Assembly and Disassembly of Phycobilisomes

  • Noam Adir
  • Monica Dines
  • Merav Klartag
  • Ailie McGregor
  • Meira Melamed-Frank
Part of the Microbiology Monographs book series (MICROMONO, volume 2)


The process of photosynthesis is initiated by the absorption of light energy by large arrays of pigmentsbound in an ordered fashion within protein complexes called antennas. These antennas transfer the absorbedenergy at almost 100% efficiency to the reaction centers that perform the photochemical electron transferreactions required for the conversion of the light energy into useful and storable chemical energy. Inprokaryotic cyanobacteria, eukaryotic red algae and cyanelles, the major antenna complex is called the phycobilisome,an extremely large (3–7 MDa) multi subunit complex found on the stromal side of the thylakoidmembrane. Phycobilisomes are assembled in an ordered sequence from similarly structured units that covalentlybind a variety of linear tetrapyrolle pigments called bilins. Phycobilisomes have a broad cross-sectionof absorption (500–680 nm) and mainly transfer the absorbed energy to photosystem II. Theycan, however, function as an antenna of photosystem I, and their composition can be altered as a resultof changes in the environmental light quality. The phycobilisome is structurally and functionally differentfrom other classes of photosynthetic antenna complexes. In this review, we will describe the importantstructural and functional characteristics of the phycobilisome complex and its components, especially withrespect to its assembly and disassembly.





complementary chromatic adaptation


light harvesting complex




















photosystem I


photosystem II


reaction center(s)


transmission electron microscopy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32 PubMedCrossRefGoogle Scholar
  2. 2.
    Adir N, Dobrovetsky Y, Lerner N (2001) Structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus vulcanus at 2.5 Å: Structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313:71–81 PubMedCrossRefGoogle Scholar
  3. 3.
    Adir N, Lerner N (2003) The crystal structure of a novel unmethylated form of C-phycocyanin, a possible connector between cores and rods in pycobilisomes. J Biol Chem 278:25926–25932 PubMedCrossRefGoogle Scholar
  4. 4.
    Adir N, Vainer R, Lerner N (2002) Refined structure of C-phycocyanin from the cyanobacterium Synechococcus vulcanus at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structure. Biochim Biophys Acta 1556:168–174 PubMedCrossRefGoogle Scholar
  5. 5.
    Adir N, Zer H, Shochat S, Ohad I (2003) Photoinhibition—a historical perspective. Photosynth Research 76:343–370 CrossRefGoogle Scholar
  6. 6.
    Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120 PubMedCrossRefGoogle Scholar
  7. 7.
    Anderson LK, Toole CM (1998) A model for early events in the assembly pathway of cyanobacterial phycobilisomes. Mol Microbiol 30:467–474 PubMedCrossRefGoogle Scholar
  8. 8.
    Apt KE, Collier JL, Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248:79–96 PubMedCrossRefGoogle Scholar
  9. 9.
    Arciero DM, Bryant DA, Glazer AN (1988) In vitro attachment of bilins to apophycocyanin. I. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyanin. J Biol Chem 263:18343–18349 PubMedGoogle Scholar
  10. 10.
    Awramik SM (1992) The oldest records of photosynthesis. Photosynth Res 33:75–89 PubMedCrossRefGoogle Scholar
  11. 11.
    Barber J, Morris EP, da Fonseca PC (2003) Interaction of the allophycocyanin core complex with photosystem II. Photochem Photobiol Sci 2:536–541 PubMedCrossRefGoogle Scholar
  12. 12.
    Ben-Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635 PubMedCrossRefGoogle Scholar
  13. 13.
    Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends Biochem Sci 23:94–97 PubMedCrossRefGoogle Scholar
  14. 14.
    Blankenship RE, Olson JM, Miller M (1995) Antenna complexes from green photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrect, The Netherlands, p 399–435 Google Scholar
  15. 15.
    Brejc K, Ficner R, Huber R, Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Åresolution. J Mol Biol 249:424–440 PubMedCrossRefGoogle Scholar
  16. 16.
    Brown SB, Houghton JD, Vernon DI (1990) Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. J Photochem Photobiol B 5:3–23 PubMedCrossRefGoogle Scholar
  17. 17.
    Bryant DA, Guglielmi G, Tandeau de Marsac N, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: A model. Arch Microbiol 123:113–127 CrossRefGoogle Scholar
  18. 18.
    Buick R (1992) The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255:74–77 PubMedCrossRefGoogle Scholar
  19. 19.
    Cai YA, Murphy JT, Wedemayer GJ, Glazer AN (2001) Recombinant phycobiliproteins. Recombinant C-phycocyanins equipped with affinity tags, oligomerization, and biospecific recognition domains. Anal Biochem 290:186–204 PubMedCrossRefGoogle Scholar
  20. 20.
    Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX, Liang DC (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Åresolution. J Mol Biol 262:721–731 PubMedCrossRefGoogle Scholar
  21. 21.
    Cogdell RJ, Gardiner AT, Roszak AW, Law CJ, Southall J, Isaacs NW (2004) Rings, ellipses and horseshoes: how purple bacteria harvest solar energy. Photosynth Res 81:207–214 PubMedCrossRefGoogle Scholar
  22. 22.
    Collier JL, Grossman AR (1994) A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. EMBO J 13:1039–1047 PubMedGoogle Scholar
  23. 23.
    De Marais DJ (2000) Evolution. When did photosynthesis emerge on Earth? Science 289:1703–1705 PubMedGoogle Scholar
  24. 24.
    Debreczeny MP, Sauer K, Zhou J, Bryant DA (1993) Monomeric C-phycocyanin at room temperature and 77K: Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants. J Phys Chem 97:9852–9862 CrossRefGoogle Scholar
  25. 25.
    Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39 PubMedCrossRefGoogle Scholar
  26. 26.
    Dolganov N, Grossman AR (1999) A polypeptide with similarity to phycocyanin alpha-subunit phycocyanobilin lyase involved in degradation of phycobilisomes. J Bacteriol 181:610–617 PubMedGoogle Scholar
  27. 27.
    Doust AB, Marai CN, Harrop SJ, Wilk KE, Curmi PM, Scholes GD (2004) Developing a structure-function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopy. J Mol Biol 344:135–153 PubMedCrossRefGoogle Scholar
  28. 28.
    Ducret A, Muller SA, Goldie KN, Hefti A, Sidler WA, Zuber H, Engel A (1998) Reconstitution, characterization and mass analysis of the pentacylindrical allophycocyanin core complex from the cyanobacterium Anabaena sp. PCC 7120. J Mol Biol 278:369–388 PubMedCrossRefGoogle Scholar
  29. 29.
    Duerring M, Huber R, Bode W (1988) The structure of gamma-N-methylasparagine in C-phycocyanin from Mastigocladus laminosus and Agmenellum quadriplicatum. FEBS Lett 236:167–170 CrossRefGoogle Scholar
  30. 30.
    Duerring M, Schmidt GB, Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Åresolution. J Mol Biol 217:577–592 PubMedCrossRefGoogle Scholar
  31. 31.
    Fairchild CD, Jones IK, Glazer AN (1991) Absence of glycosylation on cyanobacterial phycobilisome linker polypeptides and rhodophytan phycoerythrins. J Bacteriol 173:2985–2992 PubMedGoogle Scholar
  32. 32.
    Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838 PubMedCrossRefGoogle Scholar
  33. 33.
    Forster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik 2:55–75 CrossRefGoogle Scholar
  34. 34.
    Forster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern Quantum Chemistry. Academic Press, New York, p 93–137 Google Scholar
  35. 35.
    Frankenberg N, Mukougawa K, Kohchi T, Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13:965–978 PubMedGoogle Scholar
  36. 36.
    Frigaard NU, Chew AG, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117 PubMedCrossRefGoogle Scholar
  37. 37.
    Frigaard N-U, Vassilieva EV, Li H, Milks KJ, Zhao J, Bryant DA (eds) (2001) The Remarkable Chlorosome. CSIRO Publishing, Melbourne, Australia Google Scholar
  38. 38.
    Fuglistaller P, Mimuro M, Suter F, Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus. Influence of the linker polypeptide L8.9C on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe Seyler 368:353–367 PubMedCrossRefGoogle Scholar
  39. 39.
    Gantt E, Conti SF (1966a) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29:423–434 PubMedCrossRefGoogle Scholar
  40. 40.
    Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405 PubMedGoogle Scholar
  41. 41.
    Gantt E, Lipschultz CA (1972) Phycobilisomes of Porphyridium cruentum. I. Isolation. J Cell Biol 54:313–324 PubMedCrossRefGoogle Scholar
  42. 42.
    Glauser M, Bryant DA, Frank G, Wehrli E, Rusconi SS, Sidler W, Zuber H (1992) Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem 205:907–915 PubMedCrossRefGoogle Scholar
  43. 43.
    Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem 14:47–77 PubMedCrossRefGoogle Scholar
  44. 44.
    Glazer AN (1989) Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem 264:1–4 PubMedGoogle Scholar
  45. 45.
    Glazer AN, Bryant DA (1975) Allophycocyanin B (λmax 671, 618 nm): a new cyanobacterial phycobiliprotein. Arch Microbiol 104:15–22 PubMedCrossRefGoogle Scholar
  46. 46.
    Gomez-Lojero C, Perez-Gomez B, Shen G, Schluchter WM, Bryant DA (2003) Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800–13811 PubMedCrossRefGoogle Scholar
  47. 47.
    Grossman AR, Bhaya D, He Q (2001) Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting. J Biol Chem 276:11449–11452 PubMedCrossRefGoogle Scholar
  48. 48.
    Grossman AR, Schaefer MR, Chiang GG, Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57:725–749 PubMedGoogle Scholar
  49. 49.
    Holm L, Sander C (1993) Structural alignment of globins, phycocyanins and colicin A. FEBS Lett 315:301–306 PubMedCrossRefGoogle Scholar
  50. 50.
    Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184:6845–6858 PubMedCrossRefGoogle Scholar
  51. 51.
    Huber R (1989) Nobel lecture. A structural basis of light energy and electron transfer in biology. Embo J 8:2125–2147 PubMedGoogle Scholar
  52. 52.
    Klotz AV, Leary JA, Glazer AN (1986) Post-translational methylation of asparaginyl residues. Identification of beta-71 γ-N-methylasparagine in allophycocyanin. J Biol Chem 261:15891–15894 PubMedGoogle Scholar
  53. 53.
    Kondo K, Geng XX, Katayama M, Ikeuchi M (2005) Distinct roles of CpcG1, CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84:269–273 PubMedCrossRefGoogle Scholar
  54. 54.
    Liu JY, Jiang T, Zhang JP, Liang DC (1999) Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2 Åresolution. J Biol Chem 274:16945–16952 PubMedCrossRefGoogle Scholar
  55. 55.
    Liu LN, Chen XL, Zhang YZ, Zhou BC (2005) Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim Biophys Acta 1708:133–142 PubMedCrossRefGoogle Scholar
  56. 56.
    Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD (2005) The Antenna System of Photosystem II From Thermosynechococcus elongatus at 3.2 AngstromResolution. Photosynth Res 86:175–184 PubMedCrossRefGoogle Scholar
  57. 57.
    Lundell DJ, Glazer AN (1983) Molecular architecture of a light-harvesting antenna. Structure of the 18 S core-rod subassembly of the Synechococcus 6301 phycobilisome. J Biol Chem 258:894–901 PubMedGoogle Scholar
  58. 58.
    Luque I, Ochoa De Alda JA, Richaud C, Zabulon G, Thomas JC, Houmard J (2003) The NblAI protein from the filamentous cyanobacterium Tolypothrix PCC 7601: regulation of its expression and interactions with phycobilisome components. Mol Microbiol 50:1043–1054 PubMedCrossRefGoogle Scholar
  59. 59.
    MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124:311–334 PubMedCrossRefGoogle Scholar
  60. 60.
    MacColl R (2004) Allophycocyanin and energy transfer. Biochim Biophys Acta 1657:73–81 PubMedCrossRefGoogle Scholar
  61. 61.
    MacColl R, Eisele LE, Menikh A (2003) Allophycocyanin: trimers, monomers, subunits, and homodimers. Biopolymers 72:352–365 PubMedCrossRefGoogle Scholar
  62. 62.
    MacDonald TM, Dubois L, Smith LC, Campbell DA (2003) Sensitivity of cyanobacterial antenna, reaction center, CO2 assimilation transcripts and proteins to moderate UVB: light acclimation potentiates resistance to UVB. Photochem Photobiol 77:405–412 PubMedCrossRefGoogle Scholar
  63. 63.
    Melkozernov AN, Blankenship RE (2005) Structural and functional organization of the peripheral light-harvesting system in Photosystem I. Photosynth Res 85:33–50 PubMedCrossRefGoogle Scholar
  64. 64.
    Migita CT, Zhang X, Yoshida T (2003) Expression and characterization of cyanobacterium heme oxygenase, a key enzyme in the phycobilin synthesis. Properties of the heme complex of recombinant active enzyme. Eur J Biochem 270:687–698 PubMedCrossRefGoogle Scholar
  65. 65.
    Mimuro M, Kikuchi H, Murakami A (1999) Structure, function of Phycobiliosmes. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in Photobiology. Kluwer Academic Publishers, Dordrecht, p 104–135 CrossRefGoogle Scholar
  66. 66.
    Montgomery BL, Casey ES, Grossman AR, Kehoe DM (2004) Apl A, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvesting. J Bacteriol 186:7420–7428 PubMedCrossRefGoogle Scholar
  67. 67.
    Nield J, Rizkallah PJ, Barber J, Chayen NE (2003) The 1.45 Åthree-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium Synechococcus elongatus. J Struct Biol 141:149–155 PubMedCrossRefGoogle Scholar
  68. 68.
    Padyana AK, Bhat VB, Madyastha KM, Rajashankar KR, Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Commun 282:893–898 PubMedCrossRefGoogle Scholar
  69. 69.
    Piven I, Ajlani G, Sokolenko A (2005) Phycobilisome linker proteins are phosphorylated in Synechocystis sp. PCC 6803. J Biol Chem 280:21667–21672 PubMedCrossRefGoogle Scholar
  70. 70.
    Pizarro SA, Sauer K (2001) Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides. Photochem Photobiol 73:556–563 PubMedCrossRefGoogle Scholar
  71. 71.
    Reuter W, Wiegand G, Huber R, Than ME (1999) Structural analysis at 2.2 Åof orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96:1363–1368 PubMedCrossRefGoogle Scholar
  72. 72.
    Richaud C, Zabulon G, Joder A, Thomas JC (2001) Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the nblA gene in Synechocystis strain PCC 6803. J Bacteriol 183:2989–2994 PubMedCrossRefGoogle Scholar
  73. 73.
    Sauer K, Scheer H (1988) Exitation transfer in C-phycocyanin. Forster transfer rate and exciton calculations based on new crystal structure data for C-phycocyanins from Agmenellum quadruplaticumand Mastigocladus laminosus. Biochim Biophys Acta 936:157–170 CrossRefGoogle Scholar
  74. 74.
    Schirmer T, Bode W, Huber R, Sidler W, Zuber H (1985) X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184:257–277 PubMedCrossRefGoogle Scholar
  75. 75.
    Schirmer T, Huber R, Schneider M, Bode W, Miller M, Hackert ML (1986) Crystal structure analysis and refinement at 2.5 Åof hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188:651–676 PubMedCrossRefGoogle Scholar
  76. 76.
    Schwarz R, Grossman AR (1998) A response regulator of cyanobacteria integrates diverse environmental signals and is critical for survival under extreme conditions. Proc Natl Acad Sci USA 95:11008–11013 PubMedCrossRefGoogle Scholar
  77. 77.
    Sendersky E, Lahmi R, Shaltiel J, Perelman A, Schwarz R (2005) Nbl C, a novel component required for pigment degradation during starvation in Synechococcus PCC 7942. Mol Microbiol 58:659–668 PubMedCrossRefGoogle Scholar
  78. 78.
    Sidler WA (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrect, p 139–216 CrossRefGoogle Scholar
  79. 79.
    Stec B, Troxler RF, Teeter MM (1999) Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76:2912–2921 PubMedCrossRefGoogle Scholar
  80. 80.
    Steglich C, Frankenberg-Dinkel N, Penno S, Hess WR (2005) A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp. MED4. Environ Microbiol 7:1611–1618 PubMedCrossRefGoogle Scholar
  81. 81.
    Sugishima M, Hagiwara Y, Zhang X, Yoshida T, Migita CT, Fukuyama K (2005) Crystal structure of dimeric heme oxygenase-2 from Synechocystis sp. PCC 6803 in complex with heme. Biochemistry 44:4257–4266 PubMedCrossRefGoogle Scholar
  82. 82.
    Sun L, Wang S (2003) Allophycocyanin complexes from the phycobilisome of a thermophilic blue-green alga Myxosarcina concinna Printz. J Photochem Photobiol B 72:45–53 PubMedCrossRefGoogle Scholar
  83. 83.
    Swanson RV, Glazer AN (1990) Phycobiliprotein methylation. Effect of the γ-N-methylasparagine residue on energy transfer in phycocyanin and the phycobilisome. J Mol Biol 214:787–796 PubMedCrossRefGoogle Scholar
  84. 84.
    Tandeau de Marsac N, Cohen-Bazire G (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci USA 74:1635–1639 CrossRefGoogle Scholar
  85. 85.
    Teale FW, Dale RE (1970) Isolation and spectral characterization of phycobiliproteins. Biochem J 116:161–169 PubMedGoogle Scholar
  86. 86.
    Ting CS, Rocap G, King J, Chisholm SW (2002) Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol 10:134–142 PubMedCrossRefGoogle Scholar
  87. 87.
    van Waasbergen LG, Dolganov N, Grossman AR (2002) nblS, a gene involved in controlling photosynthesis-related gene expression during high light and nutrient stress in Synechococcus elongatus PCC 7942. J Bacteriol 184:2481–2490 PubMedCrossRefGoogle Scholar
  88. 88.
    Wilk KE, Harrop SJ, Jankova L, Edler D, Keenan G, Sharples F, Hiller RG, Curmi PM (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: crystal structure of a cryptophyte phycoerythrin at 1.63 Åresolution. Proc Natl Acad Sci USA 96:8901–8906 PubMedCrossRefGoogle Scholar
  89. 89.
    Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521 PubMedCrossRefGoogle Scholar
  90. 90.
    Yamanaka G, Glazer AN, Williams RC (1978) Cyanobacterial phycobilisomes. Characterization of the phycobilisomes of Synechococcus sp. 6301. J Biol Chem 253:8303–8310 PubMedGoogle Scholar
  91. 91.
    Yi ZW, Huang H, Kuang TY, Sui SF (2005) Three-dimensional architecture of phycobilisomes from Nostoc flagelliforme revealed by single particle electron microscopy. FEBS Lett 579:3569–3573 PubMedCrossRefGoogle Scholar
  92. 92.
    Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu Rev Biochem 74:649–679 PubMedCrossRefGoogle Scholar
  93. 93.
    Yu MH, Glazer AN (1982) Cyanobacterial phycobilisomes. Role of the linker polypeptides in the assembly of phycocyanin. J Biol Chem 257:3429–3433 PubMedGoogle Scholar
  94. 94.
    Yu MH, Glazer AN, Williams RC (1981) Cyanobacterial phycobilisomes. Phycocyanin assembly in the rod substructures of anabaena variabilis phycobilisomes. J Biol Chem 256:13130–13136 PubMedGoogle Scholar
  95. 95.
    Zhao KH, Su P, Bohm S, Song B, Zhou M, Bubenzer C, Scheer H (2005) Reconstitution of phycobilisome core-membrane linker, LCM, by autocatalytic chromophore binding to ApcE. Biochim Biophys Acta 1706:81–87 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Noam Adir
    • 1
  • Monica Dines
    • 1
  • Merav Klartag
    • 1
  • Ailie McGregor
    • 1
  • Meira Melamed-Frank
    • 1
  1. 1.Department of Chemistry, TechnionIsrael Institute of TechnologyHaifaIsrael

Personalised recommendations