Advertisement

Paleomagnetism and Magnetic Bacteria

  • Michael WinklhoferEmail author
  • Nikolai Petersen
Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 3)

Abstract

This contribution focuses on bacterial magnetite as a possible archive of paleomagnetic information. Bacterial magnetite can be formed intracellularly or epicellularly (extracellularly), depending on the type of bacterium. Whilst intracellularly synthesized magnetite (magnetosomes) has magnetic properties suitable for retaining paleomagnetic information, the extracellularly precipitated magnetite is mostly superparamagnetic and therefore not a reliable carrier of paleomagnetic information. We discuss the chemical conditions under which fossil magnetosomes can be preserved and what rock magnetic parameters can be used to detect their presence or absence in sediments. In the last section we briefly review the debate on whether or not the magnetite crystals observed in the Martian meteorite ALH84001 represent fossil traces of early life on Mars.

Keywords

Natural Remanent Magnetization Isothermal Remanent Magnetization Magnetite Particle South Atlantic Ocean Magnetotactic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aragón R, Buttrey DJ, Shepherd JP, Honig JM (1985) Influence of nonstoichiometry on the Verwey transition. Phys Rev B 31:430–436 CrossRefGoogle Scholar
  2. 2.
    Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408 PubMedGoogle Scholar
  3. 3.
    Barber DJ, Scott ERD (2002) Origin of supposedly biogenic magnetite in the Martian meteorite Allan Hills 84001. Proc Natl Acad Sci USA 99:6556–6561 PubMedCrossRefGoogle Scholar
  4. 4.
    Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379 PubMedCrossRefGoogle Scholar
  5. 5.
    Bleil U (2000) Sedimentary magnetism. In: Schulz HD, Zabel M (eds) Marine geochemistry. Springer, Berlin Heidelberg New York Google Scholar
  6. 6.
    Borg LE, Connelly JN, Nyquist LE, Shih CY, Wiseman H, Reese Y (1999) The age of the carbonates in Martian meteorite ALH84001. Science 286:90–94 PubMedCrossRefGoogle Scholar
  7. 7.
    Brearley AJ (1998) Magnetite in ALH84001: product of decomposition of ferroan carbonate. Lunar Planetary Sci XIXX, Abstract 1451 Google Scholar
  8. 8.
    Buseck PR, Dunin-Borkowski RE, Devouard B, Frankel RB, McCartney MR, Midgley PA, Posfai M, Weyland M (2001) Magnetite morphology and life on Mars. Proc Natl Acad Sci USA 98:13490–13495 PubMedCrossRefGoogle Scholar
  9. 9.
    Chang S-B, Stolz J, Kirschvink J, Awramik S (1989) Biogenic magnetite in stromatolites. II. Occurrence in ancient sedimentary environments. Precambrian Res 43:305–315 CrossRefGoogle Scholar
  10. 10.
    von Dobeneck T (1993) Neue Ansätze zur Messung und Interpretation der magnetischen Hysterese von Tiefseesedimenten. Marie Leidorf, Westfalen Google Scholar
  11. 11.
    Evans ME, Heller F (2003) Environmental magnetism. Academic, San Diego Google Scholar
  12. 12.
    Fabian K, Kirchner A, Williams W, Heider F, Leibl T, Hubert A (1996) Three-dimensional micromagnetic calculations for magnetite using FFT. Geophys J Int 124:89–104 CrossRefGoogle Scholar
  13. 13.
    Frederichs T, Bleil U, Däumler K, von Dobeneck T, Schmidt A (1999) The magnetic view on the marine paleoenvironment: parameters, techniques and potentials of rock magnetic studies as a key to paleoclimatic and paleoceanographic changes. In: Fischer G, Wefer G (eds) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, Berlin Heidelberg New York, pp 575–599 Google Scholar
  14. 14.
    Friedman EI, Wierzchos J, Ascaso C, Winklhofer M (2001) Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin. Proc Natl Acad Sci USA 98:2176–2181 CrossRefGoogle Scholar
  15. 15.
    Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper and Row, New York Google Scholar
  16. 16.
    Golden DC, Ming DW, Schwandt CS, Morris RV, Yang SV, Lofgren GE (2000) An experimental study on kinetically driven precipitation of Ca–Mg–Fe carbonates from solution: implications for the low-temperature formation of carbonates in Martian Allan Hills 84001. Meteorit Planet Sci 35:457–465 CrossRefGoogle Scholar
  17. 17.
    Golden DC, Ming DW, Schwandt CS, Lauer HV, Socki RA, Morris RV, Lofgren GE, McKay GA (2001) A simple inorganic process for formation of carbonates, magnetites, and sulfides in Martian meteorite ALH84001. Am Mineral 86:370–375 Google Scholar
  18. 18.
    Hanzlik M, Petersen N, Keller R, Schmidbauer E (1996) Electron microscopy and Fe-57 Mossbauer spectra of 10-nm particles, intermediate in composition between Fe3O4and γ-Fe2O3, produced by bacteria. Geophys Res Lett 23:479–482 CrossRefGoogle Scholar
  19. 19.
    Hall JM (1977) Does TRM occur in oceanic layer 2 basalts? J Geomagn Geoelectr 29:411–419 Google Scholar
  20. 20.
    Karpoff AM (1984) Miocene red clays of the South Atlantic dissolution facies of calcareous oozes at deep-sea drilling project site 519 to site 523, leg 71. Initial Rep Deep Sea Drill Proj 515–535 Google Scholar
  21. 21.
    Lovley DR, Stolz JF, Nord GI, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron reducing microorganism. Nature 330:252–254 CrossRefGoogle Scholar
  22. 22.
    Lowenstam HA (1962) Magnetite in the denticle capping in recent chitons (Polyplacaphora). Geol Soc Am Bull 73:435–438 CrossRefGoogle Scholar
  23. 23.
    Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131 PubMedCrossRefGoogle Scholar
  24. 24.
    Maher BA (1991) Inorganic formation of ultrafine-grained magnetite. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 179–191 Google Scholar
  25. 25.
    Maher BA, Thompson R (eds) (1999) Quaternary climates, environments, and magnetism. Cambridge University Press, UK CrossRefGoogle Scholar
  26. 26.
    Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, UK Google Scholar
  27. 27.
    Matz H, Drung D, Hartwig S, Gross H, Kötitz R, Müller W, Vass A, Weitschies W, Trahms L (1998) A SQUID measurement system for immunoassays. Appl Supercond 6:577–583 CrossRefGoogle Scholar
  28. 28.
    McCartney MR, Lins U, Farina M, Buseck PR, Frankel RB (2001) Magnetic microstructure of bacterial magnetite by electron holography. Eur J Miner 13:685–689 CrossRefGoogle Scholar
  29. 29.
    McKay DS, Gibson EK Jr, Thomas-Keptra KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930 PubMedCrossRefGoogle Scholar
  30. 30.
    Merrill RT, McElhinny MW, McFadden PL (1998) The magnetic field of the Earth. Academic, San Diego Google Scholar
  31. 31.
    Moskowitz BM, Frankel RB, Bazylinski DA, Jannasch HW, Lovley DR (1989) A comparison of magnetite particles produced anaerobically by magnetotactic and dissimilatory iron reducing bacteria. Geophys Res Lett 16:665–672 CrossRefGoogle Scholar
  32. 32.
    Moskowitz BM, Frankel RB, Bazylinski DA (1993) Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet Sci Lett 120:283–300 CrossRefGoogle Scholar
  33. 33.
    Pan YX, Petersen N, Davila AF, Zhang LM, Winklhofer M, Liu QS, Hanzlik M, Zhu RX (2005) Towards the detection of bacterial magnetite in recent sediments in Lake Chiemsee. Earth Planet Sci Lett 232:109–123 CrossRefGoogle Scholar
  34. 34.
    Pan YX, Petersen N, Winklhofer M, Davila AF, Liu QS, Frederichs T, Hanzlik M, Zhu RX (2005a) Magnetic properties of uncultured magnetotactic bacteria. Earth Planet Sci Lett 237:11–325 CrossRefGoogle Scholar
  35. 35.
    Peck JA, King JW (1996) Magnetofossils in the sediment of Lake Baikal, Siberia. Earth Planet Sci Lett 140:159–172 CrossRefGoogle Scholar
  36. 36.
    Petersen N, von Dobeneck T, Vali H (1986) Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature 320:611–614 CrossRefGoogle Scholar
  37. 37.
    Petersen N, Weiss DG, Vali H (1989) Magnetic bacteria in lake sediments. In: Lowes et al. (eds) Geomagnetism and paleomagnetism, Kluwer, Dordrecht, pp 231–241 Google Scholar
  38. 38.
    Scott ERD, Yamaguchi A, Krot AN (2002) Petrological evidence for shock melting of carbonates in the Martian meterorite ALH84001. Nature 387:377–379 CrossRefGoogle Scholar
  39. 39.
    Snowball IF (1994) Bacterial magnetite and the magnetic properties of sediments in a Swedish lake. Earth Planet Sci Lett 126:129–142 CrossRefGoogle Scholar
  40. 40.
    Stolz J, Chang S-B, Kirschvink J (1987) Biogenic magnetite in stromatolites. I. Occurrence in modern sedimentary environments. Precambrian Res 43:295–304 CrossRefGoogle Scholar
  41. 41.
    Tauxe L, Tucker P, Petersen N, LaBreque (1983) The magnetostratigraphy of leg 73 sediments. Palaeogeogr Palaeoclimatol Palaeoecol 42:65–90 CrossRefGoogle Scholar
  42. 42.
    Taylor AP, Barry JC, Webb RI (2001) Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001. J Microsc 213:180–197 CrossRefGoogle Scholar
  43. 43.
    Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, Wentworth DS, Vali H, Gibson EK Jr, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081 PubMedCrossRefGoogle Scholar
  44. 44.
    Thompson R, Oldfield F (1986) Environmental magnetism. Allen and Unwin, London Google Scholar
  45. 45.
    Treiman AH, Romanek CS (1998) Chemical and stable isotopic disequilibrium in carbonate minerals of Martian meteorite ALH84001: inconsistent with high formation temperature. Meterorit Planet Sci 33:737–742 CrossRefGoogle Scholar
  46. 46.
    Vali H, Förster O, Amarantidis G, Petersen N (1987) Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet Sci Lett 86:389–400 CrossRefGoogle Scholar
  47. 47.
    Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004) Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc Natl Acad Sci USA 101:8281–8284 PubMedCrossRefGoogle Scholar
  48. 48.
    Weiss BP, Kim SS, Kirschvink JL, Kopp RE, Sankaran M, Kobayashi A, Komeili A (2004a) Ferromagnetic resonance and low-temperature magnetic tests for biogenic magnetite. Earth Planet Sci Lett 224:73–89 CrossRefGoogle Scholar
  49. 49.
    Winklhofer M (2006) In: Schüler D (ed) Magnetite-Based Magnetoreception in Higher Organisms, in: Magnetoreception and Magnetosomes in Bacteria, Springer, Berlin Heidelberg New York Google Scholar
  50. 50.
    Winklhofer M, Fabian K, Heider F (1997) Magnetic blocking temperatures of magnetite calculated with a three-dimensional micromagnetic model. J Geophys Res B102:22695–22709 CrossRefGoogle Scholar
  51. 51.
    Witt A, Fabian K, Bleil U (2005) Three-dimensional micromagnetic calculations for naturally shaped magnetite: octahedra and magnetosomes. Earth Planet Sci Lett 233:311–324 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Earth and Environmental ScienceLudwig-Maximilians-University of MunichMuenchenGermany

Personalised recommendations