Genomic Analysis and Molecular Biology of Predatory Prokaryotes

  • John J. Tudor
  • Michael P. McCann
Part of the Microbiology Monographs book series (MICROMONO, volume 4)


Bdellovibrio and Bdellovibrio-like organisms (BALOs) are defined by their unique intraperiplasmic developmental cycle, which is an essential part of their predatory activity on other Gram-negative bacteria. The genome sequence of the type strain of the genus Bdellovibrio is the first of a predatory bacterium to be completed, and will serve as a good model for genomic analysis of predation. Many putative genes have already been identified that could encode products that play important roles in predation. Much work has been done in the past to elucidate the biochemistry and physiology of the BALO predatory life cycle, and the genomic information will permit this wealth of information to be connected with the genetic basis of predation in these unique organisms. As sequence data from other predatory bacteria becomes available, comparative genome analysis will provide important insights into the evolution of genes involved in predatory mechanisms. Clearly, we are on the threshold of a more complete understanding of the BALO developmental cycle, which can serve to increase our understanding of not only predation but also cell–cell interaction. Additionally, the knowledge provided through genome analysis could lead to the potential use of the BALOs as biocontrol, or even biotherapeutic, agents.


Outer Membrane Protein Sigma Factor Periplasmic Space Major Outer Membrane Protein Alternate Sigma Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abram D, Davis BK (1970) Structural properties and features of parasitic Bdellovibrio bacteriovorus. J Bacteriol 104:948–965 PubMedGoogle Scholar
  2. 2.
    Abram D, Castro e Melo J, Chou D (1974) Penetration of Bdellovibrio bacteriovorus into host cells. J Bacteriol 118:663–680 PubMedGoogle Scholar
  3. 3.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410 CrossRefPubMedGoogle Scholar
  4. 4.
    Baer M, Ravel J, Chun J, Hill R, Williams HN (2000) A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii com. nov., respectively. Int J Syst Evol Microbiol 50:219–224 PubMedGoogle Scholar
  5. 5.
    Barel G, Jurkevitch E (2001) Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol 176:211–216 CrossRefPubMedGoogle Scholar
  6. 6.
    Barel G, Sirota A, Volpin H, Jurkevitch E (2005) Fate of predator and prey proteins during growth of Bdellovibrio bacteriovorus onEscherichia coli and Pseudomonas syringae prey. J Bacteriol 187:329–335 CrossRefPubMedGoogle Scholar
  7. 7.
    Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138–D141 CrossRefPubMedGoogle Scholar
  8. 8.
    Beck S, Schwudke D, Strauch E, Appel B, Linscheid M (2004) Bdellovibrio bacteriovorus strains produce a novel major outer membrane protein during predacious growth in the periplasm of prey bacteria. J Bacteriol 186:2766–2773 CrossRefPubMedGoogle Scholar
  9. 9.
    Beck S, Schwudke D, Appel B, Linscheid M, Strauch E (2005) Characterization of outer membrane protein fractions of Bdellovibrionales. FEMS Microbiol Lett 243:211–217 CrossRefPubMedGoogle Scholar
  10. 10.
    Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Ann Rev Genet 38:771–791 CrossRefPubMedGoogle Scholar
  11. 11.
    Brissette JL, Russel M, Weiner L, Model P (1990) Phage shock protein, a stress protein of Escherichia coli. Proc Nat Acad Sci USA 87:862–866 CrossRefPubMedGoogle Scholar
  12. 12.
    Cotter TW, Thomashow MF (1992a) A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J Bacteriol 174:6011–6017 PubMedGoogle Scholar
  13. 13.
    Cotter TW, Thomashow MF (1992b) Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol 174:6018–6024 PubMedGoogle Scholar
  14. 14.
    Cover WH, Rittenberg SC (1984) Change in the surface hydrophobicity of substrate cells during bdelloplast formation by Bdellovibrio bacteriovorus 109J. J Bacteriol 157:391–397 PubMedGoogle Scholar
  15. 15.
    Cover WH, Martinez RJ, Rittenberg SC (1984) Permeability of the boundary layers of Bdellovibrio bacteriovorus 109J and its bdelloplasts to small hydrophobic molecules. J Bacteriol 157:385–390 PubMedGoogle Scholar
  16. 16.
    Darwin A, Miller V (2001) The psp locus of Yersinia enterocolitica is required for virulence and for growth in vitro when the Ysc type III secretion system is produced. Mol Microbiol 39:429–444 CrossRefPubMedGoogle Scholar
  17. 17.
    Davidov Y, Jurkevitch E (2004) Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 54:1439–1452 CrossRefPubMedGoogle Scholar
  18. 18.
    Diedrich DL, Denny CF, Hashimoto T, Conti SF (1970) Facultatively parasitic strain of Bdellovibrio bacteriovorus. J Bacteriol 101:989–996 PubMedGoogle Scholar
  19. 19.
    Diedrich DL, Duran CP, Conti SF (1984) Acquisition of Escherichia coli outer membrane proteins by Bdellovibrio sp. strain 109D. J Bacteriol 159:329–334 PubMedGoogle Scholar
  20. 20.
    Diedrich DL, Portnoy CA, Conti SF (1983) Bdellovibrio possesses a prey-derived OmpF protein in is outer membrane. Current Microbiol 8:51–56 CrossRefGoogle Scholar
  21. 21.
    Erickson JW, Gross CA (1989) Identification of the σE subunit of Escherichia coli RNA polymerase: a second alternate factor involved in high-temperature gene expression. Genes Dev 3:146271 CrossRefGoogle Scholar
  22. 22.
    Eriksson S, Lucchini S, Thompson A, Rhen M, Hinton JC (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol Microbiol 47:103–118 CrossRefPubMedGoogle Scholar
  23. 23.
    Flannagan RS, Valvano MA, Koval SF (2004) Downregulation of the motA gen delays the escape of the obligate predator Bdellovibrio bacteriovorus 109J from bdelloplasts of bacterial prey cells. Microbiol 150:649–656 CrossRefGoogle Scholar
  24. 24.
    Friedberg D (1978) Growth of host-dependent Bdellovibrio in host cell-free system. Arch Microbiol 116:185–190 CrossRefPubMedGoogle Scholar
  25. 25.
    Galdiero F (1975) Membrane damage and incorporation of Escherichia coli components into Bdellovibrio bacteriovorus. Zbl Bakt Hyg I Abt 230:203–209 Google Scholar
  26. 26.
    Garrity GM, Johnson KL, Bell JA, Searles DB (2002) Taxonomic outline of the prokaryotes. In: Bergey's manual of systemic bacteriology, 2nd edn. Springer, Berlin Heidelberg New York Google Scholar
  27. 27.
    Gray KM, Ruby EG (1990) Prey-derived signals regulating duration of the developmental growth phase of Bdellovibrio bacteriovorus. J Bacteriol 172:4002–4007 PubMedGoogle Scholar
  28. 28.
    Hacker J, Kaper JB (2000) Pathogenicity islands and the evolution of microbes. Ann Rev Microbiol 54:641–679 CrossRefGoogle Scholar
  29. 29.
    Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559 CrossRefPubMedGoogle Scholar
  30. 30.
    Helman JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–51 CrossRefGoogle Scholar
  31. 31.
    Hespell RB (1976) Glycolytic and tricarboxylic acid cycle enzyme activities during intraperiplasmic growth of Bdellovibrio bacteriovorus on Escherichia coli. J Bacteriol 128:677–680 PubMedGoogle Scholar
  32. 32.
    Hespell RB, Rosson RA, Thomashow MF, Rittenberg SC (1973) Respiration of Bdellovibrio bacteriovorus strain 109J and its energy substrates for intraperiplasmic growth. J Bacteriol 113:1280–1288 PubMedGoogle Scholar
  33. 33.
    Horowitz AT, Kessel M, Shilo M (1974) Growth cycle of predaceous bdellovibrios in a host-free extract system and some properties of the host extract. J Bacteriol 117:270–282 PubMedGoogle Scholar
  34. 34.
    Jovanovic G, Weiner L, Model P (1996) Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the Escherichia coli stress-induced psp operon. J Bacteriol 178:1936–1945 PubMedGoogle Scholar
  35. 35.
    Kristich CJ, Ordal GW (2004) Analysis of chimeric chemoreceptors in Bacillus subtilis reveals a role for CheD in the function of the McpC HAMP domain. J Bacteriol 186:5950–5955 CrossRefPubMedGoogle Scholar
  36. 36.
    Kuenen JG, Rittenberg SC (1975) Incorporation of long-chain fatty acids of the substrate organism by Bdellovibrio bacteriovorus during intraperiplasmic growth. J Bacteriol 121:1145–1157 PubMedGoogle Scholar
  37. 37.
    LaMarre AG, Straley SC, Conti SF (1977) Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol 131:201–207 PubMedGoogle Scholar
  38. 38.
    Lambert C, Smith MCM, Sockett RE (2003) A novel assay to monitor predator–prey interactions for Bdellovibrio bacteriovorus 109J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol 5:127–132 CrossRefPubMedGoogle Scholar
  39. 39.
    Leclerc G, Wang SP, Ely B (1998) A new class of Caulobacter crescentus flagellar genes. J Bacteriol 180:5010–5019 PubMedGoogle Scholar
  40. 40.
    Mackiewicz P, Zakrzewska-Czerwinska J, Zawilak A, Dudek MR, Cebrat S (2004) Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res 32:3781–3791 CrossRefPubMedGoogle Scholar
  41. 41.
    Martin M (2002) Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 4:467–477 PubMedGoogle Scholar
  42. 42.
    Matin A, Rittenberg SC (1972) Kinetics of deoxyribonucleic acid destruction and synthesis during growth of Bdellovibrio bacteriovorus strain 109D on Pseudomonas putida and Escherichia coli. J Bacteriol 111:664–673 PubMedGoogle Scholar
  43. 43.
    McCann MP, Solimeo HT, Cusick F, Panunti B, McCullen C (1998) Developmentally regulated protein synthesis during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. Can J Microbiol 44:50–55 CrossRefPubMedGoogle Scholar
  44. 44.
    Methe BA, Nelson KE, Eisen JA, Paulsen IT, Nelson W, Heidelberg JF, Wu D, Wu M, Ward N, Beanan MJ, Dodson RJ, Madupu R, Brinkac LM, Daugherty SC, DeBoy RT, Durkin AS, Gwinn M, Kolonay JF, Sullivan SA, Haft DH, Selengut J, Davidsen TM, Zafar N, White O, Tran B, Romero C, Forberger HA, Weidman J, Khouri H, Feldblyum TV, Utterback TR, Van Aken SE, Lovley DR, Fraser CM (2003) Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302:1967–1969 CrossRefPubMedGoogle Scholar
  45. 45.
    Min B, Kitabatake M, Polycarpo C, Pelaschier J, Raczniak G, Ruan B, Kobayashi H, Namgoong S, Soll D (2003) Protein synthesis in Escherichia coli with mischarged tRNA. J Bacteriol 185:3524–3526 CrossRefPubMedGoogle Scholar
  46. 46.
    Nishiyama K, Fukuda A, Morita K, Tokuda H (1999) Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J 18:1049–1058 CrossRefPubMedGoogle Scholar
  47. 47.
    Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586 CrossRefPubMedGoogle Scholar
  48. 48.
    Pritchard MA, Langley D, Rittenberg SC (1975) Effects of methotrexate on intraperiplasmic and axenic growth of Bdellovibrio bacteriovorus. J Bacteriol 121:1131–1136 PubMedGoogle Scholar
  49. 49.
    Raivio TL, Silhavy TJ (2001) Periplasmic stress and ECF sigma factors. Ann Rev Microbiol 55:591–624 CrossRefGoogle Scholar
  50. 50.
    Rayner JR, Cover WH, Martinez RJ, Rittenberg SC (1985) Bdellovibrio bacteriovorus synthesizes an OmpF-like outer membrane protein during both axenic and intraperiplasmic growth. J Bacteriol 163:595–599 PubMedGoogle Scholar
  51. 51.
    Reiner AM, Shilo M (1969) Host-independent growth of Bdellovibrio bacteriovorus in microbial extracts. J Gen Microbiol 59:401–410 Google Scholar
  52. 52.
    Reitzer L (2003) Nitrogen assimilation and global regulation in Escherichia coli. Ann Rev Microbiol 57:155–176 CrossRefGoogle Scholar
  53. 53.
    Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A, Meyr F, Sockett RE, Schuster SC (2004) A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 303:689–692 CrossRefPubMedGoogle Scholar
  54. 54.
    Riley ML, Schmidt T, Wagner C, Mewes HW, Frishman D (2005) The PEDANT genome database in 2005. Nucleic Acids Res 33:D308–310 CrossRefPubMedGoogle Scholar
  55. 55.
    Rittenberg SC, Hespell RB (1975) Energy efficiency of intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol 121:1158–1165 PubMedGoogle Scholar
  56. 56.
    Rittenberg SC, Langley D (1975) Utilization of nucleoside monophosphates per se for intraperiplasmic growth of Bdellovibrio bacteriovorus. J Bacteriol 121:1137–1144 PubMedGoogle Scholar
  57. 57.
    Rittenberg SC, Shilo M (1970) Early host damage in the infection cycle of Bdellovibrio bacteriovorus. J Bacteriol 102:149–160 PubMedGoogle Scholar
  58. 58.
    Rittenberg SC, Thomashow M (1979) Intraperiplasmic growth – life in a cozy environment. In: Schlessinger D (ed) Microbiology 1979. American Society for Microbiology, Washington, DC, pp 80–85 Google Scholar
  59. 59.
    Romo AJ, Ruby EG, Saier MH (1992) Effect of Bdellovibrio bacteriovorus infection on the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli: evidence for activation of cytoplasmic proteolysis. Res Microbiol 143:5–14 CrossRefPubMedGoogle Scholar
  60. 60.
    Rosson RA, Rittenberg SC (1979) Regulated breakdown of Escherichia coli deoxyribonucleic acid during intraperiplasmic growth of Bdellovibrio bacteriovorus 109J. J Bacteriol 140:620–633 PubMedGoogle Scholar
  61. 61.
    Ruby EG (1991) The genus Bdellovibrio. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, Berlin Heidelberg New York Google Scholar
  62. 62.
    Ruby EG, McCabe JB, Barke JI (1985) Uptake of intact nucleoside monophosphates by Bdellovibrio bacteriovorus 109J. J Bacteriol 163:1087–1094 PubMedGoogle Scholar
  63. 63.
    Ruby EG, McCabe JB (1986) An ATP transport system in the intracellular bacterium Bdellovibrio bacteriovorus. J Bacteriol 167:1066–1070 PubMedGoogle Scholar
  64. 64.
    Saier MH (1994) Protein uptake into E. coli during Bdellovibrio infection. A process of reverse secretion? FEBS Lett 337:14–17 CrossRefPubMedGoogle Scholar
  65. 65.
    Schelling M, Conti SF (1986) Host receptor sites involved in the attachment of Bdellovibrio bacteriovorus and Bdellovibrio stolpii. FEMS Microbiol Lett 36:319–323 CrossRefGoogle Scholar
  66. 66.
    Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Ann Rev Microbiol 47:597–626 CrossRefGoogle Scholar
  67. 67.
    Schwudke D, Bernhardt A, Beck S, Madela K, Linscheid MW, Appel B, Strauch E (2005) Transcriptional activity of the host-interaction locus and a putative pilin gene of Bdellovibrio bacteriovorus in the predatory life cycle. Curr Microbiol 51:310–316 CrossRefPubMedGoogle Scholar
  68. 68.
    Seidler RJ, Starr MP (1969) Factors affecting the intracellular parasitic growth of Bdellovibrio bacteriovorus developing within Escherichia coli. J Bacteriol 97:912–923 PubMedGoogle Scholar
  69. 69.
    Snyder AR, Williams HN, Baer ML, Walker KE, Stine OC (2002) 16S rDNA sequence analysis of environmental Bdellovibrio and like organisms (BALO) reveals extensive diversity. Int J Syst Evol Microbiol 52:2089–2094 CrossRefPubMedGoogle Scholar
  70. 70.
    Sockett RE, Lambert C (2004) Bdellovibrio as therapeutic agents: a predatory renaissance? Nature Rev Microbiol 2:669–675 CrossRefGoogle Scholar
  71. 71.
    Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Ann Rev Biochem 69:183–215 CrossRefPubMedGoogle Scholar
  72. 72.
    Straley SC, Conti SF (1974) Chemotaxis in Bdellovibrio bacteriovorus. J Bacteriol 120:549–551 PubMedGoogle Scholar
  73. 73.
    Straley SC, Conti SF (1977) Chemotaxis by Bdellovibrio bacteriovorus toward prey. J Bacteriol 132:628–640 PubMedGoogle Scholar
  74. 74.
    Straley SC, LaMarre AG, Lawrence LJ, Conti SF (1979) Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. J Bacteriol 140:634–642 PubMedGoogle Scholar
  75. 75.
    Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY, Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–8 CrossRefPubMedGoogle Scholar
  76. 76.
    Thomashow MF, Rittenberg SC (1978a) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: solubilization of Escherichia coli peptidoglycan. J Bacteriol 135:998–1007 PubMedGoogle Scholar
  77. 77.
    Thomashow MF, Rittenberg SC (1978b) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: attachment of long-chain fatty acids to Escherichia coli peptidoglycan. J Bacteriol 135:1015–1023 PubMedGoogle Scholar
  78. 78.
    Thomashow MF, Rittenberg SC (1978c) Intraperiplasmic growth of Bdellovibrio bacteriovorus 109J: N-deacetylation of Escherichia coli peptidoglycan amino sugars. J Bacteriol 135:1008–1014 PubMedGoogle Scholar
  79. 79.
    Thomashow MF, Rittenberg SC (1979) The intraperiplasmic growth cycle – the life style of the bdellovibrios, pp 115–138. In: Parish JH (ed) Developmental biology of prokaryotes. Blackwell, Oxford Google Scholar
  80. 80.
    Thomashow LS, Rittenberg SC (1985) Isolation and composition of sheathed flagella from Bdellovibrio bacteriovorus 109J. J Bacteriol 163:1047–1054 PubMedGoogle Scholar
  81. 81.
    Tudor JJ, Conti SF (1977a) Characterization of bdellocysts of Bdellovibrio sp. J Bacteriol 131:314–322 PubMedGoogle Scholar
  82. 82.
    Tudor JJ, Conti SF (1977b) Ultrastructural changes during encystment and germination of Bdellovibrio sp. J Bacteriol 131:323–330 PubMedGoogle Scholar
  83. 83.
    Tudor JJ, Karp MA (1994) Translocation of an outer membrane protein into prey cytoplasmic membranes by bdellovibrios. J Bacteriol 176:948–952 PubMedGoogle Scholar
  84. 84.
    Tudor JJ, McCann MP, Acrich IA (1990) A new model for the penetration of prey cells by bdellovibrios. J Bacteriol 172:2421–2426 PubMedGoogle Scholar
  85. 85.
    Varon M, Shilo M (1968) Interaction of Bdellovibrio bacteriovorus and host bacteria. I. Kinetic studies of attachment and invasion of Escherichia coli B by Bdellovibrio bacteriovorus. J Bacteriol 95:744–753 PubMedGoogle Scholar
  86. 86.
    Varon M (1979) Selection of predation-resistant bacteria in continuous culture. Nature 277:386–388 CrossRefGoogle Scholar
  87. 87.
    Varon M, Seijffers J (1975) Symbiosis-independent and symbiosis-incompetent mutants of Bdellovibrio bacteriovorus 109J. J Bacteriol 124:1191–1197 PubMedGoogle Scholar
  88. 88.
    Varon M, Zeigler BP (1978) Bacterial predator–prey interaction at low prey density. Appl Environ Microbiol 36:11–17 PubMedGoogle Scholar
  89. 89.
    Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, Hieter P, Vogelstein B, Kinzler KW (1997) Characterization of the yeast transcriptome. Cell 88:243–251 CrossRefPubMedGoogle Scholar
  90. 90.
    Walker JE, Saraste M, Gay NJ (1984) The unc operon: nucleotide sequence, regulation and structure of ATP synthase. Biochim Biophys Acta 768:164–200 PubMedGoogle Scholar
  91. 91.
    Zaim J, Kierzek AM (2003) The structure of full-length LysR-type transcriptional regulators. Modeling of the full-length OxyR transcription factor dimer. Nucl Acids Res 31:1444–1454 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of BiologySaint Joseph's UniversityPhiladelphiaUSA

Personalised recommendations