Advertisement

Endosperm pp 219-239 | Cite as

Genomic Imprinting in Arabidopsis thaliana and Zea mays

  • Jon Penterman
  • Jin Hoe Huh
  • Tzung-Fu Hsieh
  • Robert L. FischerEmail author
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 8)

Abstract

Genomic imprinting is the differential expression of paternal and maternal alleles. In plants, gene imprinting occurs in the endosperm and has not been found in the embryo or adult plants. Imprinting can affect every allele of a locus (locus-dependent imprinting) or be specific to a particular allele (allele-dependent imprinting). Allele-dependent imprinting was the first type of gene imprinting discovered and has only been documented in maize. Locus-specific imprinting is found in both maize and Arabidopsis. Recent studies have revealed the integral role of female and male gametophytes in gene imprinting and mechanisms by which the parental alleles are distinguished from one another. Herein we will focus on the mechanisms of locus-specific gene imprinting in Arabidopsis and maize.

Keywords

Imprint Gene Female Gametophyte Male Gametophyte Endosperm Development Paternal Allele 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baroux C, Gagliardini V, Page DR, Grossniklaus U (2006) Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis. Genes Dev 20:1081–1086 PubMedCrossRefGoogle Scholar
  2. Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68 PubMedCrossRefGoogle Scholar
  3. Cao X, Jacobsen SE (2002). Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci USA 99(4):16491–16498 PubMedCrossRefGoogle Scholar
  4. Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360 PubMedCrossRefGoogle Scholar
  5. Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228 PubMedCrossRefGoogle Scholar
  6. Choi Y, Harada JJ, Goldberg RB, Fischer RL (2004) An invariant aspartic acid in the DNA glycosylase domain of DEMETER is necessary for transcriptional activation of the imprinted MEDEA gene. Proc Natl Acad Sci USA 101:7481–7486 PubMedCrossRefGoogle Scholar
  7. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42 PubMedCrossRefGoogle Scholar
  8. Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fie genes in maize: expression pattern and imprinting suggest distinct functions. Plant Cell 15:425–438 PubMedCrossRefGoogle Scholar
  9. Dilkes BP, Comai L (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16:3174–3180 PubMedCrossRefGoogle Scholar
  10. Ebbs ML, Bartee L, Bender J (2005) H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Mol Cell Biol 25:10507–10515 PubMedCrossRefGoogle Scholar
  11. Fowden AL, Sibley C, Reik W, Constancia M (2006) Imprinted genes, placental development and fetal growth. Horm Res 65(3):50–58 PubMedCrossRefGoogle Scholar
  12. Gehring M, Choi Y, Fischer RL (2004) Imprinting and seed development. Plant Cell 16(1):S203–S213 PubMedCrossRefGoogle Scholar
  13. Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506 PubMedCrossRefGoogle Scholar
  14. Grimaud C, Negre N, Cavalli G (2006) From genetics to epigenetics: the tale of Polycomb group and trithorax group genes. Chromosome Res 14:363–375 PubMedCrossRefGoogle Scholar
  15. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280:446–450 PubMedCrossRefGoogle Scholar
  16. Guitton AE, Berger F (2005) Control of reproduction by Polycomb Group complexes in animals and plants. Int J Dev Biol 49:707–716 PubMedCrossRefGoogle Scholar
  17. Guo M, Rupe MA, Danilevskaya ON, Yang X, Hu Z (2003) Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J 36:30–44 PubMedCrossRefGoogle Scholar
  18. Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG (2003) Imprinting in the endosperm: a possible role in preventing wide hybridisation. Philos Trans R Soc Lond 358:1105–1111 CrossRefGoogle Scholar
  19. Gutierrez-Marcos JF, Costa LM, Dal Pra M, Scholten S, Kranz E, Perez P, Dickinson HG (2006) Epigenetic asymmetry of imprinted genes in plant gametes. Nat Genet 38:876–878 PubMedCrossRefGoogle Scholar
  20. Gutierrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O'Sullivan DM, Wormald M, Perez P, Dickinson HG (2004) maternally expressed gene1 Is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 16:1288–1301 PubMedCrossRefGoogle Scholar
  21. Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134:147–155 CrossRefGoogle Scholar
  22. Haig D, Westoby M (1991) Genomic imprinting in endosperm: Its effect of seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc Lond 333:1–13 CrossRefGoogle Scholar
  23. Hsieh TF, Fischer RL (2005) Biology of chromatin dynamics. Annu Rev Plant Biol 56:327–351 PubMedCrossRefGoogle Scholar
  24. Hsieh TF, Hakim O, Ohad N, Fischer RL (2003) From flour to flower: how Polycomb group proteins influence multiple aspects of plant development. Trends Plant Sci 8:439–445 PubMedCrossRefGoogle Scholar
  25. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560 PubMedCrossRefGoogle Scholar
  26. Jullien PE, Kinoshita T, Ohad N, Berger F (2006a) Maintenance of DNA methylation during the Arabidopsis life cycle is essential for parental imprinting. Plant Cell 18:1360–1372 PubMedCrossRefGoogle Scholar
  27. Jullien PE, Katz A, Oliva M, Ohad N, Berger F (2006b) Polycomb group complexes self-regulate imprinting of the Polycomb group gene MEDEA in Arabidopsis. Curr Biol 16:486–492 PubMedCrossRefGoogle Scholar
  28. Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122 PubMedGoogle Scholar
  29. Katz A, Oliva M, Mosquna A, Hakim O, Ohad N (2004) FIE and CURLY LEAF polycomb proteins interact in the regulation of homeobox gene expression during sporophyte development. Plant J 37:707–719 PubMedCrossRefGoogle Scholar
  30. Kinoshita T, Yadegari R, Harada JJ, Goldberg RB, Fischer RL (1999) Imprinting of the MEDEA polycomb gene in the Arabidopsis endosperm. Plant Cell 11:1945–1952 PubMedCrossRefGoogle Scholar
  31. Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523 PubMedCrossRefGoogle Scholar
  32. Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB, Fischer RL (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191 PubMedCrossRefGoogle Scholar
  33. Kohler C, Page DR, Gagliardini V, Grossniklaus U (2005) The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting. Nat Genet 37:28–30 PubMedGoogle Scholar
  34. Kohler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003a) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553 PubMedCrossRefGoogle Scholar
  35. Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003b) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814 PubMedCrossRefGoogle Scholar
  36. Lewis A, Reik W (2006) How imprinting centres work. Cytogenet Genome Res 113:81–89 PubMedCrossRefGoogle Scholar
  37. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431:364–370 PubMedCrossRefGoogle Scholar
  38. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476 PubMedCrossRefGoogle Scholar
  39. Luo M, Bilodeau P, Dennis ES, Peacock WJ, Chaudhury A (2000) Expression and parent-of-origin effects for FIS2, MEA, and FIE in the endosperm and embryo of developing Arabidopsis seeds. Proc Natl Acad Sci USA 97:10637–10642 PubMedCrossRefGoogle Scholar
  40. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 96:296–301 PubMedCrossRefGoogle Scholar
  41. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849 PubMedCrossRefGoogle Scholar
  42. Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macias MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858 PubMedCrossRefGoogle Scholar
  43. Saze H, Scheid OM, Paszkowski J (2003) Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis. Nat Genet 34:65–69 PubMedCrossRefGoogle Scholar
  44. Scharer OD, Jiricny J (2001) Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23:270–281 PubMedCrossRefGoogle Scholar
  45. Scott RJ, Spielman M (2006) Genomic imprinting in plants and mammals: how life history constrains convergence. Cytogenet Genome Res 113:53–67 PubMedCrossRefGoogle Scholar
  46. Shimkets RA, Lowe DG, Tai JT, Sehl P, Jin H, Yang R, Predki PF, Rothberg BE, Murtha MT, Roth ME, Shenoy SG, Windemuth A, Simpson JW, Simons JF, Daley MP, Gold SA, McKenna MP, Hillan K, Went GT, Rothberg JM (1999) Gene expression analysis by transcript profiling coupled to a gene database query. Nat Biotechnol 17:798–803 PubMedCrossRefGoogle Scholar
  47. Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802 PubMedCrossRefGoogle Scholar
  48. Sorensen MB, Chaudhury AM, Robert H, Bancharel E, Berger F (2001) Polycomb group genes control pattern formation in plant seed. Curr Biol 11:277–281 PubMedCrossRefGoogle Scholar
  49. Springer NM, Danilevskaya ON, Hermon P, Helentjaris TG, Phillips RL, Kaeppler HF, Kaeppler SM (2002) Sequence relationships, conserved domains, and expression patterns for maize homologs of the polycomb group genes E(z), esc, and E(Pc). Plant Physiol 128:1332–1345 PubMedCrossRefGoogle Scholar
  50. Vielle-Calzada JP, Thomas J, Spillane C, Coluccio A, Hoeppner MA, Grossniklaus U (1999) Maintenance of genomic imprinting at the Arabidopsis medea locus requires zygotic DDM1 activity. Genes Dev 13:2971–2982 PubMedCrossRefGoogle Scholar
  51. Xiao W, Gehring M, Choi Y, Margossian L, Pu H, Harada JJ, Goldberg RB, Pennell RI, Fischer RL (2003) Imprinting of the MEA Polycomb gene is controlled by antagonism between MET1 methyltransferase and DME glycosylase. Dev Cell 5:891–901 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jon Penterman
    • 1
  • Jin Hoe Huh
    • 1
  • Tzung-Fu Hsieh
    • 1
  • Robert L. Fischer
    • 1
    Email author
  1. 1.Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations