Chemokines pp 87-117 | Cite as

Allosteric Modulation of Chemokine Receptors

  • Nuska Tschammer
  • Arthur Christopoulos
  • Terry Kenakin
Chapter
Part of the Topics in Medicinal Chemistry book series (TMC, volume 14)

Abstract

A central role of chemokines and their receptors in inflammatory processes has spurred numerous screening campaigns dedicated to the search for chemokine-receptor antagonists, which largely failed to deliver drugs for the treatment of inflammatory diseases. The quest for effective chemokine-receptor drug candidates thus continues, and the concept of allosteric targeting of the receptors may be the way forward. In this review, the complex allosteric mechanisms by which the functions of chemokines and their receptors are fine-tuned will be discussed and their impact on preclinical drug discovery presented. The opportunities and challenges of bench-to-clinic approaches are elucidated. We propose that while allosteric modulation of chemokine receptors adds a level of complexity to analyses and approaches to drug discovery, it also introduces a tremendous capacity for pharmacologic control of this physiological system for therapeutic advantage.

References

  1. 1.
    Horuk R (2003) Development and evaluation of pharmacological agents targeting chemokine receptors. Methods 29(4):369–375Google Scholar
  2. 2.
    Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62(2):265–304Google Scholar
  3. 3.
    Scholten D, Canals M, Maussang D, Roumen L, Smit M, Wijtmans M, de Graaf C, Vischer H, Leurs R (2012) Pharmacological modulation of chemokine receptor function. Br J Pharmacol 165(6):1617–1643Google Scholar
  4. 4.
    Proudfoot AE (2002) Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol 2(2):106–115Google Scholar
  5. 5.
    Schall TJ, Proudfoot AE (2011) Overcoming hurdles in developing successful drugs targeting chemokine receptors. Nat Rev Immunol 11(5):355–363Google Scholar
  6. 6.
    Wootten D, Christopoulos A, Sexton PM (2013) Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12(8):630–644Google Scholar
  7. 7.
    Allen SJ, Crown SE, Handel TM (2007) Chemokine: receptor, structure, interactions, and antagonism. Annu Rev Immunol 25:787–820Google Scholar
  8. 8.
    Jin H, Shen X, Baggett BR, Kong X, LiWang PJ (2007) The human CC chemokine MIP-1β dimer is not competent to bind to the CCR5 receptor. J Biol Chem 282(38):27976–27983Google Scholar
  9. 9.
    Nasser MW, Raghuwanshi SK, Grant DJ, Jala VR, Rajarathnam K, Richardson RM (2009) Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J Immunol 183(5):3425–3432Google Scholar
  10. 10.
    Tan JH, Canals M, Ludeman JP, Wedderburn J, Boston C, Butler SJ, Carrick AM, Parody TR, Taleski D, Christopoulos A (2012) Design and receptor interactions of obligate dimeric mutant of chemokine monocyte chemoattractant protein-1 (MCP-1). J Biol Chem 287(18):14692–14702Google Scholar
  11. 11.
    Veldkamp CT, Seibert C, Peterson FC, De la Cruz NB, Haugner JC III, Basnet H, Sakmar TP, Volkman BF (2008) Structural basis of CXCR4 sulfotyrosine recognition by the chemokine SDF-1/CXCL12. Sci Signal 1(37):ra4Google Scholar
  12. 12.
    Choe H, Moore MJ, Owens CM, Wright PL, Vasilieva N, Li W, Singh AP, Shakri R, Chitnis CE, Farzan M (2005) Sulphated tyrosines mediate association of chemokines and Plasmodium vivax Duffy binding protein with the Duffy antigen/receptor for chemokines (DARC). Mol Microbiol 55(5):1413–1422Google Scholar
  13. 13.
    Ludeman JP, Stone MJ (2014) The structural role of receptor tyrosine sulfation in chemokine recognition. Br J Pharmacol 171(5):1167–1179Google Scholar
  14. 14.
    Zhu JZ, Millard CJ, Ludeman JP, Simpson LS, Clayton DJ, Payne RJ, Widlanski TS, Stone MJ (2011) Tyrosine sulfation influences the chemokine binding selectivity of peptides derived from chemokine receptor CCR3. Biochemistry 50(9):1524–1534Google Scholar
  15. 15.
    Cowan JE, McCarthy NI, Parnell SM, White AJ, Bacon A, Serge A, Irla M, Lane PJ, Jenkinson EJ, Jenkinson WE (2014) Differential requirement for CCR4 and CCR7 during the development of innate and adaptive αβT cells in the adult thymus. J Immunol 193(3):1204–1212Google Scholar
  16. 16.
    Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19(12):568–574Google Scholar
  17. 17.
    Groom J, Luster A (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–215Google Scholar
  18. 18.
    Farber J (1997) Mig and IP-10: CXC chemokines that target lymphocytes. J Leukoc Biol 61(3):246–257Google Scholar
  19. 19.
    Ohmori Y, Wyner L, Narumi S, Armstrong D, Stoler M, Hamilton T (1993) Tumor necrosis factor-alpha induces cell type and tissue-specific expression of chemoattractant cytokines in vivo. Am J Pathol 142(3):861–870Google Scholar
  20. 20.
    Ohmori Y, Schreiber RD, Hamilton TA (1997) Synergy between interferon-gamma and tumor necrosis factor-alpha in transcriptional activation is mediated by cooperation between signal transducer and activator of transcription 1 and nuclear factor kappa B. J Biol Chem 272(23):14899–14907Google Scholar
  21. 21.
    Rani MRS, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM (1996) Characterization of beta -R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271(37):22878–22884Google Scholar
  22. 22.
    Weng Y, Siciliano SJ, Waldburger KE, Sirotina-Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA (1998) Binding and functional properties of recombinant and endogenous CXCR3 chemokine receptors. J Biol Chem 273(29):18288–18291Google Scholar
  23. 23.
    Cox MA, Jenh C-H, Gonsiorek W, Fine J, Narula SK, Zavodny PJ, Hipkin RW (2001) Human interferon-inducible 10-kDa protein and human interferon-inducible T cell {alpha} chemoattractant are allotopic ligands for human CXCR3: differential binding to receptor states. Mol Pharmacol 59(4):707–715Google Scholar
  24. 24.
    Heise CE, Pahuja A, Hudson SC, Mistry MS, Putnam AL, Gross MM, Gottlieb PA, Wade WS, Kiankarimi M, Schwarz D, Crowe P, Zlotnik A, Alleva DG (2005) Pharmacological characterization of CXC chemokine receptor 3 ligands and a small molecule antagonist. J Pharmacol Exp Ther 313:1263–1271Google Scholar
  25. 25.
    Verzijl D, Storelli S, Scholten DJ, Bosch L, Reinhart TA, Streblow DN, Tensen CP, Fitzsimons CP, Zaman GJR, Pease JE, de Esch IJP, Smit MJ, Leurs R (2008) Noncompetitive antagonism and inverse agonism as mechanism of action of nonpeptidergic antagonists at primate and rodent CXCR3 chemokine receptors. J Pharmacol Exp Ther 325(2):544–555Google Scholar
  26. 26.
    Xanthou G, Williams T, Pease J (2003) Molecular characterization of the chemokine receptor CXCR3: evidence for the involvement of distinct extracellular domains in a multi-step model of ligand binding and receptor activation. Eur J Immunol 33(10):2927–2936Google Scholar
  27. 27.
    Colvin RA, Campanella GSV, Sun J, Luster AD (2004) Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J Biol Chem 279(29):30219–30227Google Scholar
  28. 28.
    Colvin RA, Campanella GSV, Manice LA, Luster AD (2006) CXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis. Mol Cell Biol 26(15):5838–5849Google Scholar
  29. 29.
    Kouroumalis A, Nibbs RJ, Aptel H, Wright KL, Kolios G, Ward SG (2005) The chemokines CXCL9, CXCL10, and CXCL11 differentially stimulate Gαi-independent signaling and actin responses in human intestinal myofibroblasts. J Immunol 175(8):5403–5411Google Scholar
  30. 30.
    Christensen JE, de Lemos C, Moos T, Christensen JP, Thomsen AR (2006) CXCL10 is the key ligand for CXCR3 on CD8+ effector T cells involved in immune surveillance of the lymphocytic choriomeningitis virus-infected central nervous system. J Immunol 176(7):4235–4243Google Scholar
  31. 31.
    Hensbergen P, Wijnands P, Schreurs M, Scheper R, Willemze R, Tensen C (2005) The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis. J Immunother 28(4):343–351Google Scholar
  32. 32.
    Loetscher P, Pellegrino A, Gong J-H, Mattioli I, Loetscher M, Bardi G, Baggiolini M, Clark-Lewis I (2001) The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J Biol Chem 276(5):2986–2991Google Scholar
  33. 33.
    Rathanaswami P, Hachicha M, Sadick M, Schall TJ, McColl SR (1993) Expression of the cytokine RANTES in human rheumatoid synovial fibroblasts. Differential regulation of RANTES and interleukin-8 genes by inflammatory cytokines. J Biol Chem 268(8):5834–5839Google Scholar
  34. 34.
    Berkman N, Robichaud A, Krishnan V, Roesems G, Robbins R, Jose P, Barnes P, Chung K (1996) Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, -10 and -13. Immunology 87(4):599–603Google Scholar
  35. 35.
    Schall T, Jongstra J, Dyer B, Jorgensen J, Clayberger C, Davis M, Krensky A (1988) A human T cell-specific molecule is a member of a new gene family. J Immunol 141(3):1018–1025Google Scholar
  36. 36.
    Pakianathan D, Kuta E, Artis D, Skelton N, Hebert C (1997) Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry 36(32):9642–9648Google Scholar
  37. 37.
    Proudfoot AEI, Buser R, Borlat F, Alouani S, Soler D, Offord RE, Schröder J-M, Power CA, Wells TNC (1999) Amino-terminally modified RANTES analogues demonstrate differential effects on RANTES receptors. J Biol Chem 274(45):32478–32485Google Scholar
  38. 38.
    Weber C, Weber KSC, Klier C, Gu S, Wank R, Horuk R, Nelson PJ (2001) Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+T cells. Blood 97(4):1144–1146Google Scholar
  39. 39.
    Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, {beta}-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279(22):23214–23222Google Scholar
  40. 40.
    Blanpain C, Lee B, Vakili J, Doranz BJ, Govaerts C, Migeotte I, Sharron M, Dupriez V, Vassart G, Doms RW (1999) Extracellular cysteines of CCR5 are required for chemokine binding, but dispensable for HIV-1 coreceptor activity. J Biol Chem 274(27):18902–18908Google Scholar
  41. 41.
    Tsamis F, Gavrilov S, Kajumo F, Seibert C, Kuhmann S, Ketas T, Trkola A, Palani A, Clader JW, Tagat JR (2003) Analysis of the mechanism by which the small-molecule CCR5 antagonists SCH-351125 and SCH-350581 inhibit human immunodeficiency virus type 1 entry. J Virol 77(9):5201–5208Google Scholar
  42. 42.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber C-M, Saragosti S, Lapouméroulie C, Cognaux J, Forceille C (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725Google Scholar
  43. 43.
    de Kruijf P, Lim HD, Roumen L, Renjaän VA, Zhao J, Webb ML, Auld DS, Wijkmans JC, Zaman GJ, Smit MJ (2011) Identification of a novel allosteric binding site in the CXCR2 chemokine receptor. Mol Pharmacol 80(6):1108–1118Google Scholar
  44. 44.
    Andrews G, Jones C, Wreggett KA (2008) An intracellular allosteric site for a specific class of antagonists of the CC chemokine G protein-coupled receptors CCR4 and CCR5. Mol Pharmacol 73(3):855–867Google Scholar
  45. 45.
    Salchow K, Bond M, Evans S, Press N, Charlton S, Hunt P, Bradley M (2010) A common intracellular allosteric binding site for antagonists of the CXCR2 receptor. Br J Pharmacol 159(7):1429–1439Google Scholar
  46. 46.
    Nicholls DJ, Tomkinson NP, Wiley KE, Brammall A, Bowers L, Grahames C, Gaw A, Meghani P, Shelton P, Wright TJ (2008) Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. Mol Pharmacol 74(5):1193–1202Google Scholar
  47. 47.
    Melchiorre C, Minarini A, Angeli P, Giardina D, Gulini U, Quaglia W (1989) Polymethylene tetraamines as muscarinic receptor probes. Trends Pharmacol Sci 10:55–59Google Scholar
  48. 48.
    Ellis J, Huyler J, Brann MR (1991) Allosteric regulation of cloned m1–m5 muscarinic receptor subtypes. Biochem Pharmacol 42(10):1927–1932Google Scholar
  49. 49.
    Liang J-S, Carsi-Gabrenas J, Krajewski J, McCafferty J, Purkerson S, Santiago M, Strauss W, Valentine H, Potter L (1996) Anti-muscarinic toxins from Dendroaspis angusticeps. Toxicon 34(11):1257–1267Google Scholar
  50. 50.
    Gnagey AL, Seidenberg M, Ellis J (1999) Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol Pharmacol 56(6):1245–1253Google Scholar
  51. 51.
    Johnson M, Nisenbaum E, Large T, Emkey R, Baez M, Kingston A (2004) Allosteric modulators of metabotropic glutamate receptors: lessons learnt from mGlu1, mGlu2 and mGlu5 potentiators and antagonists. Biochem Soc Trans 32(5):881–887Google Scholar
  52. 52.
    Chapman RW, Minnicozzi M, Celly CS, Phillips JE, Kung TT, Hipkin RW, Fan X, Rindgen D, Deno G, Bond R (2007) A novel, orally active CXCR1/2 receptor antagonist, Sch527123, inhibits neutrophil recruitment, mucus production, and goblet cell hyperplasia in animal models of pulmonary inflammation. J Pharmacol Exp Ther 322(2):486–493Google Scholar
  53. 53.
    Paton WD, Rang H (1965) The uptake of atropine and related drugs by intestinal smooth muscle of the guinea-pig in relation to acetylcholine receptors. Proc R Soc Lond B Biol Sci 163(990):1–44Google Scholar
  54. 54.
    Kenakin T (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4(11):919–927Google Scholar
  55. 55.
    Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E, Martinez FO, Di Bitondo R, Troiani G, Sabbatini V, D’Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, Di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A 101(32):11791–11796Google Scholar
  56. 56.
    Thiele S, Malmgaard-Clausen M, Engel-Andreasen J, Steen A, Rummel P, Nielsen M, Gloriam D, Frimurer T, Ulven T, Rosenkilde M (2012) Modulation in selectivity and allosteric properties of small-molecule ligands for CC-chemokine receptors. J Med Chem 55(18):8164–8177Google Scholar
  57. 57.
    Sabroe I, Peck MJ, Van Keulen BJ, Jorritsma A, Simmons G, Clapham PR, Williams TJ, Pease JE (2000) A small molecule antagonist of chemokine receptors CCR1 and CCR3 potent inhibition of eosinophil function and CCR3-mediated HIV-1 entry. J Biol Chem 275(34):25985–25992Google Scholar
  58. 58.
    Hejnová L, Tuček S, El-Fakahany EE (1995) Positive and negative allosteric interactions on muscarinic receptors. Eur J Pharmacol Mol Pharmacol 291(3):427–430Google Scholar
  59. 59.
    Kalatskaya I, Berchiche YA, Gravel S, Limberg BJ, Rosenbaum JS, Heveker N (2009) AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol Pharmacol 75(5):1240–1247Google Scholar
  60. 60.
    Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc B 220(1219):141–162Google Scholar
  61. 61.
    Sohy D, Parmentier M, Springael J-Y (2007) Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282(41):30062–30069Google Scholar
  62. 62.
    Springael J-Y, Le Minh PN, Urizar E, Costagliola S, Vassart G, Parmentier M (2006) Allosteric modulation of binding properties between units of chemokine receptor homo-and hetero-oligomers. Mol Pharmacol 69(5):1652–1661Google Scholar
  63. 63.
    Springael J-Y, Urizar E, Parmentier M (2005) Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 16(6):611–623Google Scholar
  64. 64.
    Luker KE, Gupta M, Luker GD (2009) Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J 23(3):823–834Google Scholar
  65. 65.
    Salanga CL, O’Hayre M, Handel T (2009) Modulation of chemokine receptor activity through dimerization and crosstalk. Cell Mol Life Sci 66(8):1370–1386Google Scholar
  66. 66.
    Wang T, Duan Y (2008) Binding modes of CCR5-targetting HIV entry inhibitors: partial and full antagonists. J Mol Graph Model 26:1287–1295Google Scholar
  67. 67.
    Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113(24):6085–6093Google Scholar
  68. 68.
    Armour SL, Foord S, Kenakin T, Chen W-J (1999) Pharmacological characterization of receptor-activity-modifying proteins (RAMPs) and the human calcitonin receptor. J Pharmacol Toxicol Methods 42(4):217–224Google Scholar
  69. 69.
    Hay DL, Poyner DR, Sexton PM (2006) GPCR modulation by RAMPs. Pharmacol Ther 109(1):173–197Google Scholar
  70. 70.
    Mellado M, Rodríguez‐Frade JM, Vila‐Coro AJ, Fernández S, Martín de Ana A, Jones DR, Torán JL, Martínez‐A C (2001) Chemokine receptor homo‐or heterodimerization activates distinct signaling pathways. EMBO J 20(10):2497–2507Google Scholar
  71. 71.
    Parenty G, Appelbe S, Milligan G (2008) CXCR2 chemokine receptor antagonism enhances DOP opioid receptor function via allosteric regulation of the CXCR2-DOP receptor heterodimer. Biochem J 412:245–256Google Scholar
  72. 72.
    Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273(5283):1856–1862Google Scholar
  73. 73.
    Benkirane M, Jin D-Y, Chun RF, Koup RA, Jeang K-T (1997) Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5{Delta}32. J Biol Chem 272(49):30603–30606Google Scholar
  74. 74.
    Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54(2):323–374Google Scholar
  75. 75.
    Kenakin TP (2012) Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br J Pharmacol 165(6):1659–1669Google Scholar
  76. 76.
    Stockton J, Birdsall N, Burgen A, Hulme E (1983) Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol 23(3):551–557Google Scholar
  77. 77.
    Ehlert F (1988) Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33(2):187–194Google Scholar
  78. 78.
    Ehlert FJ (2005) Analysis of allosterism in functional assays. J Pharmacol Exp Ther 315(2):740–754Google Scholar
  79. 79.
    Price MR, Baillie GL, Thomas A, Stevenson LA, Easson M, Goodwin R, McLean A, McIntosh L, Goodwin G, Walker G (2005) Allosteric modulation of the cannabinoid CB1 receptor. Mol Pharmacol 68(5):1484–1495Google Scholar
  80. 80.
    Sachpatzidis A, Benton BK, Manfredi JP, Wang H, Hamilton A, Dohlman HG, Lolis E (2003) Identification of allosteric peptide agonists of CXCR4. J Biol Chem 278(2):896–907Google Scholar
  81. 81.
    Jensen PC, Thiele S, Ulven T, Schwartz TW, Rosenkilde MM (2008) Positive versus negative modulation of different endogenous chemokines for CC-chemokine receptor 1 by small molecule agonists through allosteric versus orthosteric binding. J Biol Chem 283(34):23121–23128Google Scholar
  82. 82.
    Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL, Miller LJ, Summers RJ, Christopoulos A, Sexton PM (2010) Allosteric Ligands of the glucagon-like peptide 1 receptor (GLP-1R) differentially modulate endogenous and exogenous peptide responses in a pathway-selective manner: implications for drug screening. Mol Pharmacol 78(3):456–465Google Scholar
  83. 83.
    Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67(4):1268–1282Google Scholar
  84. 84.
    Casilli F, Bianchini A, Gloaguen I, Biordi L, Alesse E, Festuccia C, Cavalieri B, Strippoli R, Cervellera MN, Bitondo RD (2005) Inhibition of interleukin-8 (CXCL8/IL-8) responses by repertaxin, a new inhibitor of the chemokine receptors CXCR1 and CXCR2. Biochem Pharmacol 69(3):385–394Google Scholar
  85. 85.
    Rummel PC, Arfelt K, Baumann L, Jenkins T, Thiele S, Lüttichau H, Johnsen A, Pease J, Ghosh S, Kolbeck R (2012) Molecular requirements for inhibition of the chemokine receptor CCR8–probe‐dependent allosteric interactions. Br J Pharmacol 167(6):1206–1217Google Scholar
  86. 86.
    Vaidehi N, Schlyer S, Trabanino RJ, Floriano WB, Abrol R, Sharma S, Kochanny M, Koovakat S, Dunning L, Liang M (2006) Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 281(37):27613–27620Google Scholar
  87. 87.
    Garcia-Perez J, Rueda P, Staropoli I, Kellenberger E, Alcami J, Arenzana-Seisdedos F, Lagane B (2011) New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection. J Biol Chem 286(7):4978–4990Google Scholar
  88. 88.
    Atchison RE, Gosling J, Monteclaro FS, Franci C, Digilio L, Charo IF, Goldsmith MA (1996) Multiple extracellular elements of CCR5 and HIV-1 entry: dissociation from response to chemokines. Science 274(5294):1924–1926Google Scholar
  89. 89.
    Doms RW, Peiper SC (1997) Unwelcomed guests with master keys: how HIV uses chemokine receptors for cellular entry. Virology 235(2):179–190Google Scholar
  90. 90.
    Doranz BJ, Lu Z, Rucker J, Zhang T-Y, Sharron M, Cen Y, Wang Z, Guo H, Du J, Accavitti MA (1997) Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 71(9):6305–6314Google Scholar
  91. 91.
    Picard L, Simmons G, Power CA, Meyer A, Weiss RA, Clapham PR (1997) Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. J Virol 71(7):5003–5011Google Scholar
  92. 92.
    Rucker J, Edinger AL, Sharron M, Samson M, Lee B, Berson JF, Yi Y, Margulies B, Collman RG, Doranz BJ (1997) Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 71(12):8999–9007Google Scholar
  93. 93.
    Lori F, Foli A, Matteo PS, Lisziewicz J, Jessen H (1997) Long-term suppression of HIV-1 by hydroxyurea and didanosine. JAMA 277(18):1437–1438Google Scholar
  94. 94.
    Garzino-Demo A, Moss RB, Margolick JB, Cleghorn F, Sill A, Blattner WA, Cocchi F, Carlo DJ, DeVico AL, Gallo RC (1999) Spontaneous and antigen-induced production of HIV-inhibitory β-chemokines are associated with AIDS-free status. Proc Natl Acad Sci U S A 96(21):11986–11991Google Scholar
  95. 95.
    Shieh B, Yan Y-P, Ko N-Y, Liau Y-E, Liu Y-C, Lin H-H, Chen P-P, Li C (2001) Detection of elevated serum {beta}-chemokine levels in seronegative chinese individuals exposed to human immunodeficiency virus type 1. Clin Infect Dis 33(3):273–279Google Scholar
  96. 96.
    Xiang J, George S, Wunschmann S, Chang Q, Klinzman D, Stapleton J (2004) Inhibition of HIV-1 replication by GB virus C infection through increases in RANTES, MIP-1alpha, MIP-1beta, and SDF-1. Lancet 363(9426):2040–2046Google Scholar
  97. 97.
    Ullum H, Lepri AC, Victor J, Aladdin H, Phillips AN, Gerstoft J, Skinhoj P, Pedersen BK (1998) Production of {beta}-chemokines in human immunodeficiency virus (HIV) infection: evidence that high levels of macrophage inflammatory protein-1{beta} are associated with a decreased risk of HIV disease progression. J Infect Dis 177(2):331–336Google Scholar
  98. 98.
    Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ (2005) The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 307(5714):1434–1440Google Scholar
  99. 99.
    Alkhatib G, Locati M, Kennedy PE, Murphy PM, Berger EA (1997) HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 234(2):340–348Google Scholar
  100. 100.
    Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier J-L, Arenzana-Seisdedos F (1997) HIV coreceptor downregulation as antiviral principle: SDF-1{alpha}-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med 186(1):139–146Google Scholar
  101. 101.
    Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187(8):1215–1224Google Scholar
  102. 102.
    Muniz-Medina VM, Jones S, Maglich JM, Galardi C, Hollingsworth RE, Kazmierski WM, Ferris RG, Edelstein MP, Chiswell KE, Kenakin TP (2009) The relative activity of “function sparing” HIV-1 entry inhibitors on viral entry and CCR5 internalization: is allosteric functional selectivity a valuable therapeutic property? Mol Pharmacol 75(3):490–501Google Scholar
  103. 103.
    Buontempo PJ, Wojcik L, Buontempo CA, Ogert RA, Strizki JM, Howe JA, Ralston R (2009) Quantifying the relationship between HIV-1 susceptibility to CCR5 antagonists and virus affinity for antagonist-occupied co-receptor. Virology 395(2):268–279Google Scholar
  104. 104.
    Kenakin T (1995) Agonist-receptor efficacy II: agonist trafficking of receptor signals. Trends Pharmacol Sci 16(7):232–238Google Scholar
  105. 105.
    Scholten D, Canals M, Wijtmans M, de Munnik S, Nguyen P, Verzijl D, de Esch I, Vischer H, Smit M, Leurs R (2012) Pharmacological characterization of a small‐molecule agonist for the chemokine receptor CXCR3. Br J Pharmacol 166(3):898–911Google Scholar
  106. 106.
    Elsner J, Mack M, Brühl H, Dulkys Y, Kimmig D, Simmons G, Clapham PR, Schlöndorff D, Kapp A, Wells TN (2000) Differential activation of CC chemokine receptors by AOP-RANTES. J Biol Chem 275(11):7787–7794Google Scholar
  107. 107.
    Gaertner H, Cerini F, Kuenzi G, Melotti A, Offord R, Rossitto-Borlat I, Nedellec R, Salkowitz J, Gorochov G, Mosier D (2008) Highly potent, fully recombinant anti-HIV chemokines: reengineering a low-cost microbicide. Proc Natl Acad Sci 105(46):17706–17711Google Scholar
  108. 108.
    Allegretti M, Bertini R, Bizzarri C, Beccari A, Mantovani A, Locati M (2008) Allosteric inhibitors of chemoattractant receptors: opportunities and pitfalls. Trends Pharmacol Sci 29(6):280–286Google Scholar
  109. 109.
    Lewis JA, Lebois EP, Lindsley CW (2008) Allosteric modulation of kinases and GPCRs: design principles and structural diversity. Curr Opin Chem Biol 12(3):269–280Google Scholar
  110. 110.
    Vaidehi N, Schlyer S, Trabanino RJ, Floriano WB, Abrol R, Sharma S, Kochanny M, Koovakat S, Dunning L, Liang M, Fox JM, de Mendonca FL, Pease JE, Goddard WA III, Horuk R (2006) Predictions of CCR1 chemokine receptor structure and BX 471 antagonist binding followed by experimental validation. J Biol Chem 281(37):27613–27620Google Scholar
  111. 111.
    Mirzadegan T, Diehl F, Ebi B, Bhakta S, Polsky I, McCarley D, Mulkins M, Weatherhead GS, Lapierre J-M, Dankwardt J, Morgans D, Wilhelm R, Jarnagin K (2000) Identification of the binding site for a novel class of CCR2b chemokine receptor antagonists: binding to a common chemokine receptor motif within the helical bundle. J Biol Chem 275(33):25562–25571Google Scholar
  112. 112.
    de Mendonça FL, da Fonseca PCA, Phillips RM, Saldanha JW, Williams TJ, Pease JE (2005) Site-directed mutagenesis of CC chemokine receptor 1 reveals the mechanism of action of UCB 35625, a small molecule chemokine receptor antagonist. J Biol Chem 280(6):4808–4816Google Scholar
  113. 113.
    Gerlach LO, Skerlj RT, Bridger GJ, Schwartz TW (2001) Molecular interactions of cyclam and bicyclam non-peptide antagonists with the CXCR4 chemokine receptor. J Biol Chem 276(17):14153–14160Google Scholar
  114. 114.
    Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071Google Scholar
  115. 115.
    Tan Q, Zhu Y, Li J, Chen Z, Han GW, Kufareva I, Li T, Ma L, Fenalti G, Li J, Zhang W, Xie X, Yang H, Jiang H, Cherezov V, Liu H, Stevens RC, Zhao Q, Wu B (2013) Structure of the CCR5 chemokine receptor–HIV entry inhibitor maraviroc complex. Science 341(6152):1387–1390Google Scholar
  116. 116.
    Hesselgesser J, Ng HP, Liang M, Zheng W, May K, Bauman JG, Monahan S, Islam I, Wei GP, Ghannam A, Taub DD, Rosser M, Snider RM, Morrissey MM, Perez HD, Horuk R (1998) Identification and characterization of small molecule functional antagonists of the CCR1 chemokine receptor. J Biol Chem 273(25):15687–15692Google Scholar
  117. 117.
    Witherington J, Bordas V, Cooper D, Forbes I, Gribble A, Ife R, Berkhout T, Gohil J, Groot P (2001) Conformationally restricted indolopiperidine derivatives as potent CCR2B receptor antagonists. Bioorg Med Chem Lett 11(16):2177–2180Google Scholar
  118. 118.
    Thoma G, Baenteli R, Lewis I, Wagner T, Oberer L, Blum W, Glickman F, Streiff MB, Zerwes HG (2009) Special ergolines are highly selective, potent antagonists of the chemokine receptor CXCR3: discovery, characterization and preliminary SAR of a promising lead. Bioorg Med Chem Lett 19(21):6185–6188Google Scholar
  119. 119.
    Watson P, Jiang B, Harrison K, Asakawa N, Welch P, Covington M, Stowell N, Wadman E, Davies P, Solomon K, Newton R, Trainor G, Friedman S, Decicco C, Ko S (2006) 2,4-Disubstituted piperidines as selective CC chemokine receptor 3 (CCR3) antagonists: synthesis and selectivity. Bioorg Med Chem Lett 16(21):5695–5699Google Scholar
  120. 120.
    Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y (2007) A dual antagonist for chemokine CCR3 receptor and histamine H1 receptor. Eur J Pharmacol 563(1):224–232Google Scholar
  121. 121.
    Hall SE, Mao A, Nicolaidou V, Finelli M, Wise EL, Nedjai B, Kanjanapangka J, Harirchian P, Chen D, Selchau V, Ribeiro S, Schyler S, Pease JE, Horuk R, Vaidehi N (2009) Elucidation of binding sites of dual antagonists in the human chemokine receptors CCR2 and CCR5. Mol Pharmacol 75(6):1325–1336Google Scholar
  122. 122.
    Dragic T, Trkola A, Thompson DAD, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci 97(10):5639–5644Google Scholar
  123. 123.
    Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci 96(10):5698–5703Google Scholar
  124. 124.
    Gao P, Zhou X-Y, Yashiro-Ohtani Y, Yang Y-F, Sugimoto N, Ono S, Nakanishi T, Obika S, Imanishi T, Egawa T, Nagasawa T, Fujiwara H, Hamaoka T (2003) The unique target specificity of a nonpeptide chemokine receptor antagonist: selective blockade of two Th1 chemokine receptors CCR5 and CXCR3. J Leukoc Biol 73(2):273–280Google Scholar
  125. 125.
    Tokuyama H, Ueha S, Kurachi M, Matsushima K, Moriyasu F, Blumberg RS, Kakimi K (2005) The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol 17(8):1023–1034Google Scholar
  126. 126.
    Kralj A, Wetzel A, Mahmoudian S, Stamminger T, Tschammer N, Heinrich MR (2011) Identification of novel allosteric modulators for the G-protein coupled US28 receptor of human cytomegalovirus. Bioorg Med Chem Lett 21(18):5446–5450Google Scholar
  127. 127.
    Venkatakrishnan A, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194Google Scholar
  128. 128.
    Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783Google Scholar
  129. 129.
    Szpakowska M, Bercoff DP, Chevigné A (2014) Closing the ring: a fourth extracellular loop in chemokine receptors. Sci Signal 7(341):pe21–pe21Google Scholar
  130. 130.
    Zhu L, Zhao Q, Wu B (2013) Structure-based studies of chemokine receptors. Curr Opin Struct Biol 23(4):539–546Google Scholar
  131. 131.
    Watanabe K, Iida M, Takaishi K, Suzuki T, Hamada Y, Iizuka Y, Tsurufuji S (1993) Chemoattractants for neutrophils in lipopolysaccharide‐induced inflammatory exudate from rats are not interleukin‐8 counterparts but gro‐gene‐product/melanoma‐growth‐stimulating‐activity‐related factors. Eur J Biochem 214(1):267–270Google Scholar
  132. 132.
    Harada A, Kuno K, Nomura H, Mukaida N, Murakami S, Matsushima K (1994) Cloning of a cDNA encoding a mouse homolog of the interleukin-8 receptor. Gene 142(2):297–300Google Scholar
  133. 133.
    Bozic CR, Kolakowski L, Gerard NP, Garcia-Rodriguez C, von Uexkull-Guldenband C, Conklyn MJ, Breslow R, Showell HJ, Gerard C (1995) Expression and biologic characterization of the murine chemokine KC. J Immunol 154(11):6048–6057Google Scholar
  134. 134.
    Moepps B, Nuesseler E, Braun M, Gierschik P (2006) A homolog of the human chemokine receptor CXCR1 is expressed in the mouse. Mol Immunol 43(7):897–914Google Scholar
  135. 135.
    Fan X, Patera AC, Pong-Kennedy A, Deno G, Gonsiorek W, Manfra DJ, Vassileva G, Zeng M, Jackson C, Sullivan L, Sharif-Rodriguez W, Opdenakker G, Van Damme J, Hedrick JA, Lundell D, Lira SA, Hipkin RW (2007) Murine CXCR1 is a functional receptor for GCP-2/CXCL6 and interleukin-8/CXCL8. J Biol Chem 282(16):11658–11666Google Scholar
  136. 136.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR (2000) Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11):4106–4114Google Scholar
  137. 137.
    Mack M, Cihak J, Simonis C, Luckow B, Proudfoot AE, Jí P, Brühl H, Frink M, Anders H-J, Vielhauer V (2001) Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J Immunol 166(7):4697–4704Google Scholar
  138. 138.
    Topham PS, Csizmadia V, Soler D, Hines D, Gerard CJ, Salant DJ, Hancock WW (1999) Lack of chemokine receptor CCR1 enhances Th1 responses and glomerular injury during nephrotoxic nephritis. J Clin Invest 104(11):1549–1557Google Scholar
  139. 139.
    Hegen M, Keith JC, Collins M, Nickerson-Nutter CL (2008) Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann Rheum Dis 67(11):1505–1515Google Scholar
  140. 140.
    Haringman JJ, Tak PP (2004) Chemokine blockade: a new era in the treatment of rheumatoid arthritis? Arthritis Res Ther 6(3):93–97Google Scholar
  141. 141.
    Quinones MP, Estrada CA, Kalkonde Y, Ahuja SK, Kuziel WA, Mack M, Ahuja SS (2005) The complex role of the chemokine receptor CCR2 in collagen-induced arthritis: implications for therapeutic targeting of CCR2 in rheumatoid arthritis. J Mol Med 83(9):672–681Google Scholar
  142. 142.
    Brühl H, Cihak J, Schneider MA, Plachý J, Rupp T, Wenzel I, Shakarami M, Milz S, Ellwart JW, Stangassinger M, Schlöndorff D, Mack M (2004) Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J Immunol 172(2):890–898Google Scholar
  143. 143.
    Berahovich RD, Miao Z, Wang Y, Premack B, Howard MC, Schall TJ (2005) Proteolytic activation of alternative CCR1 ligands in inflammation. J Immunol 174(11):7341–7351Google Scholar
  144. 144.
    Lebre MC, Vergunst CE, Choi IYK, Aarrass S, Oliveira ASF, Wyant T, Horuk R, Reedquist KA, Tak PP (2011) Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis. PLoS One 6(7):e21772Google Scholar
  145. 145.
    Gladue RP, Cole SH, Roach ML, Tylaska LA, Nelson RT, Shepard RM, McNeish JD, Ogborne KT, Neote KS (2006) The human specific CCR1 antagonist CP-481,715 inhibits cell infiltration and inflammatory responses in human CCR1 transgenic mice. J Immunol 176(5):3141–3148Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nuska Tschammer
    • 1
  • Arthur Christopoulos
    • 2
  • Terry Kenakin
    • 3
  1. 1.Department of Chemistry and Pharmacy, Medicinal Chemistry, Emil Fischer CenterFriedrich Alexander UniversityErlangenGermany
  2. 2.Department of Pharmacology, Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleAustralia
  3. 3.Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations