Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria

Chapter
Part of the Microbiology Monographs book series (MICROMONO, volume 2)

Abstract

Chlorosomes are the light-harvesting antenna organelles found in two groups of bacteria, thegreen sulfur bacteria and the green filamentous bacteria, collectively known as photosynthetic greenbacteria. Chlorosomes consist mostly of aggregated bacteriochlorophyll (BChl) c,d, or e and are the largestantenna structures known. Unlike other light-harvesting antenna structures, the major antenna pigments(BChl c, d, or e)form aggregates that do not require a protein scaffold. This is possible because these BChlspossess structural modifications that do not occur in other naturally occurring chlorophyll derivatives.These properties allow the formation of very large and efficient antennae that permit phototrophicgrowth at remarkably low light intensities. The BChl aggregates are enveloped in a monolayerprotein–lipid membrane with a high content of glycolipids. Chlorosomes also contain smallamounts of BChl a bound to the CsmA protein, other protein speciesof mostly unknown function, carotenoids, and isoprenoid quinones. Chlorosomes from thermophilic greenbacteria also contain wax esters. Although very little is known about how chlorosomes are synthesizedby the cells, significant efforts have been devoted to understanding the structural organization andenergy transfer characteristics of the BChl aggregates in chlorosomes. This is in part because theseaggregates serve as models of self-assembling systems and their potential use as light-harvestingnanostructures in artificial photosystems. Recent progress in genetic manipulation of BChl c, carotenoids, and chlorosome envelope proteins in green sulfur bacteriahas allowed a better understanding of how these components function in chlorosomes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by grant DE-FG02-94ER20137 from the US Department of Energy to D.A.B. and grant 21–04–0463 from The Danish Natural Science Research Council to N.-U. F.

References

  1. 1.
    Airs RL, Keely BJ (2002) Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentations. Rapid Comm Mass Spectrom 16:453–461 CrossRefGoogle Scholar
  2. 2.
    Arellano JB, Melø TB, Borrego CM, Garcia-Gil J, Naqvi KR (2000a) Nanosecond laser photolysis studies of chlorosomes and artificial aggregates containing bacteriochlorophyll e: evidence for the proximity of carotenoids and bacteriochlorophyll a in chlorosomes from Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 72:669–675 PubMedCrossRefGoogle Scholar
  3. 3.
    Arellano JB, Psencik J, Borrego CM, Ma Y-Z, Guyoneaud R, Garcia-Gil J, Gillbro T (2000b) Effect of carotenoid biosynthesis inhibition on the chlorosome organization in Chlorobium phaeobacteroides strain CL1401. Photochem Photobiol 71:715–723 PubMedCrossRefGoogle Scholar
  4. 4.
    Arellano JB, Borrego CM, Martínez-Planells A, Garcia-Gil LJ (2001) Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides. Arch Microbiol 175:226–233 PubMedCrossRefGoogle Scholar
  5. 5.
    Arellano JB, Melø TB, Borrego CM, Naqvi KR (2002) Bacteriochlorophyll e monomers, but not aggregates, sensitize singlet oxygen: implications for a self-photoprotection mechanism in chlorosomes. Photochem Photobiol 76:373–380 PubMedCrossRefGoogle Scholar
  6. 6.
    Balaban ST (2004) Light-harvesting nanostructures. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 4. American Scientific, p 505–559 Google Scholar
  7. 7.
    Balaban ST (2005) Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. Acc Chem Res 38:612–623 PubMedCrossRefGoogle Scholar
  8. 8.
    Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, Van Dover CL, Martinson TA, Plumley FG (2005) An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. PNAS 102:9306–9310 PubMedCrossRefGoogle Scholar
  9. 9.
    Beyer P, Falk H, Kleining H (1983) Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities. Arch Microbiol 134:60–63 CrossRefGoogle Scholar
  10. 10.
    Blankenship RE (2002) Molecular mechanisms of photosynthesis. Blackwell Science, Oxford CrossRefGoogle Scholar
  11. 11.
    Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic, Dordrecht, p 195–217 Google Scholar
  12. 12.
    Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic, Dordrecht, p 399–435 Google Scholar
  13. 13.
    Borrego CM, Garcia-Gil LJ (1994) Separation of bacteriochlorophyll homologs from green photosynthetic sulfur bacteria by reversed-phase HPLC. Photosynth Res 41:157–164 CrossRefGoogle Scholar
  14. 14.
    Borrego CM, Gerola PD, Miller M, Cox RP (1999) Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 59:159–166 CrossRefGoogle Scholar
  15. 15.
    Britton G (1998) Overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids: biosynthesis and metabolism, vol 3. Birkhäuser, Basel, p 13–147 Google Scholar
  16. 16.
    Bryant DA, Vassilieva EV, Frigaard N-U, Li H (2002) Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. Biochemistry 41:14403–14411 PubMedCrossRefGoogle Scholar
  17. 17.
    Carbonera D, Bordignon E, Giacometti G, Agostini G, Vianelli A, Vannini C (2001) Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus – a comparative study. J Phys Chem B 105:246–255 CrossRefGoogle Scholar
  18. 18.
    Chung S, Frank G, Zuber H, Bryant DA (1994) Genes encoding two chlorosome proteins from the green sulfur bacteria Chlorobium vibrioforme strain 8327D and Chlorobium tepidum. Photosynth Res 41:261–275 CrossRefGoogle Scholar
  19. 19.
    Chung S, Bryant DA (1996a) Characterization of csmB genes from Chlorobium vibrioforme 8327D and Chlorobium tepidum and overproduction of the Chlorobium tepidum CsmB protein in Escherichia coli. Arch Microbiol 166:234–244 PubMedCrossRefGoogle Scholar
  20. 20.
    Chung S, Bryant DA (1996b) Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope. Photosynth Res 50:41–59 CrossRefGoogle Scholar
  21. 21.
    Cohen-Bazire G, Pfennig N, Kunisawa R (1964) The fine structure of green bacteria. J Cell Biol 22:207–225 PubMedCrossRefGoogle Scholar
  22. 22.
    Eisen JA, Nelson KE, Paulsen IT, Heidelberg JF, Wu M, Dodson RJ, Deboy R, Gwinn ML, Nelson WC, Haft DH, Hickey EK, Peterson JD, Durkin AS, Kolonay JL, Yang F, Holt I, Umayam LA, Mason T, Brenner M, Shea TP, Parksey D, Nierman WC, Feldblyum TV, Hansen CL, Craven MB, Radune D, Vamathevan J, Khouri H, White O, Gruber TM, Ketchum KA, Venter JC, Tettelin H, Bryant DA, Fraser CM (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. PNAS 99:9509–9514 PubMedCrossRefGoogle Scholar
  23. 23.
    Feick RG, Fuller RC (1984) Topography of the photosynthetic apparatus of Chloroflexus aurantiacus. Biochemistry 23:3693–3700 CrossRefGoogle Scholar
  24. 24.
    Feick R, Ertlmaier A, Ermler U (1996) Crystallization and X-ray analysis of the reaction center from the thermophilic green bacterium Chloroflexus aurantiacus. FEBS Lett 396:161–164 PubMedCrossRefGoogle Scholar
  25. 25.
    Foidl M, Golecki JR, Oelze J (1997) Phototrophic growth and chlorosome formation in Chloroflexus aurantiacus under conditions of carotenoid deficiency. Photosynth Res 54:219–226 CrossRefGoogle Scholar
  26. 26.
    Foidl M, Golecki JR, Oelze J (1998) Chlorosome development in Chloroflexus aurantiacus. Photosynth Res 55:109–114 CrossRefGoogle Scholar
  27. 27.
    Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63:257–264 PubMedCrossRefGoogle Scholar
  28. 28.
    Frigaard N-U, Bryant DA (2001) Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation. Appl Environ Microbiol 67:2538–2544 PubMedCrossRefGoogle Scholar
  29. 29.
    Frigaard N-U, Bryant DA (2004) Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol 182:265–276 PubMedCrossRefGoogle Scholar
  30. 30.
    Frigaard NU, Matsuura K (1999) Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium Chlorobium tepidum. Biochim Biophys Acta 1412:108–117 PubMedCrossRefGoogle Scholar
  31. 31.
    Frigaard N-U, Takaichi S, Hirota M, Shimada K, Matsuura K (1997) Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates. Arch Microbiol 167:343–349 CrossRefGoogle Scholar
  32. 32.
    Frigaard N-U, Matsuura K, Hirota M, Miller M, Cox RP (1998) Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria. Photosynth Res 58:81–90 CrossRefGoogle Scholar
  33. 33.
    Frigaard NU, Tokita S, Matsuura K (1999) Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. Biochim Biophys Acta 1413:108–116 PubMedCrossRefGoogle Scholar
  34. 34.
    Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant DA (2001) The remarkable chlorosome. In: Proceedings of the 12th international congress on photosynthesis (PS2001). CSIRO, Melbourne, article S1–S3 Google Scholar
  35. 35.
    Frigaard N-U, Voigt GD, Bryant DA (2002) Chlorobium tepidum mutant lacking bacteriochlorophyll c made by inactivation of the bchK gene, encoding bacteriochlorophyll c synthase. J Bacteriol 184:3368–3376 PubMedCrossRefGoogle Scholar
  36. 36.
    Frigaard N-U, Gomez Maqueo Chew A, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117 PubMedCrossRefGoogle Scholar
  37. 37.
    Frigaard N-U, Li H, Milks KJ, Bryant DA (2004a) Nine mutants of Chlorobium tepidum each unable to synthesize a different chlorosome protein still assemble functional chlorosomes. J Bacteriol 186:646–653 PubMedCrossRefGoogle Scholar
  38. 38.
    Frigaard N-U, Maresca JA, Yunker CE, Jones AD, Bryant DA (2004b) Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 186:5210–5220 PubMedCrossRefGoogle Scholar
  39. 39.
    Frigaard N-U, Sakuragi Y, Bryant DA (2004c) Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. In: Carpentier R (ed) Photosynthesis research protocols. Methods in molecular biology, vol 274. Humana, Totowa, p 325–340 CrossRefGoogle Scholar
  40. 40.
    Frigaard N-U, Li H, Martinsson P, Das SK, Frank HA, Aartsma TJ, Bryant DA (2005) Isolation and characterization of carotenosomes from a bacteriochlorophyll c-less mutant of Chlorobium tepidum. Photosynth Res 86:101–111 PubMedCrossRefGoogle Scholar
  41. 41.
    Frigaard N-U, Gomez Maqueo Chew A, Maresca JA, Bryant DA (2006) Bacteriochlorophyll biosynthesis in green bacteria. In: Grimm B, Porra R, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Advances in photosynthesis and respiration, vol 25. Springer, Dordrecht, The Netherlands, p 201–221 Google Scholar
  42. 42.
    Garrity GM, Holt JG (2001a) Phylum BXI. Chlorobi phy. nov. In: Boone DR, Castenholz RW (eds) Bergey's manual of systematic bacteriology, vol 1, 2nd edn. Springer, Heidelberg Berlin New York, p 601–623 CrossRefGoogle Scholar
  43. 43.
    Garrity GM, Holt JG (2001b) Phylum BVI. Chloroflexi phy. nov. In: Boone DR and Castenholz RW (eds) Bergey's manual of systematic bacteriology, vol 1, 2nd edn. Springer, Heidelberg Berlin New York, p 427–446 CrossRefGoogle Scholar
  44. 44.
    Gerola PD, Olson JM (1986) A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. Biochim Biophys Acta 848:69–76 PubMedCrossRefGoogle Scholar
  45. 45.
    Gibson J, Pfennig N, Waterbury JB (1984) Chloroherpeton thalassium gen nov et spec nov, a non-filamentous, flexing and gliding green sulfur bacterium. Arch Microbiol 138:96–101 PubMedCrossRefGoogle Scholar
  46. 46.
    Gich F, Airs RL, Danielsen M, Keely BJ, Abella CA, Garcia-Gil J, Miller M, Borrego CM (2003) Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp strain UdG9001. Arch Microbiol 180:417–426 PubMedCrossRefGoogle Scholar
  47. 47.
    Golecki JR, Oelze J (1987) Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus. Arch Microbiol 148:236–241 CrossRefGoogle Scholar
  48. 48.
    Green BR (2003) The evolution of light-harvesting antennas. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic, Dordrecht, p 129–168 Google Scholar
  49. 49.
    Green BR, Anderson JM, Parson WW (2003) Photosynthetic membranes and their light-harvesting antennas. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic, Dordrecht, p 1–28 Google Scholar
  50. 50.
    Hale MB, Blankenship RE, Fuller RC (1983) Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 723:376–382 CrossRefGoogle Scholar
  51. 51.
    Halfen LN, Pierson BK, Francis GW (1972) Carotenoids of a gliding organism containing bacteriochlorophylls. Arch Mikrobiol 82:240–246 CrossRefGoogle Scholar
  52. 52.
    Hanada S, Pierson BK (2002) The family Chloroflexaceae. In: The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Release 3.11. Springer, Heidelberg Berlin New York, http://link.springer-ny.com/link/service/books/10125/ Google Scholar
  53. 53.
    Hanada S, Hiraishi A, Shimada K, Matsuura K (1995) Chloroflexus aggregans sp nov, a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Intl J Syst Bacteriol 45:676–681 CrossRefGoogle Scholar
  54. 54.
    Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen nov, sp nov, a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Intl J Syst Evol Microbiol 52:187–193 CrossRefGoogle Scholar
  55. 55.
    Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277 PubMedCrossRefGoogle Scholar
  56. 56.
    Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp nov, a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiol 172:116–124 PubMedCrossRefGoogle Scholar
  57. 57.
    Hirabayashi H, Ishii T, Takaichi S, Inoue K, Uehara K (2004) The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285 PubMedCrossRefGoogle Scholar
  58. 58.
    Hirota M, Moriyama T, Shimada K, Miller M, Olson JM, Matsuura K (1992) High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous-solution. Biochim Biophys Acta 1099:271–274 CrossRefGoogle Scholar
  59. 59.
    Hohmann-Marriott MF, Blankenship RE, Roberson RW (2005) The ultrastructure of Chlorobium tepidum chlorosomes revealed by electron microscopy. Photosynth Res 86:145–154 PubMedCrossRefGoogle Scholar
  60. 60.
    Holo H, Broch-Due M, Ormerod JG (1985) Glycolipids and the structure of chlorosomes in green bacteria. Arch Microbiol 143:94–99 CrossRefGoogle Scholar
  61. 61.
    Holt JG, Lewin RA (1968) Herpetosiphon aurantiacus gen et sp n, a new filamentous gliding organism. J Bacteriol 95:2407–2408 PubMedGoogle Scholar
  62. 62.
    Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. Intl J Syst Evol Microbiol 53:941–951 CrossRefGoogle Scholar
  63. 63.
    Jensen MT, Knudsen J, Olson JM (1991) A novel aminoglycosphingolipid found in Chlorobium limicola f. thiosulfatophilum 6230. Arch Microbiol 156:248–254 CrossRefGoogle Scholar
  64. 64.
    Klappenbach JA, Pierson BK (2004) Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium Candidatus Chlorothrix halophila gen nov, sp nov, recovered from hypersaline microbial mats. Arch Microbiol 181:17–25 PubMedCrossRefGoogle Scholar
  65. 65.
    Knudsen E, Jantzen E, Bryn K, Ormerod JG, Sirevåg R (1982) Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus. Arch Microbiol 135:149–154 CrossRefGoogle Scholar
  66. 66.
    Krasnovsky AA, Pakshina EV (1959) The photochemical and spectral properties of bacterioviridin of green sulfur bacteria. Doklady Acad Nauk SSSR 127:215–218 Google Scholar
  67. 67.
    Li H (2006) Organization and function of chlorosome proteins in the green sulfur bacterium Chlorobium tepidium. Ph. D. thesis, The Pensilvania State University, p 205 Google Scholar
  68. 68.
    Li H, Frigaard N-U, Bryant DA (2005) Locations and interactions of chlorosome proteins on the chlorosome envelope in Chlorobium tepidum: insights from cross-linking experiments. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives. Allen, Lawrence, p 116–119 Google Scholar
  69. 69.
    Maresca JA, Gomez Maqueo Chew A, Ros Ponsatí M, Frigaard N-U, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566 PubMedCrossRefGoogle Scholar
  70. 70.
    Martinez-Planells A, Arellano JB, Borrego CA, López-Iglesias C, Gich F, Garcia-Gil J (2002) Determination of the topography and biometry of chlorosomes by atomic force microscopy. Photosynth Res 71:83–90 PubMedCrossRefGoogle Scholar
  71. 71.
    Matsuura K, Olson JM (1990) Reversible conversion of aggregated bacteriochlorophyll c to the monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus. Biochim Biophys Acta 1019:233–238 CrossRefGoogle Scholar
  72. 72.
    Melø TB, Frigaard N-U, Matsuura K, Naqvi KR (2000) Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus. Spectrochim Acta Part A 56:2001–2010 CrossRefGoogle Scholar
  73. 73.
    Milks KJ, Danielsen M, Persson S, Jensen ON, Cox RP, Miller M (2005) Chlorosome proteins studied by MALDI-TOF-MS: Topology of CsmA in Chlorobium tepidum. Photosynth Res 86:113–121 PubMedCrossRefGoogle Scholar
  74. 74.
    Miller M, Gillbro T, Olson JM (1993) Aqueous aggregates of bacteriochlorophyll c as a model for pigment organization in chlorosomes. Photochem Photobiol 57:98–102 CrossRefGoogle Scholar
  75. 75.
    Montaño GA, Bowen BP, LaBelle JT, Woodbury NW, Pizziconi VB, Blankenship RE (2003a) Characterization of Chlorobium tepidum chlorosomes: A calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. Biophys J 85:2560–2565 PubMedCrossRefGoogle Scholar
  76. 76.
    Montaño GA, Wu HM, Lin S, Brune DC, Blankenship RE (2003b) Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. Biochemistry 42:10246–10251 PubMedCrossRefGoogle Scholar
  77. 77.
    Nadson GA (1906) The morphology of inferior Algae II: Chlorobium limicola Nads, the green chlorophyll bearing microbe. Bull Jard Bot St Petersb 6:190 Google Scholar
  78. 78.
    Nadson GA (1912) Chlorobium limicola Nads, the green microorganism with non-functioning chlorophyll. Izv St Peterburg Bot Sada 12:55–73 Google Scholar
  79. 79.
    Niedermeier G, Shiozawa JA, Lottspeich F, Feick R (1994) The primary structure of two chlorosome proteins from Chloroflexus aurantiacus. FEBS Lett 342:61–65 PubMedCrossRefGoogle Scholar
  80. 80.
    Nozawa T, Ohtomo K, Suzuki M, Nakagawa H, Shikama Y, Konami H, Wang Z-Y (1994) Structures of chlorosomes and aggregates BChl c in Chlorobium tepidum from solid state high resolution CP/MAS 13C NMR. Photosynth Res 41:211–223 CrossRefGoogle Scholar
  81. 81.
    Oelze J, Golecki JR (1995) Membranes and chlorosomes of green bacteria: structure, composition and development. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic, Dordrecht, p 259–278 Google Scholar
  82. 82.
    Olson JM, Pedersen JP (1990) Bacteriochlorophyll c monomers, dimers, and higher aggregates in dichloromethane, chloroform, and carbon-tetrachloride. Photosynth Res 25:25–37 CrossRefGoogle Scholar
  83. 83.
    Olson JM, Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386 PubMedCrossRefGoogle Scholar
  84. 84.
    Olson JM, Raymond J (2003) The FMO protein is related to PscA in the reaction center of green sulfur bacteria. Photosynth Res 75:277–285 PubMedCrossRefGoogle Scholar
  85. 85.
    Overmann J (2000) The family Chlorobiaceae. In: The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn. Release 3.1. Springer, Heidelberg Berlin New York, http://link.springer-ny.com/link/service/books/10125/ Google Scholar
  86. 86.
    Overmann J, Cypionka H, Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37:150–155 CrossRefGoogle Scholar
  87. 87.
    Persson S, Sönksen CP, Frigaard N-U, Cox RP, Roepstorff P, Miller M (2000) Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry. Eur J Biochem 267:450–456 PubMedCrossRefGoogle Scholar
  88. 88.
    Pierson BK, Castenholz RW (1974) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100:5–24 PubMedCrossRefGoogle Scholar
  89. 89.
    Pšenčík J, Ikonen TP, Laurinmäki P, Merckel MC, Butcher SJ, Serimaa RE, Tuma R (2004) Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys J 87:1165–1172 PubMedCrossRefGoogle Scholar
  90. 90.
    Powls R, Redfearn ER (1969) Quinones of the Chlorobacteriaceae – properties and possible function. Biochim Biophys Acta 172:429–437 PubMedCrossRefGoogle Scholar
  91. 91.
    Redfearn ER, Powls R (1968) The quinones of green photosynthetic bacteria. Biochem J 106:50P Google Scholar
  92. 92.
    Sakuragi Y, Frigaard N-U, Shimada K, Matsuura K (1999) Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. Biochim Biophys Acta 1413:172–180 PubMedCrossRefGoogle Scholar
  93. 93.
    Schmidt K (1980) A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230. Arch Microbiol 124:21–31 CrossRefGoogle Scholar
  94. 94.
    Smith KM, Kehres LA, Fajer J (1983) Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria. J Am Chem Soc 105:1387–1389 CrossRefGoogle Scholar
  95. 95.
    Smith KM (2003) Chlorosome chlorophylls (bacteriochlorophylls c, d, and e): structures, partial syntheses, and biosynthetic proposals. In: Kadish KM, Smith KM, Guilard R (eds) Chlorophylls and bilins: biosynthesis, structure, and degradation. Elsevier Science (USA), p 157–182 Google Scholar
  96. 96.
    Staehelin LA, Golecki JR, Drews G (1978) Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus. Arch Microbiol 119:269–277 CrossRefGoogle Scholar
  97. 97.
    Staehelin LA, Golecki JR, Drews G (1980) Supramolecular organization of chlorosomes (Chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta 589:30–45 PubMedCrossRefGoogle Scholar
  98. 98.
    Steensgaard DB, Wackerbarth H, Hildebrandt P, Holzwarth AR (2000) Diastereoselective control of bacteriochlorophyll e aggregation. 31-S-BChl e is essential for the formation of chlorosome-like aggregates. J Phys Chem B 104:10379–10386 CrossRefGoogle Scholar
  99. 99.
    Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer Academic, Dordrecht, The Netherlands, p 39–69 Google Scholar
  100. 100.
    Takaichi S, Oh-oka H (1999) Pigment composition in the reaction center complex from the thermophilic green sulfur bacterium, Chlorobium tepidum: Carotenoid glucoside esters, menaquinone and chlorophylls. Plant Cell Physiol 40:691–694 CrossRefGoogle Scholar
  101. 101.
    Takaichi S, Wang ZY, Umetsu M, Nozawa T, Shimada K, Madigan MT (1997) New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoids composition of different strains. Arch Microbiol 168:270–276 PubMedCrossRefGoogle Scholar
  102. 102.
    Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814 PubMedCrossRefGoogle Scholar
  103. 103.
    Uehara K, Mimuro M, Ozaki Y, Olson JM (1994) The formation and characterization of the in vitro polymeric aggregates of bacteriochlorophyll c homologs from Chlorobium limicola in aqueous suspension in the presence of monogalactosyl diglyceride. Photosynth Res 41:235–243 CrossRefGoogle Scholar
  104. 104.
    van Dorssen RJ, Gerola PD, Olson JM, Amesz J (1986) Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola. Biochim Biophys Acta 848:77–82 CrossRefGoogle Scholar
  105. 105.
    van Niel CB (1932) On the morphology and physiology of the purple and green sulphur bacteria. Arch Microbiol 3:1–112 Google Scholar
  106. 106.
    van Noort PI, Zhu Y, LoBrutto R, Blankenship RE (1997) Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. Biophys J 72:316–325 PubMedCrossRefGoogle Scholar
  107. 107.
    Vassilieva EV, Antonkine ML, Zybailov BL, Yang F, Jakobs CU, Golbeck JH, Bryant DA (2001) Electron transfer may occur in the chlorosome envelope: The CsmI and CsmJ proteins of chlorosomes are 2Fe - 2S ferredoxins. Biochemistry 40:464–473 PubMedCrossRefGoogle Scholar
  108. 108.
    Vassilieva EV, Ormerod JG, Bryant DA (2002a) Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme. Photosynth Res 71:69–81 PubMedCrossRefGoogle Scholar
  109. 109.
    Vassilieva EV, Stirewalt VL, Jakobs CU, Frigaard N-U, Inoue-Sakamoto K, Baker MA, Sotak A, Bryant DA (2002b) Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsrnH, and CsmX. Biochemistry 41:4358–4370 PubMedCrossRefGoogle Scholar
  110. 110.
    Wagner-Huber R, Brunisholz R, Frank G, Zuber H (1988) The bacteriochlorophyll c/e-binding polypeptides from chlorosomes of green photosynthetic bacteria, FEBS Lett 239:8–12 CrossRefGoogle Scholar
  111. 111.
    Wahlund TM, Woese CR, Castenholz RW, Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156:81–90 CrossRefGoogle Scholar
  112. 112.
    Wang J, Brune DC, Blankenship RE (1990) Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. Biochim Biophys Acta 1015:457–463 PubMedCrossRefGoogle Scholar
  113. 113.
    Wang ZY, Marx G, Umetsu M, Kobayashi M, Mimuro M, Nozawa T (1995) Morphology and spectroscopy of chlorosomes from Chlorobium tepidum by alcohol treatments. Biochim Biophys Acta 1232:187–196 CrossRefGoogle Scholar
  114. 114.
    Wechsler T, Suter F, Fuller RC, Zuber H (1985) The complete amino-acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. FEBS Lett 181:173–178 CrossRefGoogle Scholar
  115. 115.
    Wullink W, Knudsen J, Olson JM, Redlinger TE, van Bruggen EFJ (1991) Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immunogold labeling electron microscopy. Biochim Biophys Acta 1060:97–105 CrossRefGoogle Scholar
  116. 116.
    Xin YY, Lin S, Montano GA, Blankenship RE (2005) Purification and characterization of the B808–866 light-harvesting complex from green filamentous bacterium Chloroflexus aurantiacus. Photosynth Res 86:155–163 PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada M, Zhang H, Hanada S, Nagashima KVP, Shimada K, Matsuura K (2005) Structural and spectroscopic properties of a reaction center complex from the chlorosome-lacking filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. J Bacteriol 187:1702–1709 PubMedCrossRefGoogle Scholar
  118. 118.
    Zhu YW, Ramakrishna BL, van Noort PI, Blankenship RE (1995) Microscopic and spectroscopic studies of untreated and hexanol-treated chlorosomes from Chloroflexus aurantiacus. Biochim Biophys Acta 1232:197–207 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Institute of Molecular Biology and PhysiologyUniversity of CopenhagenCopenhagenDenmark
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityPennsylvaniaUSA

Personalised recommendations