Anaerobic Eukaryotes in Pursuit of Phylogenetic Normality: the Evolution of Hydrogenosomes and Mitosomes

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 9)

Abstract

The evolutionary relationship of hydrogenosomes and mitosomes to mitochondria is no longer an issue of contention for specialists who work on the organelles. Hydrogenosomes and mitosomes are mitochondria in the evolutionary sense in that they descend from one and the same eubacterial endosymbiont, but the evolutionary significance of eukaryotic anaerobes that possess hydrogenosomes, mitosomes, and anaerobically functioning mitochondria is an issue of some contention. This chapter serves to further develop the thesis that the role of oxygen in eukaryote evolution needs to be reconsidered and viewed in light of what geologists have discovered relatively recently regarding oxygen in Earth history. According to newer findings from geochemical studies, there existed during a protracted period of Earth ocean history, during which the oceans were mostly anoxic and sulfidic (“Canfield” oceans). This period started about 2.3 billion years ago and only came to an end about 580 million years ago. This was the time during which eukaryotes arose and diversified into their major lineages. In light of this, anaerobic eukaryotes with mitochondria are not, in an evolutionary sense, strange, obscure, unexpected, or otherwise out of the ordinary, hence no special or unusual mechanisms are required to explain their origin. They are normal in every respect, and so are their mitochondria.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adl SM, Simpson AG, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451 PubMedGoogle Scholar
  2. Allen CA, Van der Giezen M, Allen JF (2007) Origin, function, and transmission of mitochondria. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 39–56 Google Scholar
  3. Anbar AD, Knoll AH (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge. Science 297:1137–1142 PubMedGoogle Scholar
  4. Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC GENOMICS 8:Art No 51 Google Scholar
  5. Andersson SGE, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Phil Trans Roy Soc Lond B 358:165–177 Google Scholar
  6. Andersson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541 PubMedGoogle Scholar
  7. Arnold GL, Anbar AD, Barling J, Lyons TW (2004) Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90 PubMedGoogle Scholar
  8. Atteia A, van Lis R, Mendoza-Hernández G, Henze K, Martin W, Riveros-Rosas H, González-Halphen D (2003) Bifunctional aldehyde/alcohol dehydrogenase (ADHE) in chlorophyte algal mitochondria. Plant Mol Biol 53:175–188 PubMedGoogle Scholar
  9. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate : formate lyase and a novel route of eukaryotic ATP-synthesis in anaerobic Chlamydomonas mitochondria. J Biol Chem 281:9909–9918 PubMedGoogle Scholar
  10. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977 PubMedGoogle Scholar
  11. Barberà MJ, Ruiz-Trillo I, Leigh J, Hug LA, Roger AJ (2007) The diversity of mitochondrion-related organelles amongst eukaryotic microbes. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 239–276 Google Scholar
  12. Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53 PubMedGoogle Scholar
  13. Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara basin is a symbiosis oasis. Nature 403:77–80 PubMedGoogle Scholar
  14. Biagini GA, van der Giezen M, Hill B, Winters C, Lloyd D (1994) Ca2+-accumulation in the hydrogenosome of Neocallimastix frontalis: a mitochondrial-like physiological role. FEMS Microbiol Lett 149:227–232 Google Scholar
  15. Biagini GA, Finlay BJ, Lloyd D (1997) The evolution of the hydrogenosome. FEMS Microbiol Lett 155:133–140 PubMedGoogle Scholar
  16. Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434:74–79 PubMedGoogle Scholar
  17. Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SWH, van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP (2004) The anaerobic chytridiomycete fungus Piromyces spE2 produces ethanol via pyruvate : formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51:1389–1399 PubMedGoogle Scholar
  18. Brocks JJ, Love GD, Summons RE, Knoll AH, Logan GA, Bowden SA (2005) Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437:866–870 PubMedGoogle Scholar
  19. Brondijk THC, Durand R, van der Giezen M, Gottschal JC, Prins RA, Fevre M (1996) scsB, a cDNA encoding the hydrogenosomal beta subunit of succinyl-CoA synthetase from the anaerobic fungus Neocallimastix frontalis. Mol Gen Genet 253:315–323 PubMedGoogle Scholar
  20. Canfield DE, Poulton SW, Narbonne GM (2007) Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315:92–95 PubMedGoogle Scholar
  21. Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396:450–453 Google Scholar
  22. Canfield DE, Habicht KS, Thamdrup B (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288:658–661 PubMedGoogle Scholar
  23. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UCM, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Müller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu C-L, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik S-B, Logsdon JM, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu C-H, Lee Y-S, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315:207–212 PubMedGoogle Scholar
  24. Cavalier-Smith T (1975) The origin of nuclei and of eukaryotic cells. Nature 256:463–468 Google Scholar
  25. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354 PubMedGoogle Scholar
  26. Cavalier-Smith T (2004) Only six kingdoms of life. Proc Roy Soc Lond B 271:1251–1262 Google Scholar
  27. Cavalier-Smith T (2007) The chimaeric origin of mitochondria: Photosynthetic cell enslavement, gene-transfer pressure, and compartmentation efficiency. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 161–200 Google Scholar
  28. Cloud PE (1968) Atmospheric and hydrospheric evolution on the primitive Earth. Science 160:729–736 PubMedGoogle Scholar
  29. Dacks JB, Dyal PL, Embley TM, van der Giezen M (2006) Hydrogenosomal succinyl-CoA synthetase from the rumen-dwelling fungus Neocallimastix patriciarum; an energy-producing enzyme of mitochondrial origin. Gene 373:75–82 PubMedGoogle Scholar
  30. Davidov Y, Jurkevitch E (2007) Comments of Poole and Penny's essay Evaluating hypotheses for the orign of eukaryotes. BioEssays 29:615–616 PubMedGoogle Scholar
  31. de Duve C (2007) The origin of eukaryotes: A reappraisal. Nat Rev Genet 8:395–403 PubMedGoogle Scholar
  32. de Duve C (1969) Evolution of the peroxisome. Ann NY Acad Sci 168:369–381 PubMedGoogle Scholar
  33. de Zwaan A (1991) Molluscs. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 186–217 Google Scholar
  34. Dietrich LEP, Tice MM, Newmann DK (2006) The co-evolution of life and Earth. Curr Biol 16:R395–R400 PubMedGoogle Scholar
  35. Doeller JE, Grieshaber MK, Kraus DW (2001) Chemolithoheterotrophy in a metazoan tissue: thiosulfate production matches ATP demand in ciliated mussel gills. J Exp Biol 204:3755–3764 PubMedGoogle Scholar
  36. Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313:314–318 PubMedGoogle Scholar
  37. Doolittle WF (1980) Revolutionary concepts in evolutionary cell biology. Trends Biochem Sci 5:146–149 Google Scholar
  38. Doolittle WF (1998) A paradigm gets shifty. Nature 392:15–16 PubMedGoogle Scholar
  39. Dyall SD, Yan WH, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107 PubMedGoogle Scholar
  40. Ellis JE, Lindmark DG, Williams AG, Lloyd D (1994) Polypeptides of hydrogenosome-enriched fractions from rumen ciliate protozoa and trichomonads: immunological studies. FEMS Microbiol Lett 117:211–216 PubMedGoogle Scholar
  41. Embley TM, Finlay BJ, Dyal PL, Hirt RP, Wilkinson M, Williams AG (1995) Multiple origins of anaerobic ciliates with hydrogenosomes within the radiation of aerobic ciliates. Proc R Soc Lond B 262:87–93 Google Scholar
  42. Embley TM, Horner DA, Hirt RP (1997) Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol Evol 12:437–441 PubMedGoogle Scholar
  43. Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB LIFE 55:387–395 PubMedGoogle Scholar
  44. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630 PubMedGoogle Scholar
  45. Emelyanov VV (2007) Constantin Merezhkowsky and the endokaryotic hypothesis. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 201–238 Google Scholar
  46. Fenchel TM, Riedl RJ (1970) The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Marine Biol 7:255–268 Google Scholar
  47. Fike DA, Grotzinger JP, Pratt LM, Summons RE (2006) Oxidation of the Ediacaran ocean. Nature 444:744–747 PubMedGoogle Scholar
  48. Gabaldon T, Snel B, van Zimmeren F, Hemrika W, Tabak H, Huynen MA (2006) Origin and evolution of the peroxisomal proteome. Biol Direct 1:8 PubMedGoogle Scholar
  49. Gelius-Dietrich G, Henze K (2004) Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: a free-radical enzyme system conserved across divergent eukaryotic lineages. J Euk Microbiol 51:456–463 PubMedGoogle Scholar
  50. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60:30–53 CrossRefGoogle Scholar
  51. Grieshaber M, Hardewig I, Kreutzer U, Pörtner H-O (1994) Physiologial and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147 PubMedGoogle Scholar
  52. Hackstein JH, Tjaden J, Huynen M (2006) Mitochondria, hydrogenosomes and mitosomes: products of evolutionary tinkering! Curr Genet 50:225–245 PubMedGoogle Scholar
  53. Hackstein JHP, Tjaden J, Koopman W (2007) Hydrogenosomes (and related organelles, either) are not the same. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 135–160 Google Scholar
  54. Heifetz PB, Förster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122:1439–1446 PubMedGoogle Scholar
  55. Hoffmeister M, van der Klei A, Rotte C, van Grinsven KWA, van Hellemond JJ, Henze K, Tielens AGM, Martin W (2004) Euglena rhodoquinone : ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. J Biol Chem 279:22422–22429 PubMedGoogle Scholar
  56. Holland HD (1999) When did the Earth's atmosphere become oxic? Geochem News 100:20–22 Google Scholar
  57. Holland HD, Beukes N (1990) A paleoweathering profile from Griqualand West, South Africa: Evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 BYBP. Am J Sci 290A:1-34 Google Scholar
  58. Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases – ancient enzymes in modern eukaryotes. Trends Biochem Sci 27:148–153 PubMedGoogle Scholar
  59. Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622 PubMedGoogle Scholar
  60. Hurtgen MT (2003) Ancient oceans and oxygen. Nature 423:592–593 PubMedGoogle Scholar
  61. Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69 PubMedGoogle Scholar
  62. Jekely G, Arendt D (2006) Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28:191–198 PubMedGoogle Scholar
  63. Johnston DT, Wing BA, Farquhar J, Kaufman AJ, Strauss H, Lyons TW, Kah LC, Canfield DE (2005) Active microbial sulfur disproportionation in the Mesoproterozoic. Science 310:1477–1479 PubMedGoogle Scholar
  64. Kasting JF (1993) Earth's early atmosphere. Science 259:920–926 PubMedGoogle Scholar
  65. Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) The genome of the intracellular parasite, Encephalithozoon cuniculi. Nature 414:450–453 PubMedGoogle Scholar
  66. Knoll AH (1992) The early evolution of eukaryotes: A geological perspective. Science 256:622–627 PubMedGoogle Scholar
  67. Lahti CJ, Bradley PJ, Johnson PJ (1994) Molecular characterization of the alpha-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase. Mol Biochem Parasitol 66:309–318 PubMedGoogle Scholar
  68. Lane N (2007) Mitochondria: Key to complexity. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 13–38 Google Scholar
  69. Lindmark DG, Müller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus and its role in pyruvate metabolism. J Biol Chem 248:7724–7728 PubMedGoogle Scholar
  70. Lloyd D, Ralphs JR, Harris JC (2002) Giardia, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148:727–733 PubMedGoogle Scholar
  71. Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillén N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868 PubMedGoogle Scholar
  72. Mai ZM, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (crypton) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205 PubMedGoogle Scholar
  73. Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): Acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc Natl Acad Sci USA 103:13080–13085 PubMedGoogle Scholar
  74. Margulis L (1970) Origin of Eukaryotic Cells. Yale University Press, New Haven, p 349 Google Scholar
  75. Martin W (2007) Eukaryote and mitochondrial origins: Two sides of the same coin and too much ado about oxygen. In: Falkowski P, Knoll AH (eds) Primary Producers of the Sea. Academic Press, New York, pp 55–73 Google Scholar
  76. Martin W, Dagan T, Koonin EV, Dipippo JL, Gogarten JP, Lake JA (2007) The evolution of eukaryotes. Science 316:542–543 PubMedGoogle Scholar
  77. Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45 PubMedGoogle Scholar
  78. Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204 PubMedGoogle Scholar
  79. Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604 [English translation in Eur J Phycol 34:287–295 (1999)] Google Scholar
  80. Müller M (2003) Energy metabolism. Part I: Anaerobic protozoa. In: Marr J (ed) Molecular Medical Parasitology. Academic Press, London, pp 125–139 Google Scholar
  81. Müller M (2007) The road to hydrogenosomes. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 1–12 Google Scholar
  82. Nicholas WL (1991) Interstitial Meifauna. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 129–145 Google Scholar
  83. Painter HJ, Morrisey JM, Mather MW, Vaidya AB (2007) Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446:88–91 PubMedGoogle Scholar
  84. Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimaeric origin of eukaryote genomes. Mol Biol Evol 24:1752–1760 PubMedGoogle Scholar
  85. Poulton SW, Fralick PW, Canfield DE (2004) The transition to a sulphidic ocean ∼ 1.84 billion years ago. Nature 431:173–177 PubMedGoogle Scholar
  86. Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H (1996) A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 178:1532–1538 PubMedGoogle Scholar
  87. Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MS, Op den Camp HJ, Derksen JW, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96 PubMedGoogle Scholar
  88. Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate:NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: A fusion of pyruvate:ferredoxin oxidoreductase and NADPH-cytochrome P450 reductase. Mol Biol Evol 18:710–720 PubMedGoogle Scholar
  89. Runnegar B (1991) Oxygen and the early evolution of the metazoa. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 65–87 Google Scholar
  90. Sack L, Zeyl C, Bell G, Sharbel T, Reboud X, Bernhardt T, Koelewyn H (1994) Isolation of four new strains of Chlamydomonas reinhardtii (chlorophyta) from soil samples. J Phycol 30:770–773 Google Scholar
  91. Sagan L (1967) On the origin of mitosing cells. J Theoret Biol 14:225–274 Google Scholar
  92. Sanchez LB, Galperin MY, Müller M (2000) Acetyl-CoA Synthetase from the Amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (nucleoside diphosphate-forming). J Biol Chem 275:5794–5803 PubMedGoogle Scholar
  93. Sapp J (1994) Evolution by Association: A History of Symbiosis. Oxford University Press, New York, p 255 Google Scholar
  94. Sapp J (2007) Mitochondria and their host: Morphology to molecular phylogeny. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 57–84 Google Scholar
  95. Schneider T, Schneider A (1985) Wax ester fermentation in Euglena T. Factors favouring the synthesis of odd-numbered fatty acids and alcohols. Planta 166:67–73 Google Scholar
  96. Schöttler U, Bennet EM (1991) Annelids. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 165–185 Google Scholar
  97. Searcy DG (2006) Rapid hydrogen sulfide consumption by Tetrahymena pyriformis and its implications for the origin of mitochondria. Eur J Protistol 42:221–231 PubMedGoogle Scholar
  98. Shen Y, Knoll AH, Walter MR (2003) Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin. Nature 423:632–635 PubMedGoogle Scholar
  99. Simpson AGB, Inagaki Y, Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of primitive eukaryotes. Mol Biol Evol 23:615–625 PubMedGoogle Scholar
  100. Steinbüchel A, Müller M (1986) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20:57–60 PubMedGoogle Scholar
  101. Tachezy J, Dolezal P (2007) Iron–sulfur proteins and iron–sulfur cluster assembly in organisms with hydrogenosomes and mitosomes. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 105–134 Google Scholar
  102. Theissen U (2006) Die Sulfid:Chinon Oxidoreductase (SQR) des Wattwurms Arenicola marina: Funktion, Mechanismus und Evolution. Dissertation, University of Düsseldorf Google Scholar
  103. Tielens AGM, Rotte C, van Hellemond J, Martin W (2002) Mitochondria as we don't know them. Trends Biochem Sci 27:564–572 PubMedGoogle Scholar
  104. Tielens AGM, van Hellemond JJ (2007) Anaerobic mitochondria: Properties and origins. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 85–104 Google Scholar
  105. Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426:172–176 PubMedGoogle Scholar
  106. Tovar J (2007) Mitosomes of parasitic protozoa: Biology and evolutionary significance. In: Martin W, Müller M (eds) Origin of Mitochondria and Hydrogenosomes. Springer, Berlin Heidelberg New York, pp 277–300 Google Scholar
  107. Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba. Mol Microbiol 32:1013–1021 PubMedGoogle Scholar
  108. Tucci S, Proksch P, Martin W (2007) Fatty acid biosynthesis in mitochondria of Euglena. In: Benning C, Ohlrogge J (eds) Current Advances in the Biochemistry and Cell Biology of Plant Lipids. Pp. Aardvark Global Publishing Company, LLC. Salt Lake City, UT, pp 133–136 Google Scholar
  109. van der Giezen M, Tovar J (2005) Degenerate mitochondria. EMBO Rep 6:525–530 PubMedGoogle Scholar
  110. van der Giezen M, Tovar J, Clark CG (2005) Mitochondrion-derived organelles in protists and fungi. Int Rev Cytol 244:175–225 PubMedGoogle Scholar
  111. van Grinsven KWA, Rosnowsky S, van Weelden SWH, Pütz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AGM, Henze K (2007) Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem (in press) [doi:10.1074/jbc.M702528200 Google Scholar
  112. van Hellemond JJ, van der Klei A, van Weelden SW, Tielens AGM (2003) Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philos Trans R Soc Lond B 358:205–213 Google Scholar
  113. van Valen LM, Maiorana VC (1980) The archaebacteria and eukaryotic origins. Nature 287:248–250 PubMedGoogle Scholar
  114. Vetter RD, Powell MA, Somero GN (1991) Metazoan adaptations to sulfide. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 109–128 Google Scholar
  115. Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869 PubMedGoogle Scholar
  116. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50 PubMedGoogle Scholar
  117. Yarlett N (1994) Fermentation product formation. In: Mountfort DO, Orpin CG (eds) Anaerobic Fungi: Biology, Ecology and Function. Marcel Dekker, New York, pp 129–146 Google Scholar
  118. Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236:729–739 PubMedGoogle Scholar
  119. Yong R, Searcy DG (2001) Sulfide oxidation coupled to ATP synthesis in chicken liver mitochondria. Comp Biochem Physiol B 129:129–137 PubMedGoogle Scholar
  120. Zebe E (1991) Arthropods. In: Bryant C (ed) Metazoan Life Without Oxygen. Chapman and Hall, London, pp 218–237 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of BotanyUniversity of DüsseldorfDüsseldorfGermany

Personalised recommendations