Bdellovibrio and Like Organisms: Potential Sources for New Biochemicals and Therapeutic Agents?

  • Eckhard Strauch
  • Sebastian Beck
  • Bernd Appel
Part of the Microbiology Monographs book series (MICROMONO, volume 4)


Bdellovibrio and like organisms (BALOs) are predatory bacteria capable of invading the periplasm of Gram-negative bacteria and of growing and replicating within this protected niche. Research dedicated to studying the sophisticated weaponry of these predators aims to find novel strategies for combating pathogenic bacteria as the worldwide increase of pathogens resistant to a wide range of antibiotics forces a search for alternative antimicrobial substances to counter this threat. The physiology of BALOs will be the main focus of this chapter, and some potential applications for BALOs will be discussed. However, our current knowledge of the amazing biology of these extraordinary prokaryotes that possess an astonishing predatory lifestyle and perform a well-organized deconstruction of prey bacteria is still rather limited. The great advances in proteomic and genomic techniques will allow the investigation of the interaction between predators and prey, lately supported by the availability of the genome sequence of one B. bacteriovorus reference strain. It seems likely that the exploitation of the unique weaponry of these bacteria will enable researchers to find new biochemicals and—perhaps—therapeutic agents.


Outer Membrane Protein Bacteriophage Therapy Intracellular Growth Prey Location Prey Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abram D, Castro e Melo J, Chou D (1974) Penetration of Bdellovibrio bacteriovorus into host cells. J Bacteriol 118:663–680 PubMedGoogle Scholar
  2. 2.
    Alexander M (1981) Why microbial predators and parasites do not eliminate their prey and hosts. Annu Rev Microbiol 35:113–133 CrossRefPubMedGoogle Scholar
  3. 3.
    Baer ML, Ravel J, Chun J, Hill RT, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 50:219–224 PubMedGoogle Scholar
  4. 4.
    Baer ML, Ravel J, Pineiro SA, Guether-Borg D, Williams HN (2004) Reclassification of salt-water Bdellovibrio sp. as Bacteriovorax marinus sp. nov. and Bacteriovorax litoralis sp. nov. Int J Syst Evol Microbiol 54:1011–1016 CrossRefPubMedGoogle Scholar
  5. 5.
    Barel G, Jurkevitch E (2001) Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol 176:211–216 CrossRefPubMedGoogle Scholar
  6. 6.
    Barel G, Sirota A, Volpin H, Jurkevitch E (2005) Fate of predator and prey proteins during growth of Bdellovibrio bacteriovorus on Escherichia coli and Pseudomonas syringae prey. J Bacteriol 187:329–335 CrossRefPubMedGoogle Scholar
  7. 7.
    Beck S, Schwudke D, Strauch E, Appel B, Linscheid M (2004) Bdellovibrio bacteriovorus strains produce a novel major outer membrane protein during predacious growth in the periplasm of prey bacteria. J Bacteriol 186:2766–2773 CrossRefPubMedGoogle Scholar
  8. 8.
    Beck S, Schwudke D, Appel B, Linscheid M, Strauch E (2005) Characterization of outer membrane protein fractions of Bdellovibrionales. FEMS Microbiol Lett 243:211–217 CrossRefPubMedGoogle Scholar
  9. 9.
    Burger A, Drews G, Ladwig R (1968) Host range and infection cycle of a newly isolated strain of Bdellovibrio bacteriovorus. Arch Microbiol 61:261–279 Google Scholar
  10. 10.
    Cotter TW, Thomashow MF (1992) Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol 174:6018–6024 PubMedGoogle Scholar
  11. 11.
    Cover WH, Martinez RJ, Rittenberg SC (1984) Permeability of the boundary layers of Bdellovibrio bacteriovorus 109J and its bdelloplasts to small hydrophilic molecules. J Bacteriol 157:385–390 PubMedGoogle Scholar
  12. 12.
    Crothers SF, Fackrell HB, Huang JC, Robinson J (1972) Relationship between Bdellovibrio bacteriovorus 6–5-S and autoclaved host bacteria. Can J Microbiol 18:1941–1948 PubMedCrossRefGoogle Scholar
  13. 13.
    Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio- and -like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax-Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54:1439–1452 CrossRefPubMedGoogle Scholar
  14. 14.
    Diedrich DL (1988) Bdellovibrios: recycling, remodelling and relocalizing components from their prey. Microbiol Sci 5:100–103 PubMedGoogle Scholar
  15. 15.
    Diedrich DL, Denny CF, Hashimoto T, Conti SF (1970) Facultatively parasitic strain of Bdellovibrio bacteriovorus. J Bacteriol 101:989–996 PubMedGoogle Scholar
  16. 16.
    Diedrich DL, Portnoy CA, Conti SF (1983) Bdellovibrio possesses a prey-derived OmpF protein in its membrane. Curr Microbiol 8:54–56 CrossRefGoogle Scholar
  17. 17.
    Diedrich DL, Duran CP, Conti SF (1984) Acquisition of Escherichia coli outer membrane proteins by Bdellovibrio sp. strain 109D. J Bacteriol 159:329–334 PubMedGoogle Scholar
  18. 18.
    Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62 CrossRefPubMedGoogle Scholar
  19. 19.
    Edao A (2000) Untersuchungen zum Vorkommen und zur Bedeutung von Bdellovibrio bacteriovorus im Magen-Darm-Trakt von Tieren und Menschen sowie in der Umwelt. PhD thesis, Universitity of Leipzig, Germany Google Scholar
  20. 20.
    Eksztejn M, Varon M (1977) Elongation and cell division in Bdellovibrio bacteriovorus. Arch Microbiol 114:175–181 CrossRefPubMedGoogle Scholar
  21. 21.
    Fratamico PM, Whiting RC (1995) Ability of Bdellovibrio bacteriovorus 109J to lyse gram-negative food-borne pathogenic and spoilage bacteria. J Food Prot 58:160–164 Google Scholar
  22. 22.
    Gordon RF, Stein MA, Diedrich DL (1993) Heat shock-induced axenic growth of Bdellovibrio bacteriovorus. J Bacteriol 175:2157–2161 PubMedGoogle Scholar
  23. 23.
    Gray KM, Ruby EG (1989) Unbalanced growth as a normal feature of development of Bdellovibrio bacteriovorus. Arch Microbiol 152:420–424 CrossRefPubMedGoogle Scholar
  24. 24.
    Gray KM, Ruby EG (1990) Prey-derived signals regulating duration of the developmental growth phase of Bdellovibrio bacteriovorus. J Bacteriol 172:4002–4007 PubMedGoogle Scholar
  25. 25.
    Gray KM, Ruby EG (1991) Intercellular signalling in the Bdellovibrio developmental cycle. In: Dworkin M (ed) Microbial Cell-Cell Interactions. American Society for Microbiology, Washington, DC, pp 333–366 Google Scholar
  26. 26.
    Guerrini F, Romano V, Valenzi M, Di Giulio M, Mupo MR, Sacco M (1982) Molecular parasitism in the Escherichia coli-Bdellovibrio bacteriovorus system: translocation of the matrix protein from the host to the parasite outer membrane. Embo J 1:1439–1444 PubMedGoogle Scholar
  27. 27.
    Gulbins E, Dreschers S, Wilker B, Grassme H (2004) Ceramide, membrane rafts and infections. J Mol Med 82:357–363 CrossRefPubMedGoogle Scholar
  28. 28.
    Hespell RB, Miozzari GF, Rittenberg SC (1975) Ribonucleic acid destruction and synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol 123:481–491 PubMedGoogle Scholar
  29. 29.
    Hespell RB, Odelson DA (1978) Metabolism of RNA-ribose by Bdellovibrio bacteriovorus during intraperiplasmic growth on Escherichia coli. J Bacteriol 136:936–946 PubMedGoogle Scholar
  30. 30.
    Hoeniger JFM, Ladwig R, Moor H (1971) The fine structure of resting bodies of Bdellovibrio sp. strain W developed in Rhodospirillum rubrum. Can J Microbiol 18:87–100 CrossRefGoogle Scholar
  31. 31.
    Huang JC, Starr MP (1973) Effects of calcium and magnesium ions and host viability on growth of bdellovibrios. Antonie Van Leeuwenhoek 39:151–167 PubMedCrossRefGoogle Scholar
  32. 32.
    Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371 CrossRefPubMedGoogle Scholar
  33. 33.
    Kadouri D, O'Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71:4044–4051 CrossRefPubMedGoogle Scholar
  34. 34.
    Kessel M, Shilo M (1976) Relationship of Bdellovibrio elongation and fission to host cell size. J Bacteriol 128:477–480 PubMedGoogle Scholar
  35. 35.
    Kleessen B, Elsayed NA, Loehren U, Schroedl W, Krueger M (2003) Jerusalem artichokes stimulate growth of broiler chickens and protect them against endotoxins and potential cecal pathogens. J Food Prot 66:2171–2175 PubMedGoogle Scholar
  36. 36.
    Kuenen JG, Rittenberg SC (1975) Incorporation of long-chain fatty acids of the substrate organism by Bdellovibrio bacteriovorus during intraperiplasmic growth. J Bacteriol 121:1145–1157 PubMedGoogle Scholar
  37. 37.
    LaMarre AG, Straley SC, Conti SF (1977) Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol 131:201–207 PubMedGoogle Scholar
  38. 38.
    Lambert C, Smith MC, Sockett RE (2003) A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5:127–132 CrossRefPubMedGoogle Scholar
  39. 39.
    Lambina VA, Ledova LA, Churkina LG (1987) Importance of Bdellovibrio in regulating microbial cenoses and self-purification processes in domestic sewage. Mikrobiologiia 56:860–864 PubMedGoogle Scholar
  40. 40.
    Marbach A, Varon M, Shilo M (1976) Properties of marine Bdellovibrios. Microb Ecol 2:284–295 CrossRefGoogle Scholar
  41. 41.
    Markelova NY (2002) Effect of toxic pollut ants on Bdellovibrio. Proc Biochem 37:1177–1181 CrossRefGoogle Scholar
  42. 42.
    Martin MO (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477 PubMedGoogle Scholar
  43. 43.
    Matin A, Rittenberg SC (1972) Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on Pseudomonas putida and Escherichia coli. J Bacteriol 111:664–673 PubMedGoogle Scholar
  44. 44.
    McCann MP, Solimeo HT, Cusick F Jr, Panunti B, McCullen C (1998) Developmentally regulated protein synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. Can J Microbiol 44:50–55 CrossRefPubMedGoogle Scholar
  45. 45.
    Moulder JW (1985) Comparative biology of intracellular parasitism. Microbiol Rev 49:298–337 PubMedGoogle Scholar
  46. 46.
    Nelson DR, Rittenberg SC (1981) Incorporation of substrate cell lipid A components into the lipopolysaccharide of intraperiplasmically grown Bdellovibrio bacteriovorus. J Bacteriol 147:860–868 PubMedGoogle Scholar
  47. 47.
    Nunez ME, Martin MO, Chan PH, Spain EM (2005) Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy. Colloids Surf B Biointerfaces 42:263–271 CrossRefPubMedGoogle Scholar
  48. 48.
    Pineiro SA, Sahaniuk GE, Romberg E, Williams HN (2004) Predation pattern and phylogenetic analysis of Bdellovibrionaceae from the Great Salt Lake, Utah. Curr Microbiol 48:113–117 CrossRefPubMedGoogle Scholar
  49. 49.
    Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989 PubMedGoogle Scholar
  50. 50.
    Rayner JR, Cover WH, Martinez RJ, Rittenberg SC (1985) Bdellovibrio bacteriovorus synthesizes an OmpF-like outer membrane protein during both axenic and intraperiplasmic growth. J Bacteriol 163:595–599 PubMedGoogle Scholar
  51. 51.
    Reiner AM, Shilo M (1969) Host-dependent growth of Bdellovibrio bacteriovorus in microbial extracts. J Gen Microbiol 59:401–410 Google Scholar
  52. 52.
    Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyer F, Sockett RE, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692 CrossRefPubMedGoogle Scholar
  53. 53.
    Rice TD, Williams HN, Turng BF (1998) Susceptibility of bacteria in estuarine environments to autochthonous bdellovibrios. Microb Ecol 35:256–264 CrossRefPubMedGoogle Scholar
  54. 54.
    Richardson IR (1990) The incidence of Bdellovibrio spp. in man-made water systems: coexistence with legionellas. J Appl Bacteriol 69:134–140 PubMedGoogle Scholar
  55. 55.
    Rittenberg SC (1983) Bdellovibrio: attack, penetration, and growth on its prey. ASM News 49:435–439 Google Scholar
  56. 56.
    Ross EJ, Robinow CF, Robinson J (1974) Intracellular growth of Bdellovibrio bacteriovorus 6-5-S in heat-killed Spirillum serpens VHL. Can J Microbiol 20:847–851 PubMedCrossRefGoogle Scholar
  57. 57.
    Ruby EG, Rittenberg SC (1983) Differentiation after premature release of intraperiplasmically growing Bdellovibrio bacteriovorus. J Bacteriol 154:32–40 PubMedGoogle Scholar
  58. 58.
    Sanchez-Amat A, Torrella F (1990) Formation of stable bdelloplasts as a starvation-survival strategy of marine bdellovibrios. Appl Environ Microbiol 56:2717–2725 PubMedGoogle Scholar
  59. 59.
    Schelling M, Conti S (1986) Host receptor sites involved in the attachment of Bdellovibrio bacteriovorus and Bdellovibrio stolpii. FEMS Microbiol Lett 36:319–323 CrossRefGoogle Scholar
  60. 60.
    Schwudke D, Strauch E, Krueger M, Appel B (2001) Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 24:385–394 CrossRefPubMedGoogle Scholar
  61. 61.
    Schwudke D, Linscheid M, Strauch E, Appel B, Zahringer U, Moll H, Muller M, Brecker L, Gronow S, Lindner B (2003) The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-d-Mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 278:27502–27512 CrossRefPubMedGoogle Scholar
  62. 62.
    Schwudke D, Bernhardt A, Beck S, Madela K, Linscheid MW, Appel B, Strauch E (2005) Transcriptional activity of the host-interaction locus and a putative pilin gene of Bdellovibrio bacteriovorus in the predatory life cycle. Curr Microbiol 51:1–8 CrossRefGoogle Scholar
  63. 63.
    Seidler RJ, Starr MP (1969) Factors affecting the intracellular parasitic growth of Bdellovibrio bacteriovorus developing within Escherichia coli. J Bacteriol 97:912–923 PubMedGoogle Scholar
  64. 64.
    Shemesh Y, Jurkevitch E (2004) Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 6:12–18 CrossRefPubMedGoogle Scholar
  65. 65.
    Shilo M (1969) Morphological and physiological aspects of the interaction of Bdellovibrio with host bacteria. Curr Top Microbiol Immunol 50:174–204 PubMedGoogle Scholar
  66. 66.
    Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC (2002) 16S rDNA sequence analysis of environmental Bdellovibrio- and -like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol 52:2089–2094 CrossRefPubMedGoogle Scholar
  67. 67.
    Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2:669–675 CrossRefPubMedGoogle Scholar
  68. 68.
    Stein MA, McAllister SA, Torian BE, Diedrich DL (1992) Acquisition of apparently intact and unmodified lipopolysaccharides from Escherichia coli by Bdellovibrio bacteriovorus. J Bacteriol 174:2858–2864 PubMedGoogle Scholar
  69. 69.
    Steiner S, Conti SF, Lester RL (1973) Occurrence of phosphonosphingolipids in Bdellovibrio bacteriovorus strain UKi2. J Bacteriol 116:1199–1211 PubMedGoogle Scholar
  70. 70.
    Stolp H, Petzold H (1962) Untersuchungen über einen obligat parasitischen Mikroorganismus mit lytischer Aktivität für Pseudomonas-Bakterien. Phytopathol Z 45:364–390 CrossRefGoogle Scholar
  71. 71.
    Stolp H, Starr MP (1963) Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 29:217–248 CrossRefPubMedGoogle Scholar
  72. 72.
    Straley SC, Conti SF (1974) Chemotaxis in Bdellovibrio bacteriovorus. J Bacteriol 120:549–551 PubMedGoogle Scholar
  73. 73.
    Straley SC, Conti SF (1977) Chemotaxis by Bdellovibrio bacteriovorus toward prey. J Bacteriol 132:628–640 PubMedGoogle Scholar
  74. 74.
    Straley SC, LaMarre AG, Lawrence LJ, Conti SF (1979) Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. J Bacteriol 140:634–642 PubMedGoogle Scholar
  75. 75.
    Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659 CrossRefPubMedGoogle Scholar
  76. 76.
    Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451 CrossRefPubMedGoogle Scholar
  77. 77.
    Talley BG, McDade RL Jr, Diedrich DL (1987) Verification of the protein in the outer membrane of Bdellovibrio bacteriovorus as the OmpF protein of its Escherichia coli prey. J Bacteriol 169:694–698 PubMedGoogle Scholar
  78. 78.
    Taylor VI, Baumann P, Reichelt JL, Allen RD (1974) Isolation, enumeration, and host range of marine bdellovibrios. Arch Microbiol 98:101–114 CrossRefPubMedGoogle Scholar
  79. 79.
    Thomashow MF, Rittenberg SC (1978a) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J Bacteriol 135:998–1007 PubMedGoogle Scholar
  80. 80.
    Thomashow MF, Rittenberg SC (1978b) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: N-deacetylation of Escherichia coli peptidoglycan amino sugars. J Bacteriol 135:1008–1014 PubMedGoogle Scholar
  81. 81.
    Thomashow MF, Rittenberg SC (1978c) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids to Escherichia coli peptidoglycan. J Bacteriol 135:1015–1023 PubMedGoogle Scholar
  82. 82.
    Thomashow MF, Cotter TW (1992) Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J Bacteriol 174:5767–5771 PubMedGoogle Scholar
  83. 83.
    Torrella F, Guerrero R, Seidler RJ (1978) Further taxonomic characterization of the genus Bdellovibrio. Can J Microbiol 24:1387–1394 PubMedCrossRefGoogle Scholar
  84. 84.
    Tudor JJ, Karp MA (1994) Translocation of an outer membrane protein into prey cytoplasmic membranes by bdellovibrios. J Bacteriol 176:948–952 PubMedGoogle Scholar
  85. 85.
    Tudor JJ, McCann MP, Acrich IA (1990) A new model for the penetration of prey cells by bdellovibrios. J Bacteriol 172:2421–2426 PubMedGoogle Scholar
  86. 86.
    Varon M, Shilo M (1980) Ecology of aquatic bdellovibrios. Academic, New York Google Scholar
  87. 87.
    Waggoner DW, Xu J, Singh I, Jasinska R, Zhang QX, Brindley DN (1999) Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim Biophys Acta 1439:299–316 PubMedGoogle Scholar
  88. 88.
    Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES (2001) A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 36:513–519 CrossRefPubMedGoogle Scholar
  89. 89.
    Wilkinson MH (2001) Predation in the presence of decoys: an inhibitory factor on pathogen control by bacteriophages or bdellovibrios in dense and diverse ecosystems. J Theor Biol 208:27–36 CrossRefPubMedGoogle Scholar
  90. 90.
    Williams HN, Falkler WAJ (1984) Distribution of bdellovibrios in the water column of an estuary. Can J Microbiol 30:971–974 PubMedCrossRefGoogle Scholar
  91. 91.
    Williams HN, Kelley JI, Baer ML, Turng BF (1995) The association of bdellovibrios with surfaces in the aquatic environment. Can J Microbiol 41:1142–1147 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Bundesinstitut für Risikobewertung (BfR)Federal Institute for Risk AssessmentBerlinGermany

Personalised recommendations