Molybdate and Tungstate: Uptake, Homeostasis, Cofactors, and Enzymes

  • Guenter Schwarz
  • Peter-Leon Hagedoorn
  • Katrin Fischer
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 6)

Abstract

Molybdenum (Mo) and tungsten (W) are trace elements that catalyze, upon binding to the appropriate cofactors, diverse and important redox reactions in the global carbon, nitrogen, and sulfur cycles. Mo is found in two forms of oxygen-labile metal cofactors, a pterin-based and a Fe-S-cluster-based scaffold, while W naturally only occurs in association with pterin cofactors and FeW-nitrogenases have been generated artificially. Both oxyanions enter the cell via an ABC-type high affinity uptake system and are subsequently processed by a multistep biosynthetic machinery forming either Mo- and W-pterin cofactors (Moco or Wco) in a large variety of Mo- and W-containing enzymes or the FeMo cofactor (FeMo-co) in nitrogenase-catalyzed nitrogen fixation. The functional diversity of pterin-based Mo and W cofactors is reflected by a large number of enzymes such as nitrate reductase, dimethyl sulfoxide reductase, formate dehydrogenase, aldehyde oxidoreductase and CO dehydrogenase. In these enzymes Mo and W are bound via thiolates to one or two unique tricyclic pterin moieties, commonly referred to as molybdopterin but the term “metal binding pterin” (MPT) is more appropriate due to its association with both, Mo and W. It is commonly believed, but still not demonstrated, that Moco and Wco are synthesized by a similar and highly conserved pathway. Synthesis of the Moco can be divided into four major steps, according to the biosynthetic intermediates cyclic pyranopterin monophosphate, MPT, and adenylated MPT. Differences in the final metal insertion step(s) between Moco and Wco synthesis will be discussed. In contrast, FeMo-co biosynthesis is less understood in terms of reaction intermediate and mechanisms of different reactions catalyzed by the involved proteins. It starts with the formation of Fe-S cluster core structures that are assembled and arranged to a topology similar to mature FeMo-co. In the next steps, Mo and homocitrate are transferred before the mature cofactor is inserted into nitrogenase. Finally, a brief overview about Mo- and W-pterin enzymes as well as FeMo- and FeW-nitrogenases is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson LA, McNairn E, Lubke T, Pau RN, Boxer DH (2000) ModE-dependent molybdate regulation of the molybdenum cofactor operon moa in Escherichia coli. J Bacteriol 182:7035–7043 PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson LA, Palmer T, Price NC, Bornemann S, Boxer DH, Pau RN (1997) Characterisation of the molybdenum-responsive ModE regulatory protein and its binding to the promoter region of the modABCD (molybdenum transport) operon of Escherichia coli. Eur J Biochem 246:119–126 PubMedCrossRefGoogle Scholar
  3. 3.
    Andreesen JR, Ljungdahl LG (1973) Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116:867–873 PubMedGoogle Scholar
  4. 4.
    Arnoux P, Sabaty M, Alric J, Frangioni B, Guigliarelli B, Adriano JM, Pignol D (2003) Structural and redox plasticity in the heterodimeric periplasmic nitrate reductase. Nat Struct Biol 10:928–934 PubMedCrossRefGoogle Scholar
  5. 5.
    Barney BM, Lee HI, Dos Santos PC, Hoffman BM, Dean DR, Seefeldt LC (2006) Breaking the N2 triple bond: insights into the nitrogenase mechanism. Dalton Trans pp 2277–2284 Google Scholar
  6. 6.
    Benemann JR, Smith GM, Kostel PJ, McKenna CE (1973) Tungsten incorporation into Azotobacter vinelandii nitrogenase. FEBS Lett 29:219–221 PubMedCrossRefGoogle Scholar
  7. 7.
    Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687 PubMedCrossRefGoogle Scholar
  8. 8.
    Bevers LE, Bol E, Hagedoorn PL, Hagen WR (2005) WOR5: A novel tungsten containing aldehyde oxidoreductase from Pyrococcus furiosus with a broad substrate specificity. J Bacteriol 187:7056–7061 PubMedCrossRefGoogle Scholar
  9. 9.
    Bevers LE, Hagedoorn PL, Krijger GC, Hagen WR (2006) Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters. J Bacteriol 188:6498–6505 PubMedCrossRefGoogle Scholar
  10. 10.
    Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384 PubMedCrossRefGoogle Scholar
  11. 11.
    Blasco F, Dos Santos JP, Magalon A, Frixon C, Guigliarelli B, Santini CL, Giordano G (1998) NarJ is a specific chaperone required for molybdenum cofactor assembly in nitrate reductase A of Escherichia coli. Mol Microbiol 28:435–447 PubMedCrossRefGoogle Scholar
  12. 12.
    Boll M, Schink B, Messerschmidt A, Kroneck PMH (2005) Novel bacterial molybdenum and tungsten enzymes: three-dimensional structure, spectroscopy, and reaction mechanism. Biol Chem 386:999–1006 PubMedCrossRefGoogle Scholar
  13. 13.
    Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308 PubMedCrossRefGoogle Scholar
  14. 14.
    Buc J, Santini C-L, Giordani R, Czjzek M, Wu L-F, Giordano G (1999) Enzymatic and physiological properties of the tungsten-substituted molybdenum TMAO reductase from Escherichia coli. Mol Microbiol 32:159–168 PubMedCrossRefGoogle Scholar
  15. 15.
    Burgess BK, Lowe DJ (1996) Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–3012 PubMedCrossRefGoogle Scholar
  16. 16.
    Chan MK, Kim J, Rees DC (1993) The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science 260:792–794 PubMedCrossRefGoogle Scholar
  17. 17.
    Chan MK, Mukund S, Kletzin A, Adams MWW, Rees DC (1995) Structure of a hyperthermophilic tungstopterin, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469 PubMedCrossRefGoogle Scholar
  18. 18.
    Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow JA (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 PubMedCrossRefGoogle Scholar
  19. 19.
    Corbett MC, Hu Y, Fay AW, Ribbe MW, Hedman B, Hodgson KO (2006) Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc Natl Acad Sci USA 103:1238–1243 PubMedCrossRefGoogle Scholar
  20. 20.
    Cox PA (1995) The elements on earth. Oxford University Press, Oxford, UK Google Scholar
  21. 21.
    Curatti L, Ludden PW, Rubio LM (2006) NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 103:5297–5301 PubMedCrossRefGoogle Scholar
  22. 22.
    Dias JM, Than ME, Humm AE, Huber R, Bourenkov GP, Bartunik HD, Bursakov S, Calvete J, Caldeira J, Carneiro C, Moura JJG, Moura I, Romao MJ (1999) Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods. Structure 7:65–79 PubMedCrossRefGoogle Scholar
  23. 23.
    Dobbek H, Gremer L, Kiefersauer R, Huber R, Meyer O (2002) Catalysis at a dinuclear [CuSMo(=O)OH] cluster in a CO dehydrogenase resolved at 1.9 Å resolution. Proc Natl Acad Sci USA 99:15971–15976 PubMedCrossRefGoogle Scholar
  24. 24.
    Dos Santos PC, Dean DR, Hu Y, Ribbe MW (2004) Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173 PubMedCrossRefGoogle Scholar
  25. 25.
    Eaves DJ, Palmer T, Boxer DH (1997) The product of the molybdenum cofactor gene mobB of Escherichia coli is a GTP-binding protein. Eur J Biochem 246:690–697 PubMedCrossRefGoogle Scholar
  26. 26.
    Einsle O, Tezcan FA, Andrade SL, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700 PubMedCrossRefGoogle Scholar
  27. 27.
    Esnouf RM (1997) An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J Mol Graph Model 15:132–134 PubMedCrossRefGoogle Scholar
  28. 28.
    Fischer K, Llamas A, Tejada-Jimenez M, Schader N, Kuper J, Ataya FS, Galvan A, Mendel RR, Fernandez E, Schwarz G (2006) Function and structure of the molybdenum cofactor carrier protein MCP from chlamydomonas reinhardtii. J Biol Chem 281:30186–30194 PubMedCrossRefGoogle Scholar
  29. 29.
    Frazzon J, Dean DR (2002) Biosynthesis of the nitrogenase iron-molybdenum-cofactor from Azotobacter vinelandii. Met Ions Biol Syst 39:163–186 PubMedGoogle Scholar
  30. 30.
    Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257:1653–1659 PubMedCrossRefGoogle Scholar
  31. 31.
    Glaser JH, DeMoss JA (1971) Phenotypic restoration by molybdate of nitrate reductase activity in chlD mutants of Escherichia coli. J Bacteriol 108:854–860 PubMedGoogle Scholar
  32. 32.
    Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK, Dean DR (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428 PubMedCrossRefGoogle Scholar
  33. 33.
    Grunden AM, Shanmugam KT (1997) Molybdate transport and regulation in bacteria. Arch Microbiol 168:345–354 PubMedCrossRefGoogle Scholar
  34. 34.
    Guse A, Stevenson CE, Kuper J, Buchanan G, Schwarz G, Giordano G, Magalon A, Mendel RR, Lawson DM, Palmer T (2003) Biochemical and structural analysis of the molybdenum cofactor biosynthesis protein MobA. J Biol Chem 278:25302–25307 PubMedCrossRefGoogle Scholar
  35. 35.
    Gutzke G, Fischer B, Mendel RR, Schwarz G (2001) Thiocarboxylation of molybdopterin synthase provides evidence for the mechanism of dithiolene formation in metal-binding pterins. J Biol Chem 276:36268–36274 PubMedCrossRefGoogle Scholar
  36. 36.
    Hagedoorn PL, Hagen WR, Stewart LJ, Docrat A, Bailey S, Garner CD (2003) Redox characteristics of the tungsten DMSO reductase of Rhodobacter capsulatus. FEBS Lett 555:606–610 PubMedCrossRefGoogle Scholar
  37. 37.
    Hales BJ, Case EE (1987) Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium. J Biol Chem 262:16205–16211 PubMedGoogle Scholar
  38. 38.
    Hänzelmann P, Meyer O (1998) Effect of molybdate and tungstate on the biosynthesis of CO dehydrogenase and the molybdopterin cytosine-dinucleotide-type of molybdenum cofactor in Hydrogenophaga pseudoflava. Eur J Biochem 255:755–765 PubMedCrossRefGoogle Scholar
  39. 39.
    Hanzelmann P, Schindelin H (2006) Binding of 5′-GTP to the C-terminal Fe-S cluster of the radical S-adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc Natl Acad Sci USA 103:6829–6834 PubMedCrossRefGoogle Scholar
  40. 40.
    Hänzelmann P, Schindelin H (2004) Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc Natl Acad Sci USA 101:12870–12875 PubMedCrossRefGoogle Scholar
  41. 41.
    Hänzelmann P, Schwarz G, Mendel RR (2002) Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis. J Biol Chem 277:18303–18312 PubMedCrossRefGoogle Scholar
  42. 42.
    Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816 PubMedCrossRefGoogle Scholar
  43. 43.
    Hille R (2002) Molybdenum enzymes containing the pyranopterin cofactor: an overview. Met Ions Biol Syst 39:187–226 PubMedGoogle Scholar
  44. 44.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci USA 102:3236–3241 PubMedCrossRefGoogle Scholar
  45. 45.
    Hu Y, Rech S, Gunsalus RP, Rees DC (1997) Crystal structure of the molybdate binding protein ModA. Nat Struct Biol 4:703–707 PubMedCrossRefGoogle Scholar
  46. 46.
    Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: the mechanism of the Mo-dependent nitrogenas. Crit Rev Biochem Mol Biol 38:351–384 PubMedCrossRefGoogle Scholar
  47. 47.
    Imperial J, Hadi M, Amy NK (1998) Molybdate binding by ModA, the periplasmic component of the Escherichia coli mod molybdate transport system. Biochim Biophys Acta 1370:337–346 PubMedCrossRefGoogle Scholar
  48. 48.
    Jormakka M, Richardson D, Byrne B, Iwata S (2004) Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12:95–104 PubMedCrossRefGoogle Scholar
  49. 49.
    Jormakka M, Tornroth S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295:1863–1868 PubMedCrossRefGoogle Scholar
  50. 50.
    Joshi MS, Johnson JL, Rajagopalan KV (1996) Molybdenum cofactor biosynthesis in Escherichia coli mod and mog mutants. J Bacteriol 178:4310–4312 PubMedGoogle Scholar
  51. 51.
    Kappler U, Bailey S (2005) Molecular basis of intramolecular electron transfer in sulfite-oxidizing enzymes is revealed by high resolution structure of a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit. J Biol Chem 280:24999–25007 PubMedCrossRefGoogle Scholar
  52. 52.
    Kappler U, Bennett B, Rethmeier J, Schwarz G, Deutzmann R, McEwan AG, Dahl C (2000) Sulfite: cytochrome c oxidoreductase from Thiobacillus novellus - purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family. J Biol Chem 275:13202–13212 PubMedCrossRefGoogle Scholar
  53. 53.
    Kisker C, Schindelin H, Pacheco A, Wehbi WA, Garrett RM, Rajagopalan KV, Enemark JH, Rees DC (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983 PubMedCrossRefGoogle Scholar
  54. 54.
    Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806 PubMedCrossRefGoogle Scholar
  55. 55.
    Kuper J, Palmer T, Mendel RR, Schwarz G (2000) Mutations in the molybdenum cofactor biosynthetic protein Cnx1G from Arabidopsis thaliana define functions for molybdopterin bind, Mo-insertion and molybdenum cofactor stabilization. Proc Natl Acad Sci USA 97:6475–6480 PubMedCrossRefGoogle Scholar
  56. 56.
    Lake MW, Temple CA, Rajagopalan KV, Schindelin H (2000) The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J Biol Chem 275:40211–40217 PubMedCrossRefGoogle Scholar
  57. 57.
    Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB–MoaD complex. Nature 414:325–329 PubMedCrossRefGoogle Scholar
  58. 58.
    Lawson DM, Smith BE (2002) Molybdenum nitrogenases: a crystallographic and mechanistic view. Met Ions Biol Syst 39:75–119 PubMedGoogle Scholar
  59. 59.
    Leimkuehler S, Rajagopalan KV (2001) A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem 276:22024–22031 CrossRefGoogle Scholar
  60. 60.
    Leimkuehler S, Wuebbens MM, Rajagopalan KV (2001) Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J Biol Chem 276:34695–34701 CrossRefGoogle Scholar
  61. 61.
    Leimkühler S, Kern M, Solomon PS, McEwan AG, Schwarz G, Mendel RR, Klipp W (1998) Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. Mol Microbiol 27:853–869 PubMedCrossRefGoogle Scholar
  62. 62.
    Leonhardt U, Andreesen JR (1977) Some properties of formate dehydrogenase accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol 115:277–284 PubMedCrossRefGoogle Scholar
  63. 63.
    Liu MT, Wuebbens MM, Rajagopalan KV, Schindelin H (2000) Crystal structure of the gephyrin-related molybdenum cofactor biosynthesis protein MogA from Escherichia coli. J Biol Chem 275:1814–1822 PubMedCrossRefGoogle Scholar
  64. 64.
    Llamas A, Mendel RR, Schwarz G (2004) Synthesis of adenylated molybdopterin: an essential step for molybdenum insertion. J Biol Chem 279:55241–55246 PubMedCrossRefGoogle Scholar
  65. 65.
    Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G (2006) The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J Biol Chem 281:18343–18350 PubMedCrossRefGoogle Scholar
  66. 66.
    Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, Weiner JH, Strynadka NC (2004) Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem 279:50391–50400 PubMedCrossRefGoogle Scholar
  67. 67.
    Magalon A, Frixon C, Pommier J, Giordano G, Blasco F (2002) In vivo interactions between gene products involved in the final stages of molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 7:7 Google Scholar
  68. 68.
    Makdessi K, Andreesen JR, Pich A (2001) Tungstate uptake by a highly specific ABC transporter in Eubacterium acidaminophilum. J Biol Chem 276:24557–24564 PubMedCrossRefGoogle Scholar
  69. 69.
    Moura JJ, Brondino CD, Trincao J, Romao MJ (2004) Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases. J Biol Inorg Chem 9:791–799 PubMedCrossRefGoogle Scholar
  70. 70.
    Mukund S, Adams MWW (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic Archaeon Pyrococcus furiosus. J Biol Chem 270:8389–8392 PubMedCrossRefGoogle Scholar
  71. 71.
    Mukund S, Adams MWW (1996) Molybdenum and vanadium do not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol 178:163–167 PubMedGoogle Scholar
  72. 72.
    Neumann M, Schulte M, Junemann N, Stocklein W, Leimkuhler S (2006) Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase. J Biol Chem 281:15701–15708 PubMedCrossRefGoogle Scholar
  73. 73.
    Nichols JD, Rajagopalan KV (2005) In vitro molybdenum ligation to molybdopterin using purified components. J Biol Chem 280:7817–7822 PubMedCrossRefGoogle Scholar
  74. 74.
    Palmer T, Goodfellow IP, Sockett RE, McEwan AG, Boxer DH (1998) Characterisation of the mob locus from Rhodobacter sphaeroides required for molybdenum cofactor biosynthesis. Biochim Biophys Acta 1395:135–140 PubMedGoogle Scholar
  75. 75.
    Palmer T, Vasishta A, Whitty PW, Boxer DH (1994) Isolation of protein FA, a product of the mob locus required for molybdenum cofactor biosynthesis in Escherichia coli. Eur J Biochem 222:687–692 PubMedCrossRefGoogle Scholar
  76. 76.
    Pau RN, Lawson DM (2002) Transport, homeostasis, regulation, and binding of molybdate and tungstate to proteins. Met Ions Biol Syst 39:31–74 PubMedGoogle Scholar
  77. 77.
    Raaijmakers H, Macieira S, Dias JM, Teixeira S, Bursakov S, Huber R, Moura JJG, Moura I, Romão MJ (2002) Gene sequence and the 1.8 Å crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. Structure 10:1261–1272 PubMedCrossRefGoogle Scholar
  78. 78.
    Rajagopalan KV, Johnson JL (1992) The pterin molybdenum cofactors. J Biol Chem 267:10199–10202 PubMedGoogle Scholar
  79. 79.
    Rangaraj P, Ludden PW (2002) Accumulation of 99Mo-containing iron-molybdenum cofactor precursors of nitrogenase on NifNE, NifH, and NifX of Azotobacter vinelandii. J Biol Chem 277:40106–40111 PubMedCrossRefGoogle Scholar
  80. 80.
    Rangaraj P, Ruttimann-Johnson C, Shah VK, Ludden PW (2001) Accumulation of 55Fe-labeled precursors of the iron-molybdenum cofactor of nitrogenase on NifH, NifX of Azotobacter vinelandii. J Biol Chem 276:15968–15974 PubMedCrossRefGoogle Scholar
  81. 81.
    Rebelo JM, Dias JM, Huber R, Moura JJ, Romao MJ (2001) Structure refinement of the aldehyde oxidoreductase from Desulfovibrio gigas (MOP) at 1.28 Å. J Biol Inorg Chem 6:791–800 PubMedCrossRefGoogle Scholar
  82. 82.
    Rees DC (2002) Great metalloclusters in enzymology. Annu Rev Biochem 71:221–246 PubMedCrossRefGoogle Scholar
  83. 83.
    Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566 PubMedCrossRefGoogle Scholar
  84. 84.
    Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178 PubMedCrossRefGoogle Scholar
  85. 85.
    Robb FT, Maeder DL, Brown JR, DiRuggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM (2001) Genomic sequence of hyperthermophile, Pyrococcus furiosus: implications for physiology and enzymology. Methods Enzymol 330:134–157 PubMedCrossRefGoogle Scholar
  86. 86.
    Rosner BM, Schink B (1995) Purification and characterization of acetylene hydratase of Pelobacter acetylenicus, a tungsten iron-sulfur protein. J Bacteriol 177:5767–5772 PubMedGoogle Scholar
  87. 87.
    Roy R, Adams MWW (2002) Characterization of a fourth tungsten-containing enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol 184:6952–6956 PubMedCrossRefGoogle Scholar
  88. 88.
    Roy R, Mukund S, Shut GJ, Dunn DM, Weiss R, Adams MWW (1999) Purification and Molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic Archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family. J Bacteriol 181:1171–1180 PubMedGoogle Scholar
  89. 89.
    Rubio LM, Ludden PW (2005) Maturation of nitrogenase: a biochemical puzzle. J Bacteriol 187:405–414 PubMedCrossRefGoogle Scholar
  90. 90.
    Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H (2001) Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat Struct Biol 8:42–46 PubMedCrossRefGoogle Scholar
  91. 91.
    Sanishvili R, Beasley S, Skarina T, Glesne D, Joachimiak A, Edwards A, Savchenko A (2004) The crystal structure of Escherichia coli MoaB suggests a probable role in molybdenum cofactor synthesis. J Biol Chem 279:42139–42146 PubMedCrossRefGoogle Scholar
  92. 92.
    Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G (2004) The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J Biol Chem 279:15994–15999 PubMedCrossRefGoogle Scholar
  93. 93.
    Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621 PubMedCrossRefGoogle Scholar
  94. 94.
    Schindelin H, Kisker C, Schlessman JL, Howard JB, Rees DC (1997) Structure of ADP × AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387:370–376 PubMedCrossRefGoogle Scholar
  95. 95.
    Schmitz RA, Richter M, Linder D, Thauer RK (1992) A tungsten-containing active formylmethanofuran dehydrogenase in the thermophilic Archaeon Methanobacterium wolfei. Eur J Biochem 207:559–565 PubMedCrossRefGoogle Scholar
  96. 96.
    Schuttelkopf AW, Harrison JA, Boxer DH, Hunter WN (2002) Passive acquisition of ligand by the MopII molbindin from Clostridium pasteurianum: structures of apo and oxyanion-bound forms. J Biol Chem 277:15013–15020 PubMedCrossRefGoogle Scholar
  97. 97.
    Schwarz G (2005) Molybdenum cofactor biosynthesis and deficiency. Cell Mol Life Sci 62:2792–2810 PubMedCrossRefGoogle Scholar
  98. 98.
    Schwarz G, Boxer DH, Mendel RR (1997) Molybdenum cofactor biosynthesis. The plant protein Cnx1 binds molybdopterin with high affinity. J Biol Chem 272:26811–26814 PubMedCrossRefGoogle Scholar
  99. 99.
    Schwarz G, Schulze J, Bittner F, Eilers T, Kuper J, Bollmann G, Nerlich A, Brinkmann H, Mendel RR (2000) The molybdenum cofactor biosynthetic protein Cnx1 complements molybdate- repairable mutants, transfers molybdenum to the metal binding pterin, and is associated with the cytoskeleton. Plant Cell 12:2455–2472 PubMedCrossRefGoogle Scholar
  100. 100.
    Siemann S, Schneider K, Oley M, Müller A (2003) Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 42:3846–3857 PubMedCrossRefGoogle Scholar
  101. 101.
    Sofia HJ, Chen G, Hetzler BG, Reyes-Spindola JF, Miller NE (2001) Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. Nucleic Acids Res 29:1097–1106 PubMedCrossRefGoogle Scholar
  102. 102.
    Stevenson CEM, Sargent F, Buchanan G, Palmer T, Lawson DM (2000) Crystal structure of the molybdenum cofactor biosynthesis protein MobA from Escherichia coli at near-atom resolution. Structure 8:1115–1125 PubMedCrossRefGoogle Scholar
  103. 103.
    Stewart LJ, Bailey S, Bennet B, Charnock JM, Garner CD, McAlpine AS (2000) Dimethylsulfoxide reductase: an enzyme capable of catalysis with either molybdenum or tungsten at the active site. J Mol Biol 299:593–600 PubMedCrossRefGoogle Scholar
  104. 104.
    Stiefel EI (2002) The biogeochemistry of molybdenum and tungsten. Met Ions Biol Syst 39:1–29 PubMedGoogle Scholar
  105. 105.
    Stolz JF, Basu P (2002) Evolution of nitrate reductase: molecular and structural variations on a common function. Chem Biochem 3:198–206 Google Scholar
  106. 106.
    Temple CA, Rajagopalan KV (2000) Mechanism of assembly of the bis(molybdopterin guanine dinucleotide)molybdenum cofactor in Rhodobacter sphaeroides dimethyl sulfoxide reductase. J Biol Chem 275:40202–40210 PubMedCrossRefGoogle Scholar
  107. 107.
    Trautwein T, Krauss F, Lottspeich F, Simon H (1994) The (2R)-hydroxycarboxylate-viologen-oxidoreductase from Proteus vulgaris is a molybdenum-containing iron-sulphur protein. Eur J Biochem 222:1025–1032 PubMedCrossRefGoogle Scholar
  108. 108.
    Vergnes A, Gouffi-Belhabich K, Blasco F, Giordano G, Magalon A (2004) Involvement of the molybdenum cofactor biosynthetic machinery in the maturation of the Escherichia coli nitrate reductase A. J Biol Chem 279:41398–41403 PubMedCrossRefGoogle Scholar
  109. 109.
    Wang G, Angermuller S, Klipp W (1993) Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175:3031–3042 PubMedGoogle Scholar
  110. 110.
    Weiner JH, Rothery RA, Sambasivarao D, Trieber CA (1992) Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. Biochim Biophys Acta 1102:1–18 PubMedCrossRefGoogle Scholar
  111. 111.
    Williams RJ, Frausto da Silva JJ (2002) The involvement of molybdenum in life. Biochem Biophys Res Commun 292:293–299 PubMedCrossRefGoogle Scholar
  112. 112.
    Wuebbens MM, Liu MTW, Rajagopalan KV, Schindelin H (2000) Insights into molybdenum cofactor deficiency provided by the crystal structure of the molybdenum cofactor biosynthesis protein MoaC. Structure 8:709–718 PubMedCrossRefGoogle Scholar
  113. 113.
    Wuebbens MM, Rajagopalan KV (1995) Investigation of the early steps of molybdopterin biosynthesis in Escherichia coli through the use of in vivo labeling studies. J Biol Chem 270:1082–1087 PubMedCrossRefGoogle Scholar
  114. 114.
    Wuebbens MM, Rajagopalan KV (2003) Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278:14523–14532 PubMedCrossRefGoogle Scholar
  115. 115.
    Xiang S, Nichols J, Rajagopalan KV, Schindelin H (2001) The crystal structure of Escherichia coli MoeA and its relationship to the multifunctional protein gephyrin. Structure 9:299–310 PubMedCrossRefGoogle Scholar
  116. 116.
    Yuvaniyama P, Agar JN, Cash VL, Johnson MK, Dean DR (2000) NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97:599–604 PubMedCrossRefGoogle Scholar
  117. 117.
    Zheng L, White RH, Cash VL, Jack RF, Dean DR (1993) Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90:2754–2758 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Guenter Schwarz
    • 1
  • Peter-Leon Hagedoorn
    • 2
  • Katrin Fischer
    • 1
  1. 1.Institute of BiochemistryUniversity of CologneKölnGermany
  2. 2.Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations