Cell Biology of Magnetosome Formation

  • Arash Komeili
Part of the Microbiology Monographs book series (MICROMONO, volume 3)


Magnetosome chains are the intracellular structures that allow magnetotactic bacteria to align in and navigate along geomagnetic fields (Bazylinski and Frankel 2004). These organelles are typically defined as a unit consisting of a magnetite or greigite crystal surrounded by a lipid bilayer membrane (Balkwill et al. 1980). Although these magnetic minerals are the usual targets of most studies of magnetotactic bacteria it is the magnetosome membrane that fascinates cell biologists. One of the cornerstones of cell biology has been that membrane-bound organelles are unique to eukaryotes. However, it is now known that membranous organelles exist in many prokaryotes raising the possibility that the endo-membrane system of eukaryotic cells might have originated in prokaryotes (Jetten et al. 2003; Seufferheld et al. 2003; Fuerst 2005). Magnetosomes are one of the best-studied examples of these prokaryotic organelles with the potential to be an ideal system for the study of organelle development in prokaryotes. This work provides a review of the current knowledge of magnetosomes from a cell biological perspective focusing on the composition and formation of the magnetosome membrane and the cytoskeletal framework organizing individual magnetosomes into chains.


Anaerobic Ammonium Oxidation Lipid Bilayer Membrane Magnetotactic Bacterium Magnetite Crystal Membrane Invagination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arakaki A, Webb J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750 PubMedCrossRefGoogle Scholar
  2. 2.
    Balkwill DL, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408 PubMedGoogle Scholar
  3. 3.
    Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230 PubMedCrossRefGoogle Scholar
  4. 4.
    Blakemore R (1975) Magnetotactic bacteria. Science 190:377–379 PubMedCrossRefGoogle Scholar
  5. 5.
    Blakemore RP (1982) Magnetotactic bacteria. Annu Rev Microbiol 36:217–238 PubMedCrossRefGoogle Scholar
  6. 6.
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116:153–166 PubMedCrossRefGoogle Scholar
  7. 7.
    Frankel RB, Papaefthymiou GC, Blakemore RP, Obrien W (1983) Fe3O4Precipitation in Magnetotactic Bacteria. Biochimica Et Biophysica Acta 763:147–159 CrossRefGoogle Scholar
  8. 8.
    Fuerst JA (2005) Intracellular Compartmentation in Planctomycetes. Annu Rev Microbiol 59:299–328 PubMedCrossRefGoogle Scholar
  9. 9.
    Fukuda Y, Okamura Y, Takeyama H, Matsunaga T (2006) Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 580:801–812 PubMedCrossRefGoogle Scholar
  10. 10.
    Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586 PubMedCrossRefGoogle Scholar
  11. 11.
    Gorby YA, Beveridge TJ, Blakemore RP (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841 PubMedGoogle Scholar
  12. 12.
    Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 70:1040–1050 PubMedCrossRefGoogle Scholar
  13. 13.
    Jetten MS, Sliekers O, Kuypers M, Dalsgaard T, van Niftrik L, Cirpus I, van de Pas-Schoonen K, Lavik G, Thamdrup B, Le Paslier D, Op den Camp HJ, Hulth S, Nielsen LP, Abma W, Third K, Engstrom P, Kuenen JG, Jorgensen BB, Canfield DE, Sinninghe Damste JS, Revsbech NP, Fuerst J, Weissenbach J, Wagner M, Schmidt I, Schmid M, Strous M (2003) Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl Microbiol Biotechnol 63:107–114 PubMedCrossRefGoogle Scholar
  14. 14.
    Komeili A, Vali H, Beveridge TJ, Newman DK (2004) Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844 PubMedCrossRefGoogle Scholar
  15. 15.
    Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245 PubMedCrossRefGoogle Scholar
  16. 16.
    Lefman J, Zhang P, Hirai T, Weis RM, Juliani J, Bliss D, Kessel M, Bos E, Peters PJ, Subramaniam S (2004) Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr. J Bacteriol 186:5052–5061 PubMedCrossRefGoogle Scholar
  17. 17.
    Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753 PubMedGoogle Scholar
  18. 18.
    Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete Genome Sequence of the Facultative Anaerobic Magnetotactic Bacterium Magnetospirillum sp. strain AMB-1. DNA Res 12:157–166 PubMedCrossRefGoogle Scholar
  19. 19.
    Okamura Y, Takeyama H, Matsunaga T (2001) A magnetosome-specific GTPase from the magnetic bacterium Magnetospirillum magneticum AMB-1. J Biol Chem 276:48183–48188 PubMedCrossRefGoogle Scholar
  20. 20.
    Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schuler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114 PubMedCrossRefGoogle Scholar
  21. 21.
    Schübbe S, Kube M, Scheffel A, Wawer C, Heyen U, Meyerdierks A, Madkour MH, Mayer F, Reinhardt R, Schüler D (2003) Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J Bacteriol 185:5779–5790 PubMedCrossRefGoogle Scholar
  22. 22.
    Schultheiss D, Kube M, Schüler D (2004) Inactivation of the flagellin gene flaA in Magnetospirillum gryphiswaldense results in nonmagnetotactic mutants lacking flagellar filaments. Appl Environ Microbiol 70:3624–3631 PubMedCrossRefGoogle Scholar
  23. 23.
    Schultheiss D, Handrick R, Jendrossek D, Hanzlik M, Schüler D (2005) The presumptive magnetosome protein Mms16 is a poly(3-hydroxybutyrate) granule-bound protein (phasin) in Magnetospirillum gryphiswaldense. J Bacteriol 187:2416–2425 PubMedCrossRefGoogle Scholar
  24. 24.
    Seufferheld M, Vieira MC, Ruiz FA, Rodrigues CO, Moreno SN, Docampo R (2003) Identification of organelles in bacteria similar to acidocalcisomes of unicellular eukaryotes. J Biol Chem 278:29971–29978 PubMedCrossRefGoogle Scholar
  25. 25.
    Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184 PubMedCrossRefGoogle Scholar
  26. 26.
    Van den Ent F, Moller-Jensen J, Amos LA, Gerdes K, Lowe J (2002) F-actin-like filaments formed by plasmid segregation protein ParM. Embo J 21:6935–6943 CrossRefGoogle Scholar
  27. 27.
    Yang CD, Takeyama H, Tanaka T, Hasegawa A, Matsunaga T (2001) Synthesis of bacterial magnetic particles during cell cycle of Magnetospirillum magneticum AMB-1. Appl Biochem Biotechnol 91–93:155–160 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Department of Plant and Microbial BiologyBerkeley University of CaliforniaBerkeleyUSA

Personalised recommendations