Med Chem Lett 19(15):4406–4409PubMedCrossRefGoogle Scholar
  22. 22.
    Zou HY, Li QH, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B, Christensen JG (2007) An orally available small-molecule inhibitor of c-met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67(9):4408–4417PubMedCrossRefGoogle Scholar
  23. 23.
    Christensen JG, Zou HY, Arango ME, Li Q, Lee JH, McDonnell SR, Yamazaki S, Alton GR, Mroczkowski B, Los G (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6(12):3314–3322PubMedCrossRefGoogle Scholar
  24. 24.
    Xu HP, O'Gorman M, Boutros T, Brega N, Kantaridis C, Tan WW, Bello A (2015) Evaluation of crizotinib absolute bioavailability, the bioequivalence of three oral formulations, and the effect of food on crizotinib pharmacokinetics in healthy subjects. J Clin Pharmacol 55(1):104–113PubMedCrossRefGoogle Scholar
  25. 25.
    Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, Ou SHI, Dezube BJ, Janne PA, Costa DB, Varella-Garcia M, Kim WH, Lynch TJ, Fidias P, Stubbs H, Engelman JA, Sequist LV, Tan WW, Gandhi L, Mino-Kenudson M, Wei GC, Shreeve SM, Ratain MJ, Settleman J, Christensen JG, Haber DA, Wilner K, Salgia R, Shapiro GI, Clark JW, Iafrate AJ (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363(18):1693–1703PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Shaw AT, Yeap BY, Solomon BJ, Riely GJ, Gainor J, Engelman JA, Shapiro GI, Costa DB, Ou SHI, Butaney M, Salgia R, Maki RG, Varella-Garcia M, Doebele RC, Bang YJ, Kulig K, Selaru P, Tang YY, Wilner KD, Kwak EL, Clark JW, Iafrate AJ, Camidge DR (2011) Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol 12(11):1004–1012PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, De Pas T, Besse B, Solomon BJ, Blackhall F, Wu YL, Thomas M, O'Byrne KJ, Moro-Sibilot D, Camidge DR, Mok T, Hirsh V, Riely GJ, Iyer S, Tassell V, Polli A, Wilner KD, Janne PA (2013) Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 368(25):2385–2394PubMedCrossRefGoogle Scholar
  28. 28.
    Solomon BJ, Mok T, Kim DW, Wu YL, Nakagawa K, Mekhail T, Felip E, Cappuzzo F, Paolini J, Usari T, Iyer S, Reisman A, Wilner KD, Tursi J, Blackhall F, Boyer M, Ganju V, Hughes B, Pavlakis N, Solomon B, Varma S, Berghmans T, Canon JL, Demedts I, Janssens A, Louis R, Pieters T, Schallier D, Surmont V, da Silva CM, Ferreira CGM, Hirsh V, Joy A, Laberge F, Morzycki W, Wierzbicki R, Han B, Liu X, Qin S, Shi Y, Wang Y, Wu G, Wu YL, Zhou C, Ahvonen J, Barlesi F, Cadranel J, Dansin E, Fayette J, Morere JF, Moro-Sibilot D, Pujol JL, Quoix E, Zalcman G, Frickhofen N, Schneider CP, Wehler T, Mok T, So P, Cuffe S, Bearz A, Boni C, Cappuzzo F, Cognetti F, De Braud F, De Pas T, Galetta D, Migliorino M, Rocco D, Scagliotti G, Tagliaferri P, Tiseo M, Aoe K, Hida T, Kato T, Kozuki T, Nakagawa K, Niho S, Nishio M, Nokihara H, Satouchi M, Seto T, Takahashi T, Ahn JS, Kim DW, Kim SW, Berchem G, Rodriguez OA, Biesma B, Dingemans AM, Smit E, Helland A, Barata F, Gorbunova V, Manikhas G, Orlov S, Leong S, Lim HL, Soo R, Tan EH, Nosworthy A, Villena MC, Felip E, Lopez PG, Casado DI, Banaclocha NM, Aix SP, Aransay NR, Abreu DR, Perez JT, Gautschi O, Pless M, Zippelius A, Chang GC, Tsai YH, Shparyk Y, Blackhall F, Steele N, Armenio V, Dragnev K, Dugan M, Gadgeel S, Gerber D, Graziano S, Gurubhagavatula S, Horn L, Jalal S, Lauer R, Mehra R, Mekhail T, Mirshahidi H, Pakkala S, Polikoff J, Raftopoulos H, Saleh M, Salgia R, Waqar S, Investigators P (2014) First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N Engl J Med 371(23):2167–2177PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Friboulet L, Li NX, Katayama R, Lee CC, Gainor JF, Crystal AS, Michellys PY, Awad MM, Yanagitani N, Kim S, Pferdekamper AC, Li J, Kasibhatla S, Sun F, Sun XY, Hua S, McNamara P, Mahmood S, Lockerman EL, Fujita N, Nishio M, Harris JL, Shaw AT, Engelman JA (2014) The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer Discov 4(6):662–673PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Awad MM, Shaw AT (2014) ALK inhibitors in non–small cell lung cancer: crizotinib and beyond. Clin Adv Hematol Oncol: H&O 12(7):429–439Google Scholar
  31. 31.
    Costa DB, Shaw AT, Ou SHI, Solomon BJ, Riely GJ, Ahn MJ, Zhou CC, Shreeve M, Selaru P, Polli A, Schnell P, Wilner KD, Wiltshire R, Camidge DR, Crino L (2015) Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol 33(17):1881–1U41PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, Kondo KL, Linderman DJ, Heasley LE, Franklin WA, Varella-Garcia M, Camidge DR (2012) Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 18(5):1472–1482PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gainor JF, Varghese AM, Ou SHI, Kabraji S, Awad MM, Katayama R, Pawlak A, Mino-Kenudson M, Yeap BY, Riely GJ, Iafrate AJ, Arcila ME, Ladanyi M, Engelman JA, Dias-Santagata D, Shaw AT (2013) ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin Cancer Res 19(15):4273–4281PubMedCrossRefGoogle Scholar
  34. 34.
    Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, Jessop NA, Wain JC, Yeo AT, Benes C, Drew L, Saeh JC, Crosby K, Sequist LV, Iafrate AJ, Engelman JA (2012) Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med 4(120):12CrossRefGoogle Scholar
  35. 35.
    Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, Yatabe Y, Takeuchi K, Hamada T, Haruta H, Ishikawa Y, Kimura H, Mitsudomi T, Tanio Y, Mano H, ALK Lung Cancer Study Group (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363(18):1734–1739PubMedCrossRefGoogle Scholar
  36. 36.
    Lovly CM, Pao W (2012) Escaping ALK inhibition: mechanisms of and strategies to overcome resistance. Sci Transl Med 4(120):5CrossRefGoogle Scholar
  37. 37.
    Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, Lathan C, Marcoux JP, Du JY, Okuda K, Capelletti M, Shimamura T, Ercan D, Stumpfova M, Xiao Y, Weremowicz S, Butaney M, Heon S, Wilner K, Christensen JG, Eck MJ, Wong KK, Lindeman N, Gray NS, Rodig SJ, Janne PA (2011) A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 71(18):6051–6060PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sasaki T, Okuda K, Zheng W, Butrynski J, Capelletti M, Wang LP, Gray NS, Wilner K, Christensen JG, Demetri G, Shapiro GI, Rodig SJ, Eck MJ, Janne PA (2010) The neuroblastoma-associated F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers. Cancer Res 70(24):10038–10043PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Galkin AV, Melnick JS, Kim S, Hood TL, Li NX, Li LT, Xia G, Steensma R, Chopiuk G, Jiang JQ, Wan YQ, Ding P, Liu Y, Sun FX, Schultz PG, Gray NS, Warmuth M (2007) Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A 104(1):270–275PubMedCrossRefGoogle Scholar
  40. 40.
    Marsilje TH, Pei W, Chen B, Lu WS, Uno T, Jin YH, Jiang T, Kim S, Li NX, Warmuth M, Sarkisova Y, Sun F, Steffy A, Pferdekamper AC, Li AG, Joseph SB, Kim Y, Liu B, Tuntland T, Cui XM, Gray NS, Steensma R, Wan YQ, Jiang JQ, Chopiuk G, Li J, Gordon WP, Richmond W, Johnson K, Chang J, Groessl T, He YQ, Phimister A, Aycinena A, Lee CC, Bursulaya B, Karanewsky DS, Seidel HM, Harris JL, Michellys PY (2013) Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isop ropylsulfonyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem 56(14):5675–5690PubMedCrossRefGoogle Scholar
  41. 41.
    Hatcher JM, Bahcall M, Choi HG, Gao Y, Sim T, George R, Janne PA, Gray NS (2015) Discovery of inhibitors that overcome the G1202R anaplastic lymphoma kinase resistance mutation. J Med Chem 58(23):9296–9308PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kinoshita K, Ono Y, Emura T, Asoh K, Furuichi N, Ito T, Kawada H, Tanaka S, Morikami K, Tsukaguchi T, Sakamoto H, Tsukuda T, Oikawa N (2011) Discovery of novel tetracyclic compounds as anaplastic lymphoma kinase inhibitors. Bioorg Med Chem Lett 21(12):3788–3793PubMedCrossRefGoogle Scholar
  43. 43.
    Kinoshita K, Kobayashi T, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, Ohwada J, Hattori K, Miyagi T, Hong WS, Park MJ, Takanashi K, Tsukaguchi T, Sakamoto H, Tsukuda T, Oikawa N (2011) 9-Substituted 6,6-dimethyl-11-oxo-6,11-dihydro-5H-benzo b carbazoles as highly selective and potent anaplastic lymphoma kinase inhibitors. J Med Chem 54(18):6286–6294PubMedCrossRefGoogle Scholar
  44. 44.
    Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, Oikawa N, Tsukuda T, Ishii N, Aoki Y (2011) CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 19(5):679–690PubMedCrossRefGoogle Scholar
  45. 45.
    Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, Ohwada J, Miyagi T, Kobayashi T, Takanashi K, Tsukaguchi T, Sakamoto H, Tsukuda T, Oikawa N (2012) Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem 20(3):1271–1280PubMedCrossRefGoogle Scholar
  46. 46.
    Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, Hida T, Yamamoto N, Yoshioka H, Harada M, Ohe Y, Nogami N, Takeuchi K, Shimada T, Tanaka T, Tamura T (2013) CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1-2 study. Lancet Oncol 14(7):590–598PubMedCrossRefGoogle Scholar
  47. 47.
    Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, Morcos PN, Lee RM, Garcia L, Yu L, Boisserie F, Di Laurenzio L, Golding S, Sato J, Yokoyama S, Tanaka T, Ou SHI (2014) Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 15(10):1119–1128PubMedCrossRefGoogle Scholar
  48. 48.
    Ou SHI, Azada M, Hsiang DJ, Herman JM, Kain TS, Siwak-Tapp C, Casey C, He J, Ali SM, Klempner SJ, Miller VA (2014) Next-generation sequencing reveals a novel NSCLC ALK F1174V mutation and confirms ALK G1202R mutation confers high-level resistance to alectinib (CH5424802/RO5424802) in ALK-rearranged NSCLC patients who progressed on crizotinib. J Thorac Oncol 9(4):549–553CrossRefGoogle Scholar
  49. 49.
    Huang WS, Liu SY, Zou D, Thomas M, Wang YH, Zhou TJ, Romero J, Kohlmann A, Li F, Qi JW, Cai LS, Dwight TA, Xu YJ, Xu RS, Dodd R, Toms A, Parillon L, Lu XH, Anjum R, Zhang S, Wang F, Keats J, Wardwell SD, Ning YY, Xu QH, Moran LE, Mohemmad QK, Jang HG, Clackson T, Narasimhan NI, Rivera VM, Zhu XT, Dalgarno D, Shakespeare WC (2016) Discovery of brigatinib (AP26113), a phosphine oxide-containing, potent, orally active inhibitor of anaplastic lymphoma kinase. J Med Chem 59(10):4948–4964PubMedCrossRefGoogle Scholar
  50. 50.
    Huang WS, Li F, Cai LS, Xu YJ, Zhang S, Wardwell SD, Ning YY, Kohlmann A, Zhou TJ, Ye EY, Zhu XT, Narasimhan NI, Clackson T, Rivera VM, Dalgarno D, Shakespeare WC (2015) Discovery of AP26113, a potent, orally active inhibitor of anaplastic lymphoma kinase and clinically relevant mutants. Cancer Res 75:2827CrossRefGoogle Scholar
  51. 51.
    Ott GR, Tripathy R, Cheng MG, McHugh R, Anzalone AV, Underiner TL, Curry MA, Quail MR, Lu LH, Wan WH, Angeles TS, Albom MS, Aimone LD, Ator MA, Ruggeri BA, Dorsey BD (2010) Discovery of a potent inhibitor of anaplastic lymphoma kinase with in vivo antitumor activity. ACS Med Chem Lett 1(9):493–498PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gingrich DE, Lisko JG, Curry MA, Cheng MG, Quail M, Lu LH, Wan W, Albom MS, Angeles TS, Aimone LD, Haltiwanger RC, Wells-Knecht K, Ott GR, Ghose AK, Ator MA, Ruggeri B, Dorsey BD (2012) Discovery of an orally efficacious inhibitor of anaplastic lymphoma kinase. J Med Chem 55(10):4580–4593PubMedCrossRefGoogle Scholar
  53. 53.
    Ott GR, Cheng MG, Learn KS, Wagner J, Gingrich DE, Lisko JG, Curry M, Mesaros EF, Ghose AK, Quail MR, Wan WH, Lu LH, Dobrzanski P, Albom MS, Angeles TS, Wells-Knecht K, Huang ZQ, Aimone LD, Bruckheimer E, Anderson N, Friedman J, Fernandez SV, Ator MA, Ruggeri BA, Dorsey BD (2016) Discovery of clinical candidate CEP-37440, a selective inhibitor of focal adhesion kinase (FAK) and anaplastic lymphoma kinase (ALK). J Med Chem 59(16):7478–7496PubMedCrossRefGoogle Scholar
  54. 54.
    Menichincheri M, Ardini E, Magnaghi P, Avanzi N, Banfi P, Bossi R, Buffa L, Canevari G, Ceriani L, Colombo M, Corti L, Donati D, Fasolini M, Felder E, Fiorelli C, Fiorentini F, Galvani A, Isacchi A, Borgia AL, Marchionni C, Nesi M, Orrenius C, Panzeri A, Pesenti E, Rusconi L, Saccardo MB, Vanotti E, Perrone E, Orsini P (2016) Discovery of entrectinib: a new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (pan-TRKs) inhibitor. J Med Chem 59(7):3392–3408PubMedCrossRefGoogle Scholar
  55. 55.
    De Braud FG, Niger M, Damian S, Bardazza B, Martinetti A, Pelosi G, Marrapese G, Palmeri L, Cerea G, Valtorta E, Veronese S, Sartore-Bianchi A, Ardini E, Isachi A, Martignoni M, Galvani A, Luo D, Yeh L, Senderowicz AM, Siena S (2015) Alka-372-001: first-in-human, phase I study of entrectinib – an oral pan-trk, ROS1, and ALK inhibitor – in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 33(15):1Google Scholar
  56. 56.
    Patel MR, Bauer TM, Liu SV, Drilon AE, Wheler JJ, Shaw AT, Farago AF, Ou SHI, Luo D, Yeh L, Hornby Z, Senderowicz AM, Lim J (2015) STARTRK-1: Phase 1/2a study of entrectinib, an oral Pan-Trk, ROS1, and ALK inhibitor, in patients with advanced solid tumors with relevant molecular alterations. J Clin Oncol 33(15):1Google Scholar
  57. 57.
    Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, Cui JJ, Deal JG, Deng YL, Dinh D, Engstrom LD, He MY, Hoffman J, Hoffman RL, Huang QH, Kania RS, Kath JC, Lam H, Lam JL, Le PT, Lingardo L, Liu W, McTigue M, Palmer CL, Sach NW, Smeal T, Smith GL, Stewart AE, Timofeevski S, Zhu HC, Zhu JJ, Zou HY, Edwards MP (2014) Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(metheno)pyrazolo 4,3-h 2,5,11-benzoxadiazacyclotetradecine-3-c arbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros Oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem 57(11):4720–4744PubMedCrossRefGoogle Scholar
  58. 58.
    Huang QH, Johnson TW, Bailey S, Brooun A, Bunker KD, Burke BJ, Collins MR, Cook AS, Cui JJ, Dack KN, Deal JG, Deng YL, Dinh D, Engstrom LD, He MY, Hoffman J, Hoffman RL, Johnson PS, Kania RS, Lam H, Lam JL, Le PT, Li QH, Lingardo L, Liu W, Lu MW, McTigue M, Palmer CL, Richardson PF, Sach NW, Shen H, Smeal T, Smith GL, Stewart AE, Timofeevski S, Tsaparikos K, Wang H, Zhu HC, Zhu JJ, Zou HY, Edwards MP (2014) Design of potent and selective inhibitors to overcome clinical anaplastic lymphoma kinase mutations resistant to crizotinib. J Med Chem 57(4):1170–1187PubMedCrossRefGoogle Scholar
  59. 59.
    Lorlatinib is active in drug-resistant NSCLC (2016) Cancer Discov 6(8):OF1Google Scholar
  60. 60.
    Deshaies RJ (2015) Protein degradation: prime time for PROTACs. Nat Chem Biol 11(9):634–635PubMedCrossRefGoogle Scholar
  61. 61.
    Moore NF, Azarova AM, Bhatnagar N, Ross KN, Drake LE, Frumm S, Liu QS, Christie AL, Sanda T, Chesler L, Kung AL, Gray NS, Stegmaier K, George RE (2014) Molecular rationale for the use of PI3K/AKT/mTOR pathway inhibitors in combination with crizotinib in ALK-mutated neuroblastoma. Oncotarget 5(18):8737–8749PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Blake SJP, Ching ALH, Kenna TJ, Galea R, Large J, Yagita H, Steptoe RJ (2015) Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment. PLoS One 10(3):e0119483PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Longwood CenterDana Farber Cancer InstituteBostonUSA

Personalised recommendations