Skip to main content

Part of the book series: Microbiology Monographs ((MICROMONO,volume 5))

Abstract

Biosynthesis of the three aromatic amino acids (l-phenylalanine, l-trypto phan, l-tyrosine) and its regulation in Escherichia coli and corynebacteria are reviewed. The common aromatic biosynthetic pathway (shikimate pathway) starts with the condensation of phosphoenolpyruvate and erythrose 4-phosphate. Through six biosynthetic steps the pathway proceeds via shikimate to chorismate, from which the terminal pathways to tryptophan, phenylalanine and tyrosine branch. The first step in the common pathway is performed in E. coli by three isoenzymes, which are specifically feedback-inhibited by the three terminal products.

The pathway to tryptophan starts with anthranilate formation and includes reactions with l-serine and 5-phosphoribosyl-pyrophosphate. Phenylalanine and tyrosine biosyntheses proceed via prephenate, and each include a decarboxylation and transamination step. The first committed steps of each terminal pathway are strictly regulated by feedback inhibition, repression and partly through attenuation (in E. coli).

l-Tryptophan and l-phenylalanine are essential amino acids for man and most livestock. Main microbial producer strains are E. coli and Corynebacterium glutamicum. Strain development includes alleviation of the various regulatory levels (feedback inhibition resistance, derepression), both in the common aromatic pathway and in the terminal pathways. In recent years, metabolic engineering has also taken into account the fact that precursor supply may become limiting once the other impediments for carbon flux are gone. Strains with improved phosphoenolpyruvate and/or erythrose 4-phosphate supply have successfully been developed. Applications for l-tryptophan are the feed and pharmaceutical markets, while l-phenylalanine is mainly used as building block for the artificial sweetener, aspartame

®. A possible application for l-tyrosine is as a building block for the synthesis of l-DOPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba S, Tsunekawa H, Imanaka T (1982) New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl Environ Microbiol 43:289–297

    PubMed  CAS  Google Scholar 

  2. Ajinomoto (2006) Fact sheet: Feed-use amino acids business. http://www.ajinomoto.com/mx_03/ar/i_r/pdf/presentation/FY2005data.pdf

  3. Anton JA, Coggins JR (1988) Sequencing and overexpression of the Escherichia aroE gene encoding shikimate dehydrogenase. Biochem J 249:319–326

    PubMed  CAS  Google Scholar 

  4. Azuma S, Tsunekawa H, Okabe M, Okamoto R, Aiba S (1993) Hyper-production of l-tryptophan via fermentation with crystallization. Appl Microbiol Biotechnol 39:471–476

    CAS  Google Scholar 

  5. Backman KC (1992) Method of biosynthesis of phenylalanine. US Patent 5169768

    Google Scholar 

  6. Backman K, O'Connor MJ, Maruya A, Rudd E, McKay D, Balakrishnan R, Radjai M, DiPasquantonio V, Shoda D, Hatch R, Venkatasubramanian K (1990) Genetic engineering of metabolic pathways applied to the production of phenylalanine. Ann NY Acad Sci 589:16–24

    PubMed  CAS  Google Scholar 

  7. Baez JL, Bolivar F, Gosset G (2001) Determination of 3-deoxy-d-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of glucose phosphotransferase system. Biotechnol Bioeng 73:530–535

    PubMed  CAS  Google Scholar 

  8. Baez-Viveros JL, Osuna J, Hernandez-Chavez G, Soberon X, Bolivar F, Gosset G (2004) Metabolic engineering and protein directed evolution increase the yield of l-phenyl- alanine synthesized from glucose in Escherichia coli. Biotechnol Bioeng 87:516–524

    PubMed  CAS  Google Scholar 

  9. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    PubMed  CAS  Google Scholar 

  10. Bang W-G, Lang S, Sahm H, Wagner F (1983) Production of l-tryptophan by Escherichia coli cells. Biotechnol Bioeng 25:999–1011

    CAS  PubMed  Google Scholar 

  11. Benach J, Lee I, Edstrom W, Kuzin AP, Chiang Y, Acton TB, Montelione GT, Hunt JF (2003) The 23-X crystal structure of the shikimate 5-dehydrogenase orthologue YdiB from Escherichia coli suggests a novel catalytic environment for an NAD-dependent dehydrogenase. J Biol Chem 278:19176–19182

    PubMed  CAS  Google Scholar 

  12. Bender SL, Mehdi S, Knowles JR (1989) Dehydroquinate synthase: the role of divalent metal cations and of nicotinamide adenine dinucleotide in catalysis. Biochemistry 28:7555–7560

    PubMed  CAS  Google Scholar 

  13. Bentley R (1990) The shikimate pathway- a metabolic tree with many branches. CRC Crit Rev Biochem Mol Biol 2:307-384

    Google Scholar 

  14. Berry A (1996) Improving production of aromatic compounds in Escherichia coli by metabolic engineering. Trends Biotechnol 14:250–256

    PubMed  CAS  Google Scholar 

  15. Berry A. Dodge T, Pepsin M, Weyler W (2002) Application of metabolic engineering to improve both the production and use of biotech indigo. J Ind Microbiol Biotechnol 28:127–133

    Google Scholar 

  16. Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metabol Engin 3:289–300

    CAS  Google Scholar 

  17. Brown RL, Somerville KD (1971) Repression of aromatic amino acid biosynthesis in Escherichia coli. J Bacteriol 108:386–399

    PubMed  CAS  Google Scholar 

  18. Caligiuri MG, Bauerle R (1991) Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhimurium. Evidence for an amino-terminal regulatory site. J Biol Chem 266:8328–8335

    PubMed  CAS  Google Scholar 

  19. Chan E-C, Tsai H-L, Chen S-L, Mou D-G (1993) Amplification of the tryptophan operon gene in Escherichia coli chromosome to increase l-tryptophan biosynthesis. Appl Microbiol Biotechnol 40:301–305

    CAS  Google Scholar 

  20. Chan MS, Hsu WH (1996) Cloning of m-fluorophenylalanine-resistant gene and mutational analysis of feedback-resistant prephenate dehydratase from Corynebacterium glutamicum. Biochem Biophys Res Commun 219:537–542

    PubMed  CAS  Google Scholar 

  21. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814

    PubMed  CAS  Google Scholar 

  22. Chao YP, Liao JC (1993) Alteration of growth yield by overexpression of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in Escherichia coli. Appl Environ Microbiol 59:4261–4265

    PubMed  CAS  Google Scholar 

  23. Chao Y-P, Lai ZJ, Chen P, Chern J-T (1999) Enhanced conversion rate of l-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotechnol Prog 15:453–458

    PubMed  CAS  Google Scholar 

  24. Chen R, Hatzimanikatis V, Yap WM, Postma PW, Bailey JE (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanine-producing recombinant Escherichia coli. Biotechnol Prog 13:768–775

    PubMed  CAS  Google Scholar 

  25. Chen S, Vincent S, Wilson DB, Ganem B (2003) Mapping of chorismate mutase and prephenate dehydrogenase domains in the Escherichia coli T-protein. Eur J Biochem 270:757–763

    PubMed  CAS  Google Scholar 

  26. Choi YJ, Tribe DE (1982) Continuous production of phenylalanine using an Escherichia coli regulatory mutant. Biotechnol Lett 4:223–228

    CAS  Google Scholar 

  27. Choi HK, Kim HY, Lee DJ, Lim BL, Rhym H, Won CH, Choi HG (1992) Method for production of l-phenylalanine by recombinant E. coli. US Patent 5304475

    Google Scholar 

  28. Davis BD (1951) Aromatic biosynthesis, I. The role of shikimic acid. J Biol Chem 191:315–325

    PubMed  CAS  Google Scholar 

  29. De Boer L, Dijkhuizen L (1990) Microbial and enzymatic processes for l-phenylalanine production. Adv Biochem Eng Biotechnol 41:1–27

    Google Scholar 

  30. Dell KA, Frost JW (1993) Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis. J Am Chem Soc 115:11581–11589

    CAS  Google Scholar 

  31. del Real G, Aguilar A, Martín JF (1985) Cloning and expression of tryptophan genes from Brevibacterium lactofermentum in Escherichia coli. Biochem Biophys Res Commun 133:1013–1019

    PubMed  CAS  Google Scholar 

  32. Dewick PM (1998) The biosynthesis of shikimate metabolites. Nat Prod Rep 15:17–58

    PubMed  CAS  Google Scholar 

  33. Dosselaere F, Vanderleyden J (2001) A metabolic node in action: chorismate-utilizing enzymes in microorganisms. Crit Rev Microbiol 27:75–131

    PubMed  CAS  Google Scholar 

  34. Draths KM, Frost JW (1990) Synthesis using plasmid-based biocatalysis: Plasmid assembly and 3-deoxy-d-arabino-heptulosonate production. J Am Chem Soc 112:1657–1659

    CAS  Google Scholar 

  35. Draths KM, Ward TL, Frost JW (1992) Biocatalysis and nineteenth century organic chemistry: conversion of d-glucose into quinoid organics. J Am Chem Soc 114:9725–9726

    CAS  Google Scholar 

  36. Draths KM, Pompliano DL, Conley DL, Frost JW, Berry A, Disbrow GL, Staversky RJ, Lievense JC (1992) Biocatalytic synthesis of aromatics from d-glucose: the role of transketolase. J Am Chem Soc 114:3956–3962

    CAS  Google Scholar 

  37. Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: Replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604

    CAS  Google Scholar 

  38. Edwards RM, Taylor PP, Hunter MG, Fotheringham IG (1987) Composite plasmids for amino acid synthesis. WO 87/00,202

    Google Scholar 

  39. Eggeling L, Sahm H (1999) Amino acid production: principles of metabolic engineering. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 153–176

    Google Scholar 

  40. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton, FL

    Google Scholar 

  41. Ensley BD, Ratzkin BJ, Osslund TD, Simon MJ, Wackett LP, Gibson DT (1983) Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222:167–169

    PubMed  CAS  Google Scholar 

  42. Faurie R, Fries G (1999) From sugar beet molasses to Lyphan ®-integrated quality management from the raw material to the drug. In: Tryptophan, serotonin and melatonin: Basic aspects and applications. Adv Exp Med Biol 467:443–452

    PubMed  CAS  Google Scholar 

  43. Fazel AM, Bowen JR, Jensen RA (1980) Arogenate (pretyrosine) is an obligatory intermediate of l-tyrosine biosynthesis: confirmation in a microbial mutant. Proc Natl Acad Sci USA 77:1270–1273

    PubMed  CAS  Google Scholar 

  44. Flores N, Xiao J, Berry A, Bolivar F, Valle F (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 14:620–623

    PubMed  CAS  Google Scholar 

  45. Foerberg C, Eliaeson T, Haeggstroem L (1988) Correlation of theoretical and experimental yields of phenylalanine from non-growing cells of a rec Escherichia coli strain. J Biotechnol 7:319–332

    CAS  Google Scholar 

  46. Fotheringham IG, Taylor PP, Ton JL (1998) Preparation of d-amino acids by direct fermentative means. US Patent 5728555

    Google Scholar 

  47. Fraenkel DG (1996) Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, 2 edn, vol 1. ASM, Washington DC, pp 189–198

    Google Scholar 

  48. Frost JW (1992) Enhanced production of common aromatic pathway compounds. US Patent 5168056

    Google Scholar 

  49. Frost JW, Knowles JR (1984) 3-Deoxy-d-arabino-heptulosonic acid 7-phosphate: chemical synthesis and isolation from Escherichia coli auxotrophs. Biochemistry 23:4465–4469

    PubMed  CAS  Google Scholar 

  50. Frost JW, Draths KM (1995) Biocatalytic syntheses of aromatics from d-glucose: renewable microbial sources of aromatic compounds. Annu Rev Microbiol 49:557–579

    PubMed  CAS  Google Scholar 

  51. Gelfand DH, Steinberg RA (1977) Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J Bacteriol 130:429-440

    PubMed  CAS  Google Scholar 

  52. Ger YM, Chen SL, Chiang HJ, Shiuan D (1994) A single Ser-180 mutation desensitizes feedback inhibition of the phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase in Escherichia coli. J Biochem 116:986–990

    PubMed  CAS  Google Scholar 

  53. Gerigk M, Bujnicki R, Ganpo-Nkwenkwa E, Bongaerts J, Sprenger G, Takors R (2002a) Process control for enhanced l-phenylalanine production using different recombinant Escherichia coli strains. Biotechnol Bioeng 80:746–754

    PubMed  CAS  Google Scholar 

  54. Gerigk M, Maass D, Kreutzer A, Sprenger G, Bongaerts J, Wubbolts M, Takors R (2002b) Enhanced pilot-scale fed-batch l-phenylalanine production with recombinant Escherichia coli by fully integrated reactive extraction. Bioproc Biosyst Eng 25:43–52

    CAS  Google Scholar 

  55. Gething MJH, Davidson BE, Dopheide TAA (1976) Chorismate mutase/prephenate dehydratase from Escherichia coli K 12. Eur J Biochem 71:317–325

    PubMed  CAS  Google Scholar 

  56. Gibson F (1964) Chorismic acid: purification and some chemical and physical studies. Biochem J 90:256–261

    PubMed  CAS  Google Scholar 

  57. Gibson MI, Gibson F, Doy CH, Morgan P (1962) The branch point in the biosynthesis of the aromatic amino-acids. Nature (London) 195:1173–1175

    CAS  Google Scholar 

  58. Gil GH, Kom SR, Bae JC, Lee JH (1985) Pilot-scale production of l-phenylalanine from d-glucose. Enzyme Microb Technol 7:370–372

    CAS  Google Scholar 

  59. Gollnick P, Babitzke P (2002) Transcription attenuation. Biochim Biophys Acta 1577:240–250

    PubMed  CAS  Google Scholar 

  60. Gollnick P, Babitzke P, Merino E, Yanofsky C (2002) Aromatic amino acid metabolism in Bacillus subtilis. In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and its closest relatives: from genes to cells. American Society for Microbiology, Washington, DC, pp 233–244

    Google Scholar 

  61. Gollnick P, Babitzke P, Antson A, Yanofsky C (2005) Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. Annu Rev Genet 39:47–68

    PubMed  CAS  Google Scholar 

  62. Gosset G, Yong-Xiao J, Berry A (1996) A direct comparison of approaches for increasing carbon flow to aromatic biosynthesis in Escherichia coli. J Ind Microbiol 17:47–52

    PubMed  CAS  Google Scholar 

  63. Grinter N (1998) Developing an l-phenylalanine process. Chemtech 28:33–37

    CAS  Google Scholar 

  64. Gulevich AY, Biryukova IV, Zimenkov DV, Skorokhodova AY, Kivero AD, Belareva AV, Mashko SV (2004) Method for producing l-amino acid using bacterium having enhanced expression of pckA gene. WO 2004/090125

    Google Scholar 

  65. Hagino H, Nakayama K (1974) l-phenylalanine production by analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem 38:157–161

    CAS  Google Scholar 

  66. Hagino H, Nakayama K (1975) Regulatory properties of anthranilate synthase from Corynebacterium glutamicum. Agric Biol Chem 39:323–330

    CAS  Google Scholar 

  67. Haslam E (1993) Shikimic acid metabolism and metabolites. Wiley, Chichester, UK

    Google Scholar 

  68. Heery DM, Dunican LK (1993) Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence. Appl Environ Microbiol 59:791–799

    CAS  Google Scholar 

  69. Heimstaedt K, Strittmatter A, Lipscomb WN, Braus GH (2005) Evolution of 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 102:9784–9789

    Google Scholar 

  70. Henkin TM, Yanofsky C (2002) Regulation by transcription attenuation in bacteria: how RNA provides instructions for transcription termination/antitermination decisions. BioEssays 24:700–707

    PubMed  CAS  Google Scholar 

  71. Hermann T (2003) Industrial production of amino acids by coryneform bacteria. J Biotechnol 104:155–172

    PubMed  CAS  Google Scholar 

  72. Herrmann KM (1983) The common aromatic biosynthetic pathway. In: Herrmann KM, Somerville RL (eds) Amino acids: biosynthesis and genetic regulation. Addison-Wesley, Reading, MA, pp 301–322

    Google Scholar 

  73. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    PubMed  CAS  Google Scholar 

  74. Herrmann KM, Weaver LM (1999) The shikimate pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    PubMed  CAS  Google Scholar 

  75. Hsu SK, Lin LL, Lo HH, Hsu WH (2004) Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum. Arch Microbiol 181:237–244

    PubMed  CAS  Google Scholar 

  76. Hummel W, Schuette H, Schmidt E, Wandrey C, Kula MR (1987) Isolation of l-phenyl- alanine dehydrogenase from Rhodococcus sp. M4 and its application for the production of l-phenylalanine. Appl Microbiol Biotechnol 26:409–416

    CAS  Google Scholar 

  77. Hwang SO, Gil GH, Cho YJ, Kang KR, Lee JH, Bae JC (1985) The fermentation process for l-phenylalanine production using an auxotrophic regulatory mutant of Escherichia coli. Appl Microbiol Biotechnol 22:108–113

    CAS  Google Scholar 

  78. Hyde SC, Ahmed SA, Pallars EA, Miles EH, Davies DR (1988) Three dimensional structure of the tryptophan synthase α2β2 multienzyme complex from Salmonella typhimurium. J Biol Chem 263:17857–17871

    PubMed  CAS  Google Scholar 

  79. Igarashi K, Kishino M, Seki M, Takenouchi T, Kureyama M (1993) Production of l-phenyl- alanine. Japan Patent 5304971A.

    Google Scholar 

  80. Ikeda M (2003) Amino acid production processes. In: Faurie R, Thommel J (eds) Microbial production of l-amino acids. Adv Biochem Eng Biotechnol 79:1–35

    PubMed  CAS  Google Scholar 

  81. Ikeda M (2006) Towards bacterial strains overproducing l-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 69:615–626

    PubMed  CAS  Google Scholar 

  82. Ikeda M, Katsumata R (1992) Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol 58:781–785

    PubMed  CAS  Google Scholar 

  83. Ikeda M, Katsumata R (1994) Transport of aromatic amino acids and its influence on overproduction of the amino acids in Corynebacterium glutamicum. J Ferment Bioeng 78:420–425

    CAS  Google Scholar 

  84. Ikeda M, Katsumata R (1995) Tryptophan production by transport mutants of Corynebacterium glutamicum. Biosci Biotech Biochem 59:1600–1602

    CAS  Google Scholar 

  85. Ikeda M, Katsumata R (1999) Hyperproduction of tryptophan by Corynebacterium glutamicum with the modified pentose phosphate pathway. Appl Environ Microbiol 65:2497–2502

    PubMed  CAS  Google Scholar 

  86. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    PubMed  CAS  Google Scholar 

  87. Ikeda M, Ozaki A, Katsumata R (1993) Phenylalanine production by metabolically engineered Corynebacterium glutamicum with the pheA gene of Escherichia coli. Appl Microbiol Biotechnol 39:318–323

    PubMed  CAS  Google Scholar 

  88. Ikeda M, Okamoto K, Katsumata R (1999) Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol 51:201–206

    PubMed  CAS  Google Scholar 

  89. Ikeda M, Nakanishi K, Kino K, Katsumata R (1994) Fermentative production of tryptophan by a stable recombinant strain of Corynebacterium glutamicum with a modified serine-biosynthetic pathway. Biosci Biotech Biochem 58:674–678

    CAS  Google Scholar 

  90. Ito H, Sato K, Enei H, Hirose Y (1990a) Improvement in microbial production of l-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54:823–824

    PubMed  CAS  Google Scholar 

  91. Ito H, Sato K, Matsui K, Sano K, Enei H, Hirose Y (1990b) Molecular breeding of a Brevibacterium lactofermentum l-phenylalanine producer using a cloned prephenate dehydratase gene. Appl Microbiol Biotechnol 33:190–195

    CAS  Google Scholar 

  92. Ito H, Sato K, Matsui K, Sano K, Nakamori S, Tanaka T, Enei H (1990c) Cloning and characterization of genes responsible for m-fluoro-d,l-phenylalanine resistance in Brevibacterium lactofermentum. Agric Biol Chem 54:707–713

    PubMed  CAS  Google Scholar 

  93. Jensen RA (1996) Evolution of metabolic pathways in enteric bacteria. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 2. ASM, Washington, DC, pp 2649–2662

    Google Scholar 

  94. Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Liden G (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92:541–552

    PubMed  CAS  Google Scholar 

  95. Jossek R, Bongaerts J, Sprenger GA (2001) Characterization of a new feedback-resistant 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of Escherichia coli. FEMS Microbiol Lett 202:145–148

    PubMed  CAS  Google Scholar 

  96. Jung E, Zamir LO, Jensen RA (1986) Chloroplasts of higher plants synthesize l-phenyl- alanine via l-arogenate. Proc Natl Acad Sci USA 83:7231–7235

    PubMed  CAS  Google Scholar 

  97. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns B, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Krämer R, Linke B, McHardy AC, Meyer F, Möckel B, Pfefferle W, Pühler A, Rey DA, Rückert C, Rupp O, Sahm H, Wendisch VF, Wiegräbe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    PubMed  CAS  Google Scholar 

  98. Katsumata R, Ikeda M (1993) Hyperproduction of tryptophan in Corynebacterium glutamicum by pathway engineering. Biotechnology 11:921–925

    CAS  Google Scholar 

  99. Khodursky AB, Peter BJ, Cozzarelli NR, Botstein D, Brown PO, Yanofsky C (2000) DNA microarray analysis of gene expression in response to physiological and genetic changes that affect tryptophan metabolism in Escherichia coli. Proc Natl Acad Sci USA 97:12170–12175

    PubMed  CAS  Google Scholar 

  100. Kikuchi Y, Tsujimoto K, Kurahashi O (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase of Escherichia coli. Appl Environ Microbiol 63:761–762

    PubMed  CAS  Google Scholar 

  101. Kim TH, Namgoong S, Kwak JH, Lee SY, Lee HS (2000) Effects of tktA, aroF fbr, and aroL expression in the tryptophan-producing Escherichia coli. J Microbiol Biotechnol 10:789–796

    CAS  Google Scholar 

  102. Knaggs AR (2001) The biosynthesis of shikimate metabolites. Nat Prod Rep 18:334–355

    PubMed  CAS  Google Scholar 

  103. Knaggs AR (2003) The biosynthesis of shikimate metabolites. Nat Prod Rep 20:119–136

    PubMed  CAS  Google Scholar 

  104. Knop DR, Draths KM, Chandran SS, Barker JL, Frost JW (2001) Hydroaromatic equilibrium during biosynthesis of shikimic acid. J Am Chem Soc 123:10173–10182

    PubMed  CAS  Google Scholar 

  105. Koehn SJ, Evans TM, Nelson RA, Taylor PP (1994) Methods for increasing carbon conversion efficiency in microorganisms. WO 94/28154

    Google Scholar 

  106. Konstantinov KB, Yoshida T (1992) Knowledge-based control of fermentation processes. Biotech Bioeng 39:479–486

    CAS  Google Scholar 

  107. Konstantinov KB, Nishio N, Seki T, Yoshida T (1991) Physiologically motivated strategies for control of the fed-batch cultivation of recombinant Escherichia coli for phenylalanine production. J Ferment Bioeng 71:350–355

    CAS  Google Scholar 

  108. Krämer R (1994) Systems and mechanisms of amino acid uptake and excretion in prokaryotes. Arch Microbiol 162:1–13

    PubMed  Google Scholar 

  109. Krämer M, Karutz M, Sprenger G, Sahm H (1999) Microbial preparation of substances from aromatic metabolism III. WO 99/55877

    Google Scholar 

  110. Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283

    PubMed  Google Scholar 

  111. Lawley B, Pittard AJ (1994) Regulation of aroL by TyrR protein and Trp repressor in Escherichia coli K-12. J Bacteriol 176:6921–6930

    PubMed  CAS  Google Scholar 

  112. Layne E (1957) Spectrophotometric and turbidimetric methods for measuring proteins. Meth Enzymol 3:447–455

    Google Scholar 

  113. Leuchtenberger W (1996) Amino acids – technical production and use. In: Rehm HJ, Reed G, Pühler A, Stadler P, Roehr M (eds) Biotechnology, 2nd edn, vol 6. VCH, Weinheim, pp 465–502

    Google Scholar 

  114. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8

    PubMed  CAS  Google Scholar 

  115. Liao JC (1996) Microorganisms and methods for overproduction of DAHP by cloned pps gene. WO 96/08,567

    Google Scholar 

  116. Liao JC, Chao YP, Patnaik R (1994) Alteration of the biochemical valves in the central metabolism of Escherichia coli. Ann NY Acad Sci 30:21–34

    Google Scholar 

  117. Liao JC, Hou SY, Chao YP (1996) Pathway analysis, engineering, and physiological considerations for redirecting central metabolism. Biotechnol Bioeng 52:129–140

    CAS  PubMed  Google Scholar 

  118. Liao H-F, Lin L-L, Chien HR, Hsu W-H (2001) Serine 187 is a crucial residue for allosteric regulation of Corynebacterium glutamicum 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. FEMS Microbiol Lett 194:59–64

    PubMed  CAS  Google Scholar 

  119. Liebl W, Ehrmann M, Ludwig W, Schleifer KH (1991) Transfer of Brevibacterium divaricatum DSM 20297T, “Brevibacterium flavum” DSM 20411, “Brevibacterium lactofermentum” DSM 20412 and DSM 1412, and Corynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41:255–260

    PubMed  CAS  Google Scholar 

  120. Liu DX, Fan CS, Tao JH, Liang GX, Gao SE, Wang HJ, Li X, Song DX (2004) Integration of E. coli aroG-pheA tandem genes into Corynebacterium glutamicum tyrA locus and its effect on l-phenylalanine biosynthesis. World J Gastroenterol 10:3683–3687

    PubMed  CAS  Google Scholar 

  121. Lloyd-George I, Chang TMS (1995) Characterization of free and alginate-polylysine-alginate microencapsulated Erwinia herbicola for the conversion of ammonia, pyruvate, and phenol into l-tyrosine. Biotechnol Bioeng 48:706–714

    CAS  PubMed  Google Scholar 

  122. Lu JL, Liao JC (1997) Metabolic engineering and control analysis for production of aromatics: role of transaldolase. Biotechnol Bioeng 53:132–138

    CAS  PubMed  Google Scholar 

  123. Maass D, Gerigk M, Kreutzer A, Weuster-Botz D, Wubbolts M, Takors R (2002) Membrane-based reactive extraction for integrated l-phenylalanine separation in an Escherichia coli fed-batch process: from lab to pilot scale. Bioproc Biosyst Engin 25:85–96

    CAS  Google Scholar 

  124. Maiti TK, Roy A, Mukherjee SK, Chatterjee SP (1995) Microbial production of l-tyrosine: a review. Hindustan Antibiot Bull 37:51–65

    PubMed  CAS  Google Scholar 

  125. Man TK, Pease AJ, Winkler ME (1997) Maximization of transcription of the serC (pdxF)-aroA multifunctional operon by antagonistic effects of the cyclic AMP (cAMP) receptor protein-cAMP complex and Lrp global regulators of Escherichia coli K-12. J Bacteriol 179:3458–3469

    PubMed  CAS  Google Scholar 

  126. Marin-Sanguino A, Torres NV (2000) Optimization of tryptophan production in bacteria. Design of a strategy for genetic manipulation of the tryptophan operon for tryptophan flux maximization. Biotechnol Prog 16:133–145

    PubMed  CAS  Google Scholar 

  127. Mascarenhas D, Ashworth DJ, Chen CS (1991) Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol 57:2995–2999

    PubMed  CAS  Google Scholar 

  128. Matsui K, Miwa K, Sano K (1987a) Two single base pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes of Brevibacterium lactofermentum. J Bacteriol 109:5330–5332

    Google Scholar 

  129. Matsui K, Miwa K, Sano K (1987b) Cloning of tryptophan genes of Brevibacterium lactofermentum, a glutamic acid-producing bacterium. Agric Biol Chem 51:823–828

    CAS  Google Scholar 

  130. Mayeno AN, Gleich GJ (1994) Eosinophilia-Myalgia syndrome and tryptophan production: a cautionary tale. Tibtech 12:346–352

    CAS  Google Scholar 

  131. McCandliss RJ, Poling MD, Herrmann KM (1978) 3-Deoxy-d-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli. J Biol Chem 253:4259–4265

    PubMed  CAS  Google Scholar 

  132. McHardy AC, Tauch A, Rückert C, Pühler A, Kalinowski J (2003) Genome-based analysis of biosynthetic aminotransferase genes of Corynebacterium glutamicum. J Biotechnol 104:229–240

    PubMed  CAS  Google Scholar 

  133. Michel G, Roszak AW, Sauve V, Maclean J, Matte A, Coggins JR, Cygler M, Lapthorn AJ (2003) Structures of shikimate dehydrogenase AroE and its paralog YdiB. J Biol Chem 278:19463–19472

    PubMed  CAS  Google Scholar 

  134. Miller JE, Backman KC, O'Connor MJ, Hatch RT (1987) Production of phenylalanine and organic acids by phosphoenolpyruvate carboxylase-deficient mutants of Escherichia coli. J Ind Microbiol 2:143–149

    CAS  Google Scholar 

  135. Morollo AA, Bauerle R (1993) Characterization of composite aminodeoxy-isochorismate synthase and aminodeoxyisochorismate lyase activities of anthranilate synthase. Proc Natl Acad Sci USA 90:9983–9987

    PubMed  CAS  Google Scholar 

  136. Müller B, Pacholski C, Simat T, Steinhart H (1999) Synthesis and formation of an EMS correlated contaminant in biotechnologically manufactured l-tryptophan. In: Tryptophan, serotonin and melatonin: Basic aspects and applications. Adv Exp Med Biology 467:481–486

    Google Scholar 

  137. Müller U, van Assema F, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans AN, Townsend CA, Sonke T, Bovenberg R, Wubbolts M (2006) Metabolic engineering of the E. coli l-phenylalanine pathway for the production of d-phenylglycine (D-Phg). Metabol Engin 8:196–208

    Google Scholar 

  138. Murdock D, Ensley BD, Serdar C, Thalen M (1993) Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Bio-Technol 11:381-386

    CAS  Google Scholar 

  139. Nakamichi K, Nabe K, Nishida Y, Tosa T (1989) Production of l-phenylalanine from phenylpyruvate by Paracoccus denitrificans containing aminotransferase activity. Appl Microbiol Biotechnol 30:243–246

    CAS  Google Scholar 

  140. Nelms J, Gonzalez DH, Yoshida T, Fotheringham I (1992) Novel mutations in the pheA gene of Escherichia coli K-12 which result in highly feedback inhibition-resistant variants of chorismate mutase/prephenate dehydratase. Appl Environ Microbiol 58:2592–2598

    PubMed  CAS  Google Scholar 

  141. Nichols BP (1996) Evolution of genes and enzymes of tryptophan biosynthesis. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 2. ASM, Washington, DC, pp 2638–2648

    Google Scholar 

  142. Niederberger P, Prasad R, Miozzari G, Kacser H (1992) A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J 287:473–479

    PubMed  CAS  Google Scholar 

  143. Ogino T, Garner C, Markley JL, Herrmann KM (1982) Biosynthesis of aromatic compounds: 13C NMR spectroscopy of whole Escherichia coli cells. Proc Natl Acad Sci USA 79:5828–5832

    PubMed  CAS  Google Scholar 

  144. Oldiges M, Kunze M, Degenring D, Sprenger GA, Takors R (2004) Stimulation, monitoring and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnol Prog 20:1623–1633

    PubMed  CAS  Google Scholar 

  145. Ozaki A, Katsumata R, Oka T, Furuya A (1985) Cloning of the genes concerned in phenylalanine biosynthesis in Corynebacterium glutamicum and its application to breeding of a phenylalanine producing strain. Agric Biol Chem 49:2925–2930

    CAS  Google Scholar 

  146. Panina EM, Vitreschak AG, Mironov AA, Gelfand MS (2001) Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. J Mol Microbiol Biotechnol 3:529–543

    PubMed  CAS  Google Scholar 

  147. Parker C, Barnell WO, Snoep JL, Ingram LO, Conway T (1995) Characterization of the Zymomonas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport. Mol Microbiol 15:795–802

    PubMed  CAS  Google Scholar 

  148. Patnaik R, Liao JC (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol 60:3903–3908

    PubMed  CAS  Google Scholar 

  149. Patnaik R, Spitzer R, Liao JC (1995) Pathway engineering for production of aromatics in Escherichia coli: confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities. Biotechnol Bioeng 46:361–370

    CAS  PubMed  Google Scholar 

  150. Pittard J (1996) Biosynthesis of the aromatic amino acids. In: Neidhardt FC (ed) Escherichia coli and Salmonella: cellular and molecular biology, vol 1. ASM, Washington, DC, pp 458–484

    Google Scholar 

  151. Pittard J, Yang J (2005) Biosynthesis of phenylalanine and tyrosine. EcoSal Module 3618. In: Böck A, Curtiss R III, Kaper JB, Neidhardt FC, Nyström T, Rudd KE, Squires CL (eds) Ecosal Escherichia coli and Salmonella: cellular and molecular biology. www.ecosal.org, ASM, Washington, DC

    Google Scholar 

  152. Pittard J, Camakaris H, Yang J (2005) The TyrR regulon. Mol Microbiol 55:16–26

    PubMed  CAS  Google Scholar 

  153. Pohnert G, Zhang S, Husain A, Wilson DB, Ganem B (1999) Regulation of phenylalanine biosynthesis. Studies on the mechanism of phenylalanine binding and feedback inhibition in the Escherichia coli P-protein. Biochemistry 38:12212–12217

    PubMed  CAS  Google Scholar 

  154. Polen T, Krämer M, Bongaerts J, Wubbolts M, Wendisch VF (2005) The global gene expression response of Escherichia coli to l-phenylalanine. J Biotechnol 115:221–237

    PubMed  CAS  Google Scholar 

  155. Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  CAS  Google Scholar 

  156. Ray JM, Yanofsky C, Bauerle (1988) Mutational analysis of the catalytic and feedback sites of the tryptophan-sensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase of Escherichia coli. J Bacteriol 170:5500–5506

    PubMed  CAS  Google Scholar 

  157. Roberts F, Roberts CW, Johnson JJ, Kyle DE, Krell T, Coggins JR, Coombs GH, Milhous WK, Tzipori S, Ferguson DJ, Chakrabarti D, McLeod R (1998) Evidence for the shikimate pathway in apicomplexan parasites. Nature 393:801–805

    PubMed  CAS  Google Scholar 

  158. Rüffer N, Heidersdorf U, Kretzers I, Sprenger GA, Raeven L, Takors R (2004) Fully integrated l-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli. Bioproc Biosyst Engin 26:239–248

    Google Scholar 

  159. Sano K, Matsui K (1987) Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium. Gene 53:191–200

    PubMed  CAS  Google Scholar 

  160. Sauer U, Eikmanns BJ (2005) The PEP pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    PubMed  CAS  Google Scholar 

  161. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409:258–268

    PubMed  CAS  Google Scholar 

  162. Schmid JW, Mauch K, Reuss M, Gilles ED, Kremling A (2004) Metabolic design based on a coupled gene expression–metabolic network model of tryptophan production in Escherichia coli. Metabol Engin 6:364–377

    CAS  Google Scholar 

  163. Shiio I, Miyajima R, Nakagawa M (1972) Regulation of aromatic amino acid biosynthesis in Brevibacterium flavum, I, Regulation of anthranilate synthetase. J Biochem 72:1447–1455

    PubMed  CAS  Google Scholar 

  164. Shu CH, Liao CC (2002) Optimization of l-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnol Bioeng 77:131–141

    PubMed  CAS  Google Scholar 

  165. Simat TJ, Kleeberg KK, Müller G, Sierts A (1999) Synthesis, formation, and occurrence of contaminants in biotechnologically manufactured l-tryptophan. In: Tryptophan, serotonin and melatonin: basic aspects and applications. Adv Exp Med Biol 467:469–480

    PubMed  CAS  Google Scholar 

  166. Snell KD, Draths KM, Frost JW (1996) Synthetic modification of the Escherichia coli chromosome: enhancing the biocatalytic conversion of glucose into aromatic chemicals. J Am Chem Soc 116:5605–5614

    Google Scholar 

  167. Snoep JL, Arfman N, Yomano LP, Fliege RK, Conway T, Ingram LO (1994) Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase. J Bacteriol 176:2133–2135

    PubMed  CAS  Google Scholar 

  168. Somerville RL (1983) Tryptophan: biosynthesis, regulation, and large-scale production. In: Herrmann KM, Somerville RL (eds) Amino acids: biosynthesis and genetic regulation. Addison-Wesley, Reading, MA, pp 351–378

    Google Scholar 

  169. Song J, Bonner CA, Wolinsky M, Jensen RA (2005) The TyrA family of aromatic-pathway dehydrogenases in phylogenetic context. BMC Biology 3:13

    PubMed  Google Scholar 

  170. Sprenger GA (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330

    PubMed  CAS  Google Scholar 

  171. Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998a) Microbial preparation of substances from aromatic metabolism/I. WO 98/18936

    Google Scholar 

  172. Sprenger G, Siewe R, Sahm H, Karutz M, Sonke T (1998b) Microbial preparation of substances from aromatic metabolism/II. WO 98/18937

    Google Scholar 

  173. Srinivasan PR, Sprinson DB (1959) 2-keto-3-deoxy-d-arabo-heptonic acid 7-phosphate synthetase. J Biol Chem 234:713–716

    PubMed  CAS  Google Scholar 

  174. Stahl JL, Cook EB, Pariza MA, Cook ME, Graziano FM (2001) Effect of l-tryptophan supplementation on eosinophils and eotaxin in guinea pigs. Exp Biol Med 226:177–184

    CAS  Google Scholar 

  175. Sugimoto S, Shiio I (1980) Purification and properties of dissociable chorismate mutase from Brevibacterium flavum. J Biochem 88:167–176

    PubMed  CAS  Google Scholar 

  176. Sugimoto S, Shiio I (1982) Tryptophan synthase and production of l-tryptophan in regulatory mutants. Agric Biol Chem 46:2711–2718

    CAS  Google Scholar 

  177. Sugimoto S, Yabuta M, Kato N, Seki T, Yoshida T, Taguchi H (1987) Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda. J Biotechnol 5:237–253

    CAS  Google Scholar 

  178. SwissProt (2005) UniProtKB/Swiss-Prot protein knowledgebase Swiss-Prot headline. Release 466 of 26-Apr-2005 http://us.expasy.org/sprot/relnotes/spwrnew.html

  179. Takagi M, Nishio Y, Oh G, Yoshida T (1996) Control of l-phenylalanine production by dual feeding of glucose and l-tyrosine. Biotechnol Bioeng 52:653–660

    CAS  PubMed  Google Scholar 

  180. Taylor PP, Grinter NJ, McCarthy SL; Pantaleone DP; Ton JL, Yoshida RK; Fotheringham IG (2000) d-Phenylalanine biosynthesis using Escherichia coli: Creation of a new metabolic pathway. In: Saha BC, Demirjian DC (eds) Applied Biocatalysis in Specialty Chemicals and Pharmaceuticals. ACS Symposium Series 776, pp 65–75

    Google Scholar 

  181. Tonouchi N, Kojima H, Matsui H (1997) Recombinant DNA sequences encoding feedback inhibition released enzymes, plasmids comprising the recombinant DNA sequences, transformed microorganisms useful in the production of aromatic amino acids, and a process for preparing aromatic amino acids by fermentation. EP 0,488,424 B1

    Google Scholar 

  182. Tribe DE, Pittard J (1979) Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl Environ Microbiol 38:181–190

    PubMed  CAS  Google Scholar 

  183. Tsuchida T, Kubota K, Morinaga Y, Matsui H, Enei H, Yoshinaga F (1987) Production of l-phenylalanine by a mutant of Brevibacterium lactofermentum 2256. Agric Biol Chem 51:2095–2101

    CAS  Google Scholar 

  184. Umbarger HE (1978) Amino acid biosynthesis and its regulation. Annu Rev Biochem 47:533–606

    CAS  Google Scholar 

  185. Valle F, Munoz E, Ponce E, Flores N, Bolivar F (1996) Basic and applied aspects of metabolic diversity: the phosphoenolpyruvate node. J Ind Microbiol Biotechnol 17:458–462

    CAS  Google Scholar 

  186. Vertes AA, Inui M, Yukawa H (2005) Manipulating corynebacteria, from individual genes to chromosomes. Appl Environ Microbiol 71:7633–7642

    PubMed  CAS  Google Scholar 

  187. Vitreschak AG, Lyubetskaya EV, Shirshin MA, Gelfand MS, Lyubetsky VA (2004) Attenuation regulation of amino acid biosynthetic operons in proteobacteria: comparative genomics analysis. FEMS Microbiol Lett 234:357–370

    PubMed  CAS  Google Scholar 

  188. Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog 20:706–714

    PubMed  CAS  Google Scholar 

  189. Weaver LM, Herrmann KM (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase. J Bacteriol 172:6581–6584

    PubMed  CAS  Google Scholar 

  190. Weikert C, Sauer U, Bailey JE (1998) Increased phenylalanine production by growing and nongrowing Escherichia coli strain CWML2. Biotechnol Prog 14:420–424

    PubMed  CAS  Google Scholar 

  191. Weisser P, Krämer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177:351–354

    Google Scholar 

  192. Whipp MJ, Pittard AJ (1995) A reassessment of the relationship between aroK- and aroL-encoded shikimate kinase enzymes of Escherichia coli. J Bacteriol 177:1627–1629

    PubMed  CAS  Google Scholar 

  193. White RH (2004) l-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. Biochemistry 43:7618–7627

    PubMed  CAS  Google Scholar 

  194. Xie G, Keyhani NO, Bonner CA, Jensen RA (2003) Ancient origin of the tryptophan operon and the dynamics of evolutionary change. Microbiol Mol Biol Rev 67:303–342

    PubMed  CAS  Google Scholar 

  195. Yajima Y, Sakimoto K, Takahashi K, Miyao K, Kudome Y, Aichi K (1990) l-Tryptophan-producing microorganism and production of l-tryptophan. Japan Patent Appl 02,190,182

    Google Scholar 

  196. Yanofsky C (2001) Advancing our knowledge in biochemistry, genetics, and microbiology through studies on tryptophan metabolism. Annu Rev Biochem 70:1–37

    PubMed  CAS  Google Scholar 

  197. Yanofsky C (2003) Using studies on tryptophan metabolism to answer basic biological questions. J Biol Chem 278:10859–10878

    PubMed  CAS  Google Scholar 

  198. Yanofsky C, Crawford IP (1972) Tryptophan synthetase. In: Boyer PD (ed) The Enzymes, vol 7, 3rd edn. Academic, New York, pp 1–31

    Google Scholar 

  199. Yi J, Li K, Draths KM, Frost JW (2002) Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli. Biotechnol Prog 18:1141–1148

    PubMed  CAS  Google Scholar 

  200. Zeman R, Plachy J, Bulantova H, Sikyta B, Pavlasova E, Stejskalova E (1990) Enzyme synthesis of l-tryptophan. Folia Microbiol (Praha) 35:200–204

    CAS  Google Scholar 

  201. Zhang S, Pohnert G, Kongsaere P, Wilson DB, Clardy J, Ganem B (1998) Chorismate mutase-prephenate dehydratase from Escherichia coli. Study of catalytic and regulatory domains using genetically engineered proteins. J Biol Chem 273:6248–6253

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg A. Sprenger .

Editor information

Volker F. Wendisch

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sprenger, G.A. (2006). Aromatic Amino Acids. In: Wendisch, V.F. (eds) Amino Acid Biosynthesis ~ Pathways, Regulation and Metabolic Engineering. Microbiology Monographs, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7171_2006_067

Download citation

Publish with us

Policies and ethics