pp 1-44 | Cite as

Oxazolidinones and Related Heterocycles as Chiral Auxiliaries/Evans and Post-Evans Auxiliaries

  • Asmaa Kamal Mourad
  • Constantin CzekeliusEmail author
Part of the Topics in Heterocyclic Chemistry book series


The application of optically active oxazolidinones and their sulfur-incorporating derivatives as chiral auxiliaries for the diastereoselective functionalization of carboxylic acids and related starting materials is described. Herein, seminal work and more recent contributions in this area covering the developments in the past 40 years are summarized. This review aims in demonstrating not only the broad and reliable, synthetic applicability of this auxiliary class but also the methodological impact on the area of diastereoselective chemistry in general.

In the beginning, the preparation of the auxiliary by ex-chiral pool synthesis or enantioselective methods is reviewed. Following, the application of oxazolidinones and related derivatives in diastereoselective transformations is separately discussed for the electrophilic α-functionalization of enolates and aldol reactions. Herein, reported working models for explaining the stereochemical outcome of the transformations with respect to auxiliary structure and Lewis acid coordination are presented. In addition, the stereoselective transformation of α,β-unsaturated acyl-oxazolidinones by either conjugate additions or pericyclic reactions is summarized in detail. The discussion is extended toward the diastereoselective, electrophilic functionalization of vinyl-, alkynyl-, or allenyl-oxazolidinones extending the scope of the auxiliary towards the transformation of carbonyl compounds. Finally, this review is complemented by examples of the employment of oxazolidinones for the stereoselective reaction of auxiliary-bound carbenium ions or carbanions. Throughout this review, references for the application of this highly useful class of chiral auxiliary in the context of natural product synthesis are provided.


Aldol reaction Chiral auxiliary Conjugate addition Enolate Oxazolidinones 


  1. 1.
    Evans DA, Bartroli J, Shih TL (1981) J Am Chem Soc 103:2127–2129Google Scholar
  2. 2.
    Ager DJ, Prakash I, Schaad DR (1996) Chem Rev 96:835–875Google Scholar
  3. 3.
    Evans DA, Nelson JV, Taber TR (1982) Stereoselective aldol condensations. In: Topics in stereochemistry, vol 13. Wiley, New YorkGoogle Scholar
  4. 4.
    Carreira EM, Kvaerno L (2008) Classics in stereoselective synthesis. Wiley, Weinheim, pp 69–151Google Scholar
  5. 5.
    Braun M (2016) Modern enolate chemistry. Wiley, Weinheim, pp 115–255Google Scholar
  6. 6.
    Mahrwald R (ed) (2013) Modern methods in stereoselective aldol reactions. Wiley, WeinheimGoogle Scholar
  7. 7.
    Maat L, Wulkan RW (1981) Rec Trav Chim Pays-Bas:204–207Google Scholar
  8. 8.
    Quagliato DA, Andrae PM, Matelan EM (2000) J Org Chem 65:5037–5042Google Scholar
  9. 9.
    Giannis A, Sandhoff K (1989) Angew Chem 101:220–222Google Scholar
  10. 10.
    Doyle MP, Dorow RL, Terpstra JW, Rodenhouse RA (1985) J Org Chem 50:1663–1666Google Scholar
  11. 11.
    Kleschick WA, Reed MW, Bordner J (1987) J Org Chem 52:3168–3169Google Scholar
  12. 12.
    Duthaler RO (1994) Tetrahedron 50:1539–1650Google Scholar
  13. 13.
    Williams RM, Hendrix JA (1992) Chem Rev 92:889–917Google Scholar
  14. 14.
    Gröger H (2003) Chem Rev 103:2795–2827Google Scholar
  15. 15.
    Iyer MS, Gigstad KM, Namdev ND, Lipton M (1996) J Am Chem Soc 118:4910–4911Google Scholar
  16. 16.
    Dinsmore CJ, Mercer SP (2004) Org Lett 6:2885–2888Google Scholar
  17. 17.
    Peña-López M, Neumann H, Beller M (2016) Angew Chem Int Ed 55:7826–7830Google Scholar
  18. 18.
    You YS, Kim TW, Kang SH (2013) Chem Commun 49:9669–9671Google Scholar
  19. 19.
    Juhl K, Jørgensen KA (2002) J Am Chem Soc 124:2420–2421Google Scholar
  20. 20.
    Marigo M, Juhl K, Jørgensen KA (2003) Angew Chem Int Ed 42:1367–1369Google Scholar
  21. 21.
    Barta NS, Sidler DR, Somerville KB, Weissman SA, Larsen RD, Reider PJ (2000) Org Lett 2:2821–2824Google Scholar
  22. 22.
    Tsui GC, Ninnemann NM, Hosotani A, Lautens M (2013) Org Lett 15:1064–1067Google Scholar
  23. 23.
    Larksarp C, Alper H (1997) J Am Chem Soc 119:3709–3715Google Scholar
  24. 24.
    Toda Y, Gomyou S, Tanaka S, Komiyama Y, Kikuchi A, Suga H (2017) Org Lett 19:5786–5789Google Scholar
  25. 25.
    Toda Y, Tanaka S, Gomyou S, Kikuchi A, Suga H (2019) Chem Commun 55:5761–5764Google Scholar
  26. 26.
    Elenkov MM, Tang L, Meetsma A, Hauer B, Janssen DB (2008) Org Lett 10:2417–2420Google Scholar
  27. 27.
    Bartoli G, Bosco M, Carlone A, Locatelli M, Melchiorre P, Sambri L (2005) Org Lett 7:1983–1985Google Scholar
  28. 28.
    Birrell JA, Jacobsen EN (2013) Org Lett 15:2895–2897Google Scholar
  29. 29.
    Lee Y, Choi J, Kim H (2018) Org Lett 20:5036–5039Google Scholar
  30. 30.
    Fontana F, Chen CC, Aggarwal VK (2011) Org Lett 13:3454–3457Google Scholar
  31. 31.
    Miller AW, Nguyen ST (2004) Org Lett 6:2301–2304Google Scholar
  32. 32.
    Cruz DC, Sánchez-Murcia PA, Jørgensen KA (2012) Chem Commun 48:6112–6114Google Scholar
  33. 33.
    Takeda Y, Okumura S, Tone S, Sasaki I, Minakata S (2012) Org Lett 14:4874–4877Google Scholar
  34. 34.
    Lu D-F, Liu G-S, Zhu C-L, Yuan B, Xu H (2014) Org Lett 16:2912–2915Google Scholar
  35. 35.
    Unsworth WP, Clark N, Ronson TO, Stevens K, Thompson AL, Lamont SG, Robertson J (2014) Chem Commun 50:11393–11396Google Scholar
  36. 36.
    Liu G-S, Zhang Y-Q, Yuan Y-A, Xu H (2013) J Am Chem Soc 135:3343–3346Google Scholar
  37. 37.
    Huang D, Liu X, Li L, Cai Y, Liu W, Shi Y (2013) J Am Chem Soc 135:8101–8104Google Scholar
  38. 38.
    Kan C, Long CM, Paul M, Ring CM, Tully SE, Rojas CM (2001) Org Lett 3:381–384Google Scholar
  39. 39.
    Shibata I, Kato H, Kanazawa N, Yasuda M, Baba A (2004) J Am Chem Soc 126:466–467Google Scholar
  40. 40.
    Fukata Y, Asano K, Matsubara S (2013) J Am Chem Soc 135:12160–12163Google Scholar
  41. 41.
    Ogawa M, Nagashima M, Sogawa H, Kuwata S, Takata T (2015) Org Lett 17:1664–1667Google Scholar
  42. 42.
    Overman LE, Remarchuk TP (2002) J Am Chem Soc 124:12–13Google Scholar
  43. 43.
    Yoshida M, Komatsuzaki Y, Ihara M (2008) Org Lett 10:2083–2086Google Scholar
  44. 44.
    Miller DC, Choi GJ, Orbe HS, Knowles RR (2015) J Am Chem Soc 137:13492–13495Google Scholar
  45. 45.
    Sun L, Ye J-H, Zhou W-J, Zeng X, Yu D-G (2018) Org Lett 20:3049–3052Google Scholar
  46. 46.
    Yi X, Hu X (2019) Angew Chem Int Ed 58:4700–4704Google Scholar
  47. 47.
    Espino CG, Du Bois J (2001) Angew Chem Int Ed 40:598–600Google Scholar
  48. 48.
    Lebel H, Huard K, Lectard S (2005) J Am Chem Soc 127:14198–14199Google Scholar
  49. 49.
    Lebel H, Laparra LM, Khalifa M, Trudel C, Audubert C, Szponarski M, Leduc CD, Azek E, Ernzerhof M (2017) Org Biomol Chem 15:4144–4158Google Scholar
  50. 50.
    Fraunhoffer KJ, White MC (2007) J Am Chem Soc 129:7274–7276Google Scholar
  51. 51.
    Rice GT, White MC (2009) J Am Chem Soc 131:11707–11711Google Scholar
  52. 52.
    Osberger TJ, White MC (2014) J Am Chem Soc 136:11176–11181Google Scholar
  53. 53.
    Haufe G, Suzuki S, Yasui H, Terada C, Kitayama T, Shiro M, Shibata N (2012) Angew Chem Int Ed 51:12275–12279Google Scholar
  54. 54.
    Birman VB, Jiang H, Li X, Guo L, Uffman EW (2006) J Am Chem Soc 128:6536–6537Google Scholar
  55. 55.
    Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB (2012) J Am Chem Soc 134:17605–17612Google Scholar
  56. 56.
    Perry MA, Trinidad JV, Rychnovsky SD (2013) Org Lett 15:472–475Google Scholar
  57. 57.
    Rajkumar S, He S, Yang X (2019) Angew Chem Int Ed 58:10315–10319Google Scholar
  58. 58.
    Tiecco M, Carlone A, Sternativo S, Marini F, Bartoli G, Melchiorre P (2007) Angew Chem Int Ed 46:6882–6885Google Scholar
  59. 59.
    Koch SS, Chamberlin AR (1993) J Org Chem 58:2725–2737Google Scholar
  60. 60.
    Gage JR, Evans DA (1990) Organic Synth 68:83Google Scholar
  61. 61.
    Ager DJ, Allen DR, Schaad DR (1996) Synthesis:1283–1285Google Scholar
  62. 62.
    Evans DA, Urpi F, Somers TC, Clark JS, Bilodeau MT (1990) J Am Chem Soc 112:8215–8216Google Scholar
  63. 63.
    Evans DA, Ennis MD, Mathre DJ (1982) J Am Chem Soc 104:1737–1739Google Scholar
  64. 64.
    Tallmadge EH, Collum DB (2015) J Am Chem Soc 137:13087–13095Google Scholar
  65. 65.
    Reyes-Rodríguez GJ, Algera RF, Collum DB (2017) J Am Chem Soc 139:1233–1244Google Scholar
  66. 66.
    Krautwald S, Carreira EM (2017) J Am Chem Soc 139:5627–5639Google Scholar
  67. 67.
    Zhang Z, Collum DB (2019) J Am Chem Soc 141:388–401Google Scholar
  68. 68.
    Smith TE, Richradso DP, Truran GA, Belecki K, Onishi M (2008) J Chem Ed 85:695–697Google Scholar
  69. 69.
    Crimmins MT, Emmitte KA, Katz JD (2000) Org Lett 2:2165–2167Google Scholar
  70. 70.
    Wenglowsky S, Hegedus LS (1998) J Am Chem Soc 120:12468–12473Google Scholar
  71. 71.
    Sibi MP, Ji J (1996) Angew Chem Int Ed 35:190–192Google Scholar
  72. 72.
    Sibi MP, Rheault TR (2000) J Am Chem Soc 122:8873–8879Google Scholar
  73. 73.
    Mero CL, Porter NA (1999) J Am Chem Soc 121:5155–5160Google Scholar
  74. 74.
    Feroci M, Inesi A, Orsini M, Palombi L (2002) Org Lett 4:2617–2620Google Scholar
  75. 75.
    Watanabe S-I, Ikeda T, Kataoka T, Tanabe G, Muraoka O (2003) Org Lett 5:565–567Google Scholar
  76. 76.
    Beaumont S, Ilardi EA, Monroe LR, Zakarian A (2010) J Am Chem Soc 132:1482–1483Google Scholar
  77. 77.
    Gu Z, Herrmann AT, Zakarian A (2011) Angew Chem Int Ed 50:7136–7139Google Scholar
  78. 78.
    Gu Z, Zakarian A (2010) Angew Chem Int Ed 49:9702–9705Google Scholar
  79. 79.
    Herrmann AT, Smith LL, Zakarian A (2012) J Am Chem Soc 134:6976–6979Google Scholar
  80. 80.
    Umemoto T, Ishihara S (1990) Tetrahedron Lett 31:3579–3582Google Scholar
  81. 81.
    Umemoto T, Ishihara S (1993) J Am Chem Soc 115:2156–2164Google Scholar
  82. 82.
    Eisenberger P, Gischig S, Togni A (2006) Chem A Eur J 12:2579–2586Google Scholar
  83. 83.
    Czekelius C, Tzschucke CC (2010) Synthesis:543–566Google Scholar
  84. 84.
    Matoušek V, Togni A, Bizet V, Cahard D (2011) Org Lett 13:5762–5765Google Scholar
  85. 85.
    Liu X, Hartwig JF (2004) J Am Chem Soc 126:5182–5191Google Scholar
  86. 86.
    Baran PS, DeMartino MP (2006) Angew Chem Int Ed 45:7083–7086Google Scholar
  87. 87.
    DeMartino MP, Chen K, Baran PS (2008) J Am Chem Soc 130:11546–11560Google Scholar
  88. 88.
    Barluenga J, Suero MG, De la Campa R, Flórez J (2010) Angew Chem Int Ed 49:9720–9724Google Scholar
  89. 89.
    Ivashkin P, Couve-Bonnaire S, Jubault P, Pannecoucke X (2012) Org Lett 14:5130–5133Google Scholar
  90. 90.
    Evans DA, Ellman JA, Dorow RL (1987) Tetrahedron Lett 28:1123–1126Google Scholar
  91. 91.
    Davis FA, Han W (1992) Tetrahedron Lett 33:1153–1156Google Scholar
  92. 92.
    Edmonds MK, Graichen FHM, Gardiner J, Abell AD (2008) Org Lett 10:885–887Google Scholar
  93. 93.
    Evans DA, Britton TC, Ellman JA, Dorow RL (1990) J Am Chem Soc 112:4011–4030Google Scholar
  94. 94.
    Li G, Patel D, Hruby VJ (1994) J Chem Soc Perkin Trans 1:3057–3059Google Scholar
  95. 95.
    Erdbrink H, Nyakatura EK, Huhmann S, Gerling UIM, Lentz D, Koksch B, Czekelius C (2013) Beilstein J Org Chem 9:2009–2014Google Scholar
  96. 96.
    Mabe PJ, Zakarian A (2013) Org Lett 16:516–519Google Scholar
  97. 97.
    Evans DA, Morissey MM, Dorow RL (1985) J Am Chem Soc 107:4346–4348Google Scholar
  98. 98.
    Davis FA, Liu H, Chen B-C, Zhou P (1998) Tetrahedron 54:10481–10492Google Scholar
  99. 99.
    Evans DA, Rieger DL, Bilodeau MT, Urpi F (1991) J Am Chem Soc 113:1047–1049Google Scholar
  100. 100.
    Matsuo J-I, Murakami M (2013) Angew Chem Int Ed 52:9109–9118Google Scholar
  101. 101.
    Baker R, Castro JL, Swain CJ (1988) Tetrahedron Lett 29:2247–2250Google Scholar
  102. 102.
    Danda H, Hansen MM, Heathcock CH (1990) J Org Chem 55:173–181Google Scholar
  103. 103.
    Gazvoda M, Höferl-Prantz K, Barth R, Felzmann W, Pevec A, Košmrlj J (2015) Org Lett 17:512–515Google Scholar
  104. 104.
    Crimmins MT, King BW, Tabet EA (1997) J Am Chem Soc 119:7883–7884Google Scholar
  105. 105.
    Crimmins MT, King BW, Tabet EA, Chaudhary K (2001) J Org Chem 66:894–902Google Scholar
  106. 106.
    Shinisha CB, Sunoj RB (2010) J Am Chem Soc 132:12319–12330Google Scholar
  107. 107.
    Shinisha CB, Sunoj RB (2010) Org Lett 12:2868–2871Google Scholar
  108. 108.
    Evans DA, Tedrow JS, Shaw JT, Downey CW (2002) J Am Chem Soc 124:392–393Google Scholar
  109. 109.
    Tallmadge EH, Jermaks J, Collum DB (2016) J Am Chem Soc 138:345–355Google Scholar
  110. 110.
    Jermaks J, Tallmadge EH, Keresztes I, Collum DB (2018) J Am Chem Soc 140:3077–3090Google Scholar
  111. 111.
    Evans DA, Sjorgren EB, Bartroli J, Dow RL (1986) Tetrahedron 27:4957–4960Google Scholar
  112. 112.
    Evans DA, Dow RL, Shih TL, Takacs JM, Zahler R (1990) J Am Chem Soc 112:5290–5313Google Scholar
  113. 113.
    Nakamura T, Shirokawa S-I, Hosokawa S, Nakazaki A, Kobayashi S (2006) Org Lett 8:677–679Google Scholar
  114. 114.
    Evans DA, Clark JS, Metternich R, Novack VJ, Sheppard GS (1990) J Am Chem Soc 112:866–868Google Scholar
  115. 115.
    Evans DA, Nagorny P, Reynolds DJ, McRae KJ (2007) Angew Chem Int Ed 46:541–544Google Scholar
  116. 116.
    Romea P, Urpí F (2013) Mahrwald R (ed) Modern methods of stereoselective aldol reactions. Wiley-VCH, Weinheim, pp 1–81Google Scholar
  117. 117.
    Evans DA, Takacs JM, McGee LR, Ennis MD, Mathre DJ, Bartroli J (1981) Pure Appl Chem 53:1109–1127Google Scholar
  118. 118.
    Evans DA, Sjorgren EB, Weber AE, Conn RE (1987) Tetrahedron Lett 28:39–42Google Scholar
  119. 119.
    Abdel-Magid A, Pridgen LN, Eggleston DS, Lantos I (1986) J Am Chem Soc 108:4595–4602Google Scholar
  120. 120.
    Pridgen LN, Abdel-Magid A, Lantos I (1989) Tetrahedron Lett 30:5539–5542Google Scholar
  121. 121.
    Pridgen LN, Abdel-Magid AF, Lantos I, Shilcrat S, Eggleston DS (1993) J Org Chem 58:5107–5117Google Scholar
  122. 122.
    Nagao Y, Yamada S, Kumagai T, Ochiai M, Fujuta E (1985) J Chem Soc Chem Commun:1418–1419Google Scholar
  123. 123.
    Nagao Y, Hagiwara Y, Kumagai T, Ochiai M, Inoue T, Hashimoto K, Fujita E (1986) J Org Chem 51:2391–2393Google Scholar
  124. 124.
    Smith III AB, Razler TM, Ciavarri JP, Hirose T, Ishikawa T, Meis RM (2008) J Org Chem 73:1192–1200Google Scholar
  125. 125.
    González A, Aiguadé J, Urpí F, Vilarrasa J (1996) Tetrahedron Lett 37:8949–8952Google Scholar
  126. 126.
    Hintermann T, Seebach D (1998) Helv Chim Acta 81:2093–2126Google Scholar
  127. 127.
    Guz NR, Phillips AJ (2002) Org Lett 4:2253–2256Google Scholar
  128. 128.
    Zhang Y, Phillips AJ, Sammakia T (2004) Org Lett 6:23–25Google Scholar
  129. 129.
    Zhang Y, Sammakia T (2006) J Org Chem 71:6262–6265Google Scholar
  130. 130.
    Yan T-H, Hung A-W, Lee H-C, Chang C-S, Liu W-H (1995) J Org Chem 60:3301–3306Google Scholar
  131. 131.
    Crimmins MT, Shamszad M (2007) Org Lett 9:149–152Google Scholar
  132. 132.
    Fukuzawa S-I, Matsuzawa H, Yoshimitsu S-I (2000) J Org Chem 65:1702–1706Google Scholar
  133. 133.
    Segade Y, Montaos MA, Rodríguez J, Jiménez C (2014) Org Lett 16:5820–5823Google Scholar
  134. 134.
    Gabriel T, Wessjohann L (1997) Tetrahedron Lett 38:4387–4388Google Scholar
  135. 135.
    Shimada T, Yoshioka M, Konno T, Ishihara T (2006) Org Lett 8:1129–1131Google Scholar
  136. 136.
    Crimmins MT, McDougall PJ (2003) Org Lett 5:591–594Google Scholar
  137. 137.
    Hajra S, Giri AK, Karmakar A, Khatua S (2007) Chem Commun:2408–2410Google Scholar
  138. 138.
    Shimada T, Yoshioka M, Konno T, Ishihara T (2006) Chem Commun:3628–3630Google Scholar
  139. 139.
    Ambhaikar NB, Snyder JP, Liotta DC (2003) J Am Chem Soc 125:3690–3691Google Scholar
  140. 140.
    Watanabe Y, Yamazaki T, Kubota T (2010) Org Lett 12:268–271Google Scholar
  141. 141.
    Pourcelot G, Aubouet J, Casper A, Cresson P (1987) J Organomet Chem 328:C43–C45Google Scholar
  142. 142.
    Nicolás E, Russel KC, Hruby VJ (1993) J Org Chem 58:766–770Google Scholar
  143. 143.
    Lou B-S, Li G, Lung F-D, Hruby VJ (1995) J Org Chem 60:5509–5514Google Scholar
  144. 144.
    Quian X, Russel KC, Boteju LW, Hruby VJ (1995) Tetrahedron 51:1033–1054Google Scholar
  145. 145.
    Andersson PG, Schink HE, Österlund K (1998) J Org Chem 63:8067–8070Google Scholar
  146. 146.
    Esumi T, Mori T, Zhao M, Toyota M, Fukuyama Y (2010) Org Lett 12:888–891Google Scholar
  147. 147.
    Williams DR, Kissel WS, Li JJ (1998) Tetrahedron Lett 39:8593–8596Google Scholar
  148. 148.
    Boteju LW, Wegener K, Hruby VJ (1992) Tetrahedron Lett 33:7491–7494Google Scholar
  149. 149.
    Li G, Jarosinski MA, Hruby VJ (1993) Tetrahedron Lett 34:2561–2564Google Scholar
  150. 150.
    Boteju LW, Wegner K, Qian X, Hruby VJ (1994) Tetrahedron 50:2391–2404Google Scholar
  151. 151.
    Dambacher J, Bergdahl M (2003) Org Lett 5:3539–3541Google Scholar
  152. 152.
    Studer A, Curran DP (2016) Angew Chem Int Ed 55:58–102Google Scholar
  153. 153.
    Badone D, Bernassau J-M, Cardamone R, Guzzi U (1996) Angew Chem Int Ed 35:535–538Google Scholar
  154. 154.
    Sibi MP, Ji J (1997) Angew Chem Int Ed 36:274–276Google Scholar
  155. 155.
    Sibi MP, Ji J, Sausker JB, Jasperse CP (1999) J Am Chem Soc 121:7517–7526Google Scholar
  156. 156.
    Sibi MP, Manyem S (2002) Org Lett 4:2929–2932Google Scholar
  157. 157.
    Sibi MP, Rheault TR, Chandramouli SV, Jasperse CP (2002) J Am Chem Soc 124:2924–2930Google Scholar
  158. 158.
    Erdbrink H, Peuser I, Gerling UIM, Lentz D, Koksch B, Czekelius C (2012) Org Biomol Chem:8583–8586Google Scholar
  159. 159.
    Hein JE, Zimmerman J, Sibi MP, Hultin PG (2005) Org Lett 7:2755–2758Google Scholar
  160. 160.
    Gerling UIM, Salwiczek M, Cadicamo CD, Erdbrink H, Czekelius C, Grage SL, Wadhwani P, Ulrich AS, Behrends M, Haufe G, Koksch B (2014) Chem Sci 5:819–830Google Scholar
  161. 161.
    Erdbrink H, Czekelius C (2013) Synlett 24:2383–2388Google Scholar
  162. 162.
    Williams DR, Mullins RJ, Miller NA (2003) Chem Commun:2220–2221Google Scholar
  163. 163.
    Wu M-J, Wu C-C, Lee P-C (1992) Tetrahedron Lett 33:2547–2548Google Scholar
  164. 164.
    Wu M-J, Yeh J-Y (1994) Tetrahedron 50:1073–1082Google Scholar
  165. 165.
    Tietze LF, Schünke C (1995) Angew Chem Int Ed 34:1731–1733Google Scholar
  166. 166.
    Soloshonok VA, Cai C, Hruby VJ (2000) Angew Chem Int Ed 39:2172–2175Google Scholar
  167. 167.
    Ando Y, Kamatsuka T, Shinokubo H, Miyake Y (2017) Chem Commun 53:9136–9138Google Scholar
  168. 168.
    Cardillo G, De Simone A, Gentilucci L, Tomasini C (1994) J Chem Soc Chem Commun (6):735–736Google Scholar
  169. 169.
    Li G, Xu X, Chen D, Timmons C, Carducci MD, Headley AD (2003) Org Lett 5:329–331Google Scholar
  170. 170.
    Zu L, Wang J, Li H, Xie H, Jiang W, Wang W (2007) J Am Chem Soc 129:1036–1037Google Scholar
  171. 171.
    Palomo C, Oiarbide M, Dias F, López R, Linden A (2004) Angew Chem Int Ed 43:3307–3310Google Scholar
  172. 172.
    Palomo C, Oiarbide M, López R, González PB, Gómez-Bengoa E, Saá JM, Linden A (2006) J Am Chem Soc 128:15236–15247Google Scholar
  173. 173.
    Cano I, Gómez-Bengoa E, Landa A, Maestro M, Mielgo A, Olaizola I, Oiarbide M, Palomo C (2012) Angew Chem Int Ed 51:10856–10860Google Scholar
  174. 174.
    Zhao Y, Ma Z, Zhang X, Zou Y, Jin X, Wang J (2004) Angew Chem Int Ed 43:5977–5980Google Scholar
  175. 175.
    Lelais G, Seebach D (2004) Biopolymers 76:206–243Google Scholar
  176. 176.
    Davies SG, Hermann GJ, Sweet MJ, Smith AD (2004) Chem Commun:1128–1129Google Scholar
  177. 177.
    Beddow JE, Davies SG, Smith AD, Russell AJ (2004) Chem Commun:2778–2779Google Scholar
  178. 178.
    Evans DA, Chapman KT, Bisaha J (1984) J Am Chem Soc 106:4261–4263Google Scholar
  179. 179.
    Evans DA, Chapman KT, Bisaha J (1984) Tetrahedron Lett 25:4071–4074Google Scholar
  180. 180.
    Evans DA, Chapman KT, Hung DT, Hawaguchi AT (1987) Angew Chem Int Ed 26:1184–1186Google Scholar
  181. 181.
    Evans DA, Chapman KT, Bisaha J (1988) J Am Chem Soc 110:1238–1256Google Scholar
  182. 182.
    Evans DA, Allison BD, Yang MG, Masse CE (2001) J Am Chem Soc 123:10840–10852Google Scholar
  183. 183.
    Sugahara T, Iwata T, Yamaoka M, Takano S (1989) Tetrahedron Lett 30:1821–1824Google Scholar
  184. 184.
    Evans DA, Scheidt KA, Downey CW (2001) Org Lett 3:3009–3012Google Scholar
  185. 185.
    Karlsson S, Han F, Högberg H-E, Caldirola P (1999) Tetrahedron Asym 10:2605–2616Google Scholar
  186. 186.
    Sibi MP, Soeta T, Jasperse CP (2009) Org Lett 11:5366–5369Google Scholar
  187. 187.
    Karlssen S, Högberg H-E (1999) Org Lett 1:1667–1669Google Scholar
  188. 188.
    Xu X, Kotti SRSS, Liu J, Cannon JF, Headley AD, Li G (2004) Org Lett 6:4881–4884Google Scholar
  189. 189.
    Saito H, Sivaguru J, Jockusch S, Inoue Y, Adam W, Turro NJ (2005) Chem Commun:3424–3426Google Scholar
  190. 190.
    Saito H, Sivaguru J, Jockusch S, Dyer J, Inoue Y, Adam W, Turro NJ (2007) Chem Commun:819–821Google Scholar
  191. 191.
    Ko C, Hsung RP, Al-Rashid ZF, Feltenberger JB, Lu T, Yang J-H, Wie Y, Zificsak CA (2007) Org Lett 9:4459–4462Google Scholar
  192. 192.
    Xu Y-S, Tang Y, Feng H-J, Liu J-T, Hsung RP (2015) Org Lett 17:572–575Google Scholar
  193. 193.
    Adam W, Bosio SG, Wolff BT (2003) Org Lett 5:819–822Google Scholar
  194. 194.
    Al-Rashid ZF, Hsung RP (2008) Org Lett 10:661–663Google Scholar
  195. 195.
    Adam W, Bosio SG, Turro NJ (2002) J Am Chem Soc 124:8814–8815Google Scholar
  196. 196.
    Adam W, Bosio SG, Turro NJ (2002) J Am Chem Soc 124:14004–14005Google Scholar
  197. 197.
    Poon T, Turro NJ, Chapman J, Lakshminarasimhan P, Lei X, Adam W, Bosio SG (2003) Org Lett 5:2025–2028Google Scholar
  198. 198.
    Poon T, Turro NJ, Chapman J, Lakshminarasimhan P, Lei X, Jockusch S, Franz R, Washington I, Adam W, Bosio SG (2003) Org Lett 5:4951–4953Google Scholar
  199. 199.
    Sivaguru J, Saito H, Poon T, Omonuwa T, Franz R, Jockusch S, Hooper C, Inoue Y, Adam W, Turro NJ (2005) Org Lett 7:2089–2092Google Scholar
  200. 200.
    Solomon MR, Sivaguru J, Jockusch S, Adam W, Turro NJ (2010) Org Lett 12:2142–2145Google Scholar
  201. 201.
    Guin J, Fröhlich R, Studer A (2008) Angew Chem Int Ed 47:779–782Google Scholar
  202. 202.
    Song Z, Lu T, Hsung RP, Al-Rashid ZF, Ko C, Tang Y (2007) Angew Chem Int Ed 46:4069–4072Google Scholar
  203. 203.
    Lu T, Song Z, Hsung RP (2008) Org Lett 10:541–544Google Scholar
  204. 204.
    Fang L-C, Hsung RP, Ma Z-X, Presser WR (2013) Org Lett 15:4842–4845Google Scholar
  205. 205.
    Gohier F, Boudhadjera K, Faye D, Gaulon C, Maisonneuve V, Dujardin G, Dhal R (2007) Org Lett 9:211–214Google Scholar
  206. 206.
    Fang L-C, Hsung RP (2014) Org Lett 16:1826–1829Google Scholar
  207. 207.
    Gallier F, Hussain H, Martel A, Kirschning A, Dujardin G (2009) Org Lett 11:3060–3063Google Scholar
  208. 208.
    Harada M, Asaba KN, Iwai M, Kogure N, Kitajima M, Takayama H (2012) Org Lett 14:5800–5803Google Scholar
  209. 209.
    Hegedus LS, Bates RW, Söderberg BC (1991) J Am Chem Soc 113:923–927Google Scholar
  210. 210.
    Riches AG, Wernersbach LA, Hegedus LS (1998) J Org Chem 63:4691–4696Google Scholar
  211. 211.
    Xiong H, Hsung RP, Wei L-L, Berry CR, Mulder JA, Stockwell B (2000) Org Lett 2:2869–2871Google Scholar
  212. 212.
    Hayashi R, Walton MC, Hsung RP, Schwab JH, Yu X (2010) Org Lett 12:5768–5771Google Scholar
  213. 213.
    Kerr DJ, Miletic M, Chaplin JH, White JM, Flynn BL (2012) Org Lett 14:1732–1735Google Scholar
  214. 214.
    Flynn BL, Manchala N, Krenske EH (2013) J Am Chem Soc 135:9156–9163Google Scholar
  215. 215.
    Kerr DJ, Miletic M, Manchala N, White JM, Flynn BL (2013) Org Lett 15:4118–4121Google Scholar
  216. 216.
    Vabre R, Island B, Diehl CJ, Schreiner PR, Marek I (2015) Angew Chem Int Ed 54:9996–9999Google Scholar
  217. 217.
    Nairoukh Z, Marek I (2015) Angew Chem Int Ed 54:14393–14397Google Scholar
  218. 218.
    Shin S-Y, Jung J-K, Seo S-Y, Lee Y-S, Paek S-M, Chung YK, Shin DM, Suh Y-G (2003) Org Lett 5:3635–3638Google Scholar
  219. 219.
    Suga S, Kageyama Y, Babu G, Itami K, Yoshida J-I (2004) Org Lett 6:2709–2711Google Scholar
  220. 220.
    Lohse AG, Krenske EH, Antoline JE, Houk KN, Hsung RP (2010) Org Lett 12:5506–5509Google Scholar
  221. 221.
    Friestad GK, Qin J (2000) J Am Chem Soc 122:8329–8330Google Scholar
  222. 222.
    Balasubramanian N, Mandal T, Cook GR (2015) Org Lett 17:314–317Google Scholar
  223. 223.
    Pearson WH, Lindbeck AC, Kampf JW (1993) J Am Chem Soc 115:2622–2636Google Scholar
  224. 224.
    de los Rios C, Hegedus LS (2005) J Org Chem 70:6541–6543Google Scholar
  225. 225.
    Hyland CJT, Hegedus LS (2005) J Org Chem 70:8628–8630Google Scholar
  226. 226.
    Alouane N, Bernaud F, Marrot J, Vrancken E, Mangeney P (2005) Org Lett 7:5797–5800Google Scholar
  227. 227.
    Gaul C, Seebach D (2000) Org Lett 2:1501–1504Google Scholar
  228. 228.
    Adams H, Collins RC, Jones S, Warner CJA (2011) Org Lett 13:6576–6579Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fayoum UniversityFayoumEgypt
  2. 2.Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations