Possible Mitochondria-Related Organelles in Poorly-Studied “Amitochondriate” Eukaryotes

Chapter

Abstract

The diversity of mitochondria-like organelles is not restricted to the best-studied examples presented in the previous chapters. The recognised diversity of anaerobic and microaerophilic organisms is broader and they are distributed all across the eukaryotic tree. Many of them – pelobionts, most or all metamonads, anaerobic heteroloboseans, Postgaardi, Andalucia incarcerata and Breviata – harbour double membrane-bounded organelles that do not resemble classical mitochondria, in the sense that they do not have cristae, but are probably homologous to them. For various reasons, these organelles, and the organisms in which they are found, have been studied very little. For example, most of these taxa are not significant from a medical or economic perspective, some were recognised only recently and many are difficult to handle in the laboratory. Therefore, the relationship of these organelles to mitochondria and their functional properties are deduced, so far, only from indirect evidence including the presence of a double-membrane envelope, their association with hydrogen consuming methanogens and the discovery of mitochondrion- or hydrogenosome-specific genes in the organism's genome. Although studies on the metabolic properties of these organelles will struggle with technical obstacles, they promise interesting insights into the versatility of mitochondrial structure and function, and the evolution of anaerobic/microaerophilic life histories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Browser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Euk Microbiol 52:399–451 PubMedCrossRefGoogle Scholar
  2. Andersson JO, Sarchfield SW, Roger AJ (2005) Gene transfers from Nanoarchaeota to an ancestor of diplomonads and parabasalids. Mol Biol Evol 22:85–90 PubMedCrossRefGoogle Scholar
  3. Arisue N, Hasegawa M, Hashimoto T (2005) Root of the eukaryota tree as inferred from combined maximum likelihood analyses of multiple molecular sequence data. Mol Biol Evol 22:409–420 PubMedCrossRefGoogle Scholar
  4. Bapteste E, Brinkmann H, Lee JA, Moore DV, Sensen CW, Gordon P, Durufle L, Gaasterland T, Lopez P, Müller M, Philippe H (2002) The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci USA 99:1414–1419 PubMedCrossRefGoogle Scholar
  5. Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic Fjord (Framvaren, Norway). Appl Environ Microbiol 72:3626–3636 PubMedCrossRefGoogle Scholar
  6. Bernard C, Simpson AGB, Patterson DJ (2000) Some free-living flagellates (protista) from anoxic habitats. Ophelia 52:113–142 Google Scholar
  7. Bloodgood RA, Miller KR, Fitzharris TP, McIntosh JR (1974) The ultrastructure of Pyrsonympha and its associated microorganisms. J Morph 143:77–105 CrossRefGoogle Scholar
  8. Broers CAM, Berkhout RJM, Hua LY, Stumm CK, Vogels GD (1992a) Oxygen responses of the free-living anaerobic ameboflagellate Psalteriomonas lanterna. FEMS Microbiol Ecol 101:165–172 CrossRefGoogle Scholar
  9. Broers CAM, Meijers HHM, Symens JC, Stumm CK, Vogels GD, Brugerolle G (1993) Symbiotic association of Psalteriomonas vulgaris n. spec. with Methanobacterium formicicum. Eur J Protistol 29:98–105 Google Scholar
  10. Broers CAM, Stumm CK, Vogels GD (1992b) Monoxenic cultivation of the anaerobic ameboflagellate Psalteriomonas lanterna and isolation of the methanogenic endosymbiont. FEMS Microbiol Lett 92:115–118 CrossRefGoogle Scholar
  11. Broers CAM, Stumm CK, Vogels GD, Brugerolle G (1990) Psalteriomonas lanterna gen. nov., sp. nov., a free-living ameboflagellate isolated from fresh-water anaerobic sediments. Eur J Protistol 25:369–380 Google Scholar
  12. Brugerolle G, Patterson D (1997) Ultrastructure of Trimastix convexa Hollande, an amitochondriate anaerobic flagellate with a previously undescribed organization. Eur J Protistol 33:121–130 Google Scholar
  13. Brugerolle G, Simpson AG (2004) The flagellar apparatus of heteroloboseans. J Euk Microbiol 51:96–107 PubMedCrossRefGoogle Scholar
  14. Brugerolle G, Joynon L, Oktem N (1973) Contribution a l'étude cytologique et phylétique des diplozoaires (Zoomastigophorea, Diplozoa, Dangeard 1910). II. Etude ultrastructurale du genre Spironucleus (Lavier 1936). Protistologica 9:495–502 Google Scholar
  15. Brul S, Veltman RH, Lombardo MC, Vogels GD (1994) Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. Biochim Biophys Acta 1183:544–546 PubMedCrossRefGoogle Scholar
  16. Cavalier-Smith T (2003) The excavate protozoan phyla Metamonada Grasse emend. (Anaeromonadea, Parabasalia, Carpediemonas, Eopharyngia) and Loukozoa emend. (Jakobea, Malawimonas): their evolutionary affinities and new higher taxa. Int J Syst Evol Microbiol 53:1741–1758 PubMedCrossRefGoogle Scholar
  17. Cavalier-Smith T, Chao EEY, Oates B (2004) Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur J Protistol 40:21–48 CrossRefGoogle Scholar
  18. Chavez LA, Balamuth W, Gong T (1986) A light and electron-microscopic study of a new, polymorphic free-living amoeba, Phreatamoeba balamuthi n. g., n. sp. J Euk Microbiol 33:397–404 CrossRefGoogle Scholar
  19. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287 PubMedCrossRefGoogle Scholar
  20. Dacks JB, Marinets A, Doolittle WF, Cavalier-Smith T, Logsdon JM (2002) Analyses of RNA polymerase II genes from free-living protists: Phylogeny, long branch attraction, and the eukaryotic big bang. Mol Biol Evol 19:830–840 PubMedGoogle Scholar
  21. Dacks JB, Silberman JD, Simpson AGB, Moriya S, Kudo T, Ohkuma M, Redfield RJ (2001) Oxymonads are closely related to the excavate taxon Trimastix. Mol Biol Evol 18:1034–1044 PubMedGoogle Scholar
  22. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99:8324–8329 PubMedCrossRefGoogle Scholar
  23. Edgcomb VP, Roger AJ, Simpson AGB, Kysela DT, Sogin ML (2001) Evolutionary relationships among jakobid flagellates as indicated by alpha- and beta-tubulin phylogenies. Mol Biol Evol 18:514–522 PubMedGoogle Scholar
  24. Edgcomb VP, Simpson AGB, Zettler LA, Nerad TA, Patterson DJ, Holder ME, Sogin ML (2002) Pelobionts are degenerate protists: Insights from molecules and morphology. Mol Biol Evol 19:978–982 PubMedGoogle Scholar
  25. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410 CrossRefGoogle Scholar
  26. Fenchel T, Bernard C, Esteban G, Finlay BJ, Hansen PJ, Iversen N (1995) Microbial diversity and activity in a Danish fjord with anoxic deep water. Ophelia 43:45–100 Google Scholar
  27. Hackstein JHP, Akhmanova A, Voncken F, van Hoek A, van Alen T, Boxma B, Moon-van der Staay S, van der Staay G, Leunissen J, Huynen M, Rosenberg J, Veenhuis M (2001) Hydrogenosomes: convergent adaptations of mitochondria to anaerobic environments. Zoology 104:290–302 PubMedCrossRefGoogle Scholar
  28. Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, Foster PG, Embley TM (2005) Inference of the phylogenetic position of oxymonads based on nine genes: Support for Metamonada and Excavata. Mol Biol Evol 22:2508–2518 PubMedCrossRefGoogle Scholar
  29. Henze K, Horner DS, Suguri S, Moore DV, Sanchez LB, Müller M, Embley TM (2001) Unique phylogenetic relationships of glucokinase and glucosephosphate isomerase of the amitochondriate eukaryotes Giardia intestinalis, Spironucleus barkhanus and Trichomonas vaginalis. Gene 281:123–131 PubMedCrossRefGoogle Scholar
  30. Horner DS, Embley TM (2001) Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18:1970–1975 PubMedGoogle Scholar
  31. Jørgensen A, Sterud E (2007) Phylogeny of Spironucleus (Eopharyngia: Diplomonadida: Hexamitinae). Protist 158:247–254 PubMedCrossRefGoogle Scholar
  32. Keeling PJ, Brugerolle G (2006) Evidence from SSU rRNA phylogeny that Octomitus is a sister lineage to Giardia. Protist 157:205–212 PubMedCrossRefGoogle Scholar
  33. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676 PubMedCrossRefGoogle Scholar
  34. Kolisko M, Cepicka I, Hampl V, Kulda J, Flegr J (2005) The phylogenetic position of enteromonads: a challenge for the present models of diplomonad evolution. Int J Syst Evol Microbiol 55:1729–1733 PubMedCrossRefGoogle Scholar
  35. Lang BF, Burger G, O'Kelly CJ, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Gray MW (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497 PubMedCrossRefGoogle Scholar
  36. Lara E, Chatzinotas A, Simpson AGB (2006) Andalucia (n. gen.) – the deepest branch within jakobids (Jakobida; Excavata), based on morphological and molecular study of a new flagellate from soil. J Euk Microbiol 53:112–120 PubMedCrossRefGoogle Scholar
  37. Milyutina IA, Aleshin VV, Mikrjukov KA, Kedrova OS, Petrov NB (2001) The unusually long small subunit ribosomal RNA gene found in amitochondriate amoeboflagellate Pelomyxa palustris: Its rRNA predicted secondary structure and phylogenetic implication. Gene 272:131–139 PubMedCrossRefGoogle Scholar
  38. Nikolaev SI, Berney C, Petrov NB, Mylnikov AP, Fahrni JF, Pawlowski J (2006) Phylogenetic position of Multicilia marina and the evolution of Amoebozoa. Int J Syst Evol Microbiol 56:1449–1458 PubMedCrossRefGoogle Scholar
  39. O'Kelly CJ, Farmer MA, Nerad TA (1999) Ultrastructure of Trimastix pyriformis (Klebs) Bernard et al.: similarities of Trimastix species with retortamonad and jakobid flagellates. Protist 150:149–162 PubMedCrossRefGoogle Scholar
  40. O'Kelly CJ, Silberman JD, Amaral Zettler LA, Nerad TA, Sogin ML (2003) Monopylocystis visvesvarai n. gen., n. sp and Sawyeria marylandensis n. gen., n. sp.: Two new amitochondrial heterolobosean amoebae from anoxic environments. Protist 154:281–290 PubMedCrossRefGoogle Scholar
  41. Page FC, Blanton RL (1985) The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21:121–132 Google Scholar
  42. Richards TA, Cavalier-Smith T (2005) Myosin domain evolution and the primary divergence of eukaryotes. Nature 436:1113–1118 PubMedCrossRefGoogle Scholar
  43. Rodriguez MA, Garcia-Perez RM, Mendoza L, Sanchez T, Guillen N, Orozco E (1998) The pyruvate:ferredoxin oxidoreductase enzyme is located in the plasma membrane and in a cytoplasmic structure in Entamoeba. Microb Pathog 25:1–10 PubMedCrossRefGoogle Scholar
  44. Seravin LN, Goodkov AV (1987) Cytoplasmic microbody-like granules of the ameba Pelomyxa palustris. Tsitologiya 29:600–606 Google Scholar
  45. Silberman JD, Simpson AGB, Kulda J, Cepicka I, Hampl V, Johnson PJ, Roger AJ (2002) Retortamonad flagellates are closely related to diplomonads – Implications for the history of mitochondrial function in eukaryote evolution. Mol Biol Evol 19:777–786 PubMedGoogle Scholar
  46. Simpson AGB, Bernard C, Patterson DJ (2000) The ultrastructure of Trimastix marina Kent, 1880 (Eukaryota), an excavate flagellate. Eur J Protistol 36:229–251 Google Scholar
  47. Simpson AGB, Inagaki Y, Roger AJ (2006) Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of primitive eukaryotes. Mol Biol Evol 23:615–625 PubMedCrossRefGoogle Scholar
  48. Simpson AGB, Patterson DJ (1999) The ultrastructure of Carpediemonas membranifera (Eukaryota) with reference to the excavate hypothesis. Eur J Protistol 35:353–370 Google Scholar
  49. Simpson AGB, Patterson DJ (2001) On core jakobids and excavate taxa: The ultrastructure of Jakoba incarcerata. J Euk Microbiol 48:480–492 PubMedCrossRefGoogle Scholar
  50. Simpson AGB, Roger AJ (2004a) The real kingdoms of eukaryotes. Curr Biol 14:R693–R696 PubMedCrossRefGoogle Scholar
  51. Simpson AGB, Roger AJ (2004b) Excavata and the origin of amitochondriate eukaryotes. In: Hirt RP, Horner DS (eds) Organelles, genomes and eukaryote phylogeny. CRC Press, Boca Raton, pp 27–53 CrossRefGoogle Scholar
  52. Simpson AGB, Roger AJ, Silberman JD, Leipe DD, Edgcomb VP, Jermiin LS, Patterson DJ, Sogin ML (2002) Evolutionary history of early-diverging eukaryotes: The excavate taxon Carpediemonas is a close relative of Giardia. Mol Biol Evol 19:1782–1791 PubMedGoogle Scholar
  53. Simpson AGB, van den Hoff J, Bernard C, Burton HR, Patterson DJ (1997) The ultrastructure and systematic position of the euglenozoon Postgaardi mariagerensis, Fenchel et al. Arch Protistenkd 147:213–225 Google Scholar
  54. Smirnov AV, Fenchel T (1996) Vahlkampfia anaerobica n. sp. and Vannella peregrinia n. sp. (Rhizopoda) – Anaerobic amoebae from a marine sediment. Arch Protistenkd 147:189–198 Google Scholar
  55. Stechmann A, Cavalier-Smith T (2002) Rooting the eukaryote tree by using a derived gene fusion. Science 297:89–91 PubMedCrossRefGoogle Scholar
  56. Stechmann A, Cavalier-Smith T (2003) The root of the eukaryote tree pinpointed. Curr Biol 13:R665–R666 PubMedCrossRefGoogle Scholar
  57. Sterud E, Poynton SL (2002) Spironucleus vortens (Diplomonadida) in the ide, Leuciscus idus (L.) (Cyprinidae): a warm water hexamitid flagellate found in northern Europe. J Euk Microbiol 49:137–145 PubMedCrossRefGoogle Scholar
  58. Townson SM, Upcroft JA, Upcroft P (1996) Characterisation and purification of pyruvate:ferredoxin oxidoreductase from Giardia duodenalis. Mol Biochem Parasitol 79:183–193 PubMedCrossRefGoogle Scholar
  59. Yubuki N, Inagaki Y, Nakayama T, Inouye I (2007) Ultrastructure and ribosomal RNA phylogeny of the free-living heterotrophic flagellate Dysnectes brevis n. gen., n. sp., a new member of the Fornicata. J Euk Microbiol 54:191–200 PubMedCrossRefGoogle Scholar
  60. van Bruggen JJA, Stumm CK, Zwart KB, Vogels GD (1985) Endosymbiotic methanogenic bacteria of the sapropelic ameba Mastigella. FEMS Microbiol Ecol 31:187–192 CrossRefGoogle Scholar
  61. van Bruggen JJA, Vanrens GLM, Geertman EJM, Zwart KB, Stumm CK, Vogels GD (1988) Isolation of a methanogenic endosymbiont of the sapropelic ameba Pelomyxa palustris Greeff. J Protozool 35:20–23 Google Scholar
  62. Voncken FGJ, Boxma B, van Hoek AHAM, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JHP (2002) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp L2. Gene 284:103–112 PubMedCrossRefGoogle Scholar
  63. Walker G, Dacks JB, Embley TM (2006) Ultrastructural description of Breviata anathema, n. gen., n. sp., the organism previously studied as Mastigamoeba invertens. J Euk Microbiol 53:65–78 PubMedCrossRefGoogle Scholar
  64. Walker G, Simpson AGB, Edgcomb V, Sogin ML, Patterson DJ (2001) Ultrastructural identities of Mastigamoeba punctachora, Mastigamoeba simplex and Mastigella commutans and assessment of hypotheses of relatedness of the pelobionts (Protista). Eur J Protistol 37:25–49 CrossRefGoogle Scholar
  65. Weerakoon ND, Harper JDI, Simpson AGB, Patterson DJ (1999) Centrin in the groove: immunolocalisation of centrin and microtubules in the putatively primitive protist Chilomastix cuspidata (Retortamonadida). Protoplasma 210:75–84 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Department of BiologyDalhousie UniversityHalifaxCanada

Personalised recommendations