Skip to main content

Anomeric Spiro-Annulated Glycopyranosides: An Overview of Synthetic Methodologies and Biological Applications

  • Chapter
  • First Online:
Carbohydrate-spiro-heterocycles

Part of the book series: Topics in Heterocyclic Chemistry ((TOPICS,volume 57))

Abstract

Organic chemistry developed a series of synthetic strategies toward spiro-annulated carbohydrates as potential pharmaceutical drugs or developed new organic synthetic methodologies. The present chapter gives a general overview of the spiro-annulation of carbohydrates at the anomeric position. The main synthetic strategies can be summarized in five paths. Intramolecular cyclizations can be performed through two short tethers with their reactive ends generating the spirocycle or through a single tether reacting at the anomeric position for cyclization. The three other strategies rely on intermolecular reactions with a portion of the spirocycle only in the external substrate or also on the carbohydrate. Radical-mediated cyclization and cycloaddition reactions are the main strategies toward spiro-annulated carbohydrates. A special attention is paid to discussion of the stereocontrol of the anomeric configuration and also to yields in industrial syntheses or biological activities of the molecules. A specific attention is devoted to tofogliflozin and glycogen phosphorylase inhibitors both used as antihyperglycemic drugs and drug candidates, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vidal S (ed) (2019) Protecting groups: strategies and applications in carbohydrate chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  2. Demchenko AV (ed) (2008) Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance. Wiley-VCH, Weinheim

    Google Scholar 

  3. Zulueta MML, Hung S-C (eds) (2016) Glycochemical synthesis: strategies and applications. Wiley-VCH, Weinheim

    Google Scholar 

  4. Chen G-R, Fei Zhong B, Huang X-T, Xie Y-Y, Xu J-L, Gola J, Steng M, Praly J-P (2001). Eur J Org Chem:2939–2946

    Google Scholar 

  5. Lambu MR, Hussain A, Sharma DK, Yousuf SK, Singh B, Tripathi AK, Mukherjee D (2014). RSC Adv 4:11023–11028

    Article  CAS  Google Scholar 

  6. John Pal AP, Gupta P, Suman Reddy Y, Vankar YD (2010). Eur J Org Chem:6957–6966

    Google Scholar 

  7. Haudrechy A, Sinaÿ P (1992). Carbohydr Res 216:375–379

    Article  Google Scholar 

  8. Yamanoi T, Oda Y, Muraishi H, Matsuda S (2008). Molecules 13:1840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dondoni A, Marra A (2009). Tetrahedron Lett 50:3593–3596

    Article  CAS  Google Scholar 

  10. Lin H-C, Chen Y-B, Lin Z-P, Wong FF, Lin C-H, Lin S-K (2010). Tetrahedron 66:5229–5234

    Article  CAS  Google Scholar 

  11. Chen Y-B, Liu S-H, Hsieh M-T, Chang C-S, Lin C-H, Chen C-Y, Chen P-Y, Lin H-C (2016). J Org Chem 81:3007–3016

    Article  CAS  PubMed  Google Scholar 

  12. John Pal AP, Vankar YD (2010). Tetrahedron Lett 51:2519–2524

    Article  CAS  Google Scholar 

  13. John Pal AP, Kadigachalam P, Mallick A, Doddi VR, Vankar YD (2011). Org Biomol Chem 9:809–819

    Article  PubMed  Google Scholar 

  14. Martín A, Salazar J, Suárez E (1995). Tetrahedron Lett 36:4489–4492

    Article  Google Scholar 

  15. Betancor C, Dorta RL, Freire R, Prangé T, Suárez E (2000). J Org Chem 65:8822–8825

    Article  CAS  PubMed  Google Scholar 

  16. Martín A, Quintanal LM, Suárez E (2007). Tetrahedron Lett 48:5507–5511

    Article  CAS  Google Scholar 

  17. Martín A, Pérez-Martín I, Suárez E (2009). Tetrahedron 65:6147–6155

    Article  CAS  Google Scholar 

  18. Martín A, Pérez-Martín I, Suárez E (2005). Org Lett 7:2027–2030

    Article  CAS  PubMed  Google Scholar 

  19. Probst N, Grelier G, Ghermani N, Gandon V, Alami M, Messaoudi S (2017). Org Lett 19:5038–5041

    Article  CAS  PubMed  Google Scholar 

  20. Pezzotta J, Urban D, Guillot R, Doisneau G, Beau J-M (2014). Synlett 25:375–380

    CAS  Google Scholar 

  21. Briner K, Vasella A (1989). Helv Chim Acta 72:1371–1382

    Article  CAS  Google Scholar 

  22. Blüchel C, Linden A, Vasella A (2001). Helv Chim Acta 84:3495–3502

    Article  Google Scholar 

  23. Mangholz SE, Vasella A (1991). Helv Chim Acta 74:2100–2111

    Article  CAS  Google Scholar 

  24. Vasella A, Waldraff CAA (1991). Helv Chim Acta 74:585–593

    Article  CAS  Google Scholar 

  25. Somsák L, Praly J-P, Descotes G (1992). Synlett:119–120

    Google Scholar 

  26. Praly JP, El Kharraf Z, Descotes G (1990). Tetrahedron Lett 31:4441–4442

    Article  CAS  Google Scholar 

  27. Blüchel C, Ramana CV, Vasella A (2003). Helv Chim Acta 86:2998–3036

    Article  Google Scholar 

  28. Brand C, Rauch G, Zanoni M, Dittrich B, Werz DB (2009). J Org Chem 74:8779–8786

    Article  CAS  PubMed  Google Scholar 

  29. Vasella A, Witzig C, Waldraff C, Uhlmann P, Briner K, Bernet B, Panza L, Husi R (1993). Helv Chim Acta 76:2847–2875

    Article  CAS  Google Scholar 

  30. Vasella A, Dhar P, Witzig C (1993). Helv Chim Acta 76:1767–1778

    Article  CAS  Google Scholar 

  31. Lay L, Nicotra F, Panza L, Russo G (1995). Synlett:167–168

    Google Scholar 

  32. Schweizer F, Inazu T (2001). Org Lett 3:4115–4118

    Article  CAS  PubMed  Google Scholar 

  33. Zhang K, Schweizer F (2005). Synlett:3111–3115

    Google Scholar 

  34. Zhang K, Wang J, Sun Z, Nguyen D-H, Schweizer F (2007). Synlett:0239–0242

    Google Scholar 

  35. Zhang K, Mondal D, Zhanel GG, Schweizer F (2008). Carbohydr Res 343:1644–1652

    Article  CAS  PubMed  Google Scholar 

  36. Zhang K, Schweizer F (2009). Carbohydr Res 344:576–585

    Article  CAS  PubMed  Google Scholar 

  37. Praly JP, Brard L, Descotes G (1988). Tetrahedron Lett 29:2651–2654

    Article  CAS  Google Scholar 

  38. Praly J-P, Kharraf ZE, Corringer P-J, Brard L, Descotes G (1990). Tetrahedron 46:65–75

    Article  CAS  Google Scholar 

  39. Buchanan JG, Clelland APW, Wightman RH, Johnson T, Rennie RAC (1992). Carbohydr Res 237:295–301

    Article  CAS  Google Scholar 

  40. Baddeley KL, Cao Q, Muldoon MJ, Cook MJ (2015). Chem Eur J 21:7726–7730

    Article  CAS  PubMed  Google Scholar 

  41. Zhang D, Ye D, Feng E, Wang J, Shi J, Jiang H, Liu H (2010). J Org Chem 75:3552–3557

    Article  CAS  PubMed  Google Scholar 

  42. McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606

    Article  CAS  Google Scholar 

  43. Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399

    Article  CAS  PubMed  Google Scholar 

  44. Bartolozzi A, Capozzi G, Falciani C, Menichetti S, Nativi C, Bacialli AP (1999). J Org Chem 64:6490–6494

    Article  CAS  Google Scholar 

  45. Wrodnigg TM, Kartusch C, Illaszewicz C (2008). Carbohydr Res 343:2057–2066

    Article  CAS  PubMed  Google Scholar 

  46. Gallas K, Pototschnig G, Adanitsch F, Stütz AE, Wrodnigg TM (2012). Beilstein J Org Chem 8:1619–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776

    Article  CAS  PubMed  Google Scholar 

  48. Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Song KS, Lee SH, Kim MJ, Seo HJ, Lee J, Lee SH, Jung ME, Son EJ, Lee M, Kim J, Lee J (2011). ACS Med Chem Lett 2:182–187

    Article  CAS  PubMed  Google Scholar 

  50. Harada N, Inagaki N (2012). J Diabetes Investig 3:352–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Madaan T, Akhtar M, Najmi AK (2016). Eur J Pharm Sci 93:244–252

    Article  CAS  PubMed  Google Scholar 

  52. Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87

    Chapter  Google Scholar 

  53. Bokor É, Kun S, Goyard D, Tóth M, Praly JP, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764

    Article  CAS  PubMed  Google Scholar 

  54. Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Proc Res Dev 22:467–488

    Article  CAS  Google Scholar 

  55. Poole RM, Prossler JE (2014). Drugs 74:939–944

    Article  CAS  PubMed  Google Scholar 

  56. Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Yamamoto K, Takata N, Yoshizaki S, Takano K (2009) Crystal of spiroketal derivative, and process for production thereof. WO2009154276

    Google Scholar 

  57. Kobayashi T, Sato T, Nishimoto M (2005) Spiroketal derivative and use thereof as diabetic medicine. US2009030006

    Google Scholar 

  58. Kobayashi T, Sato T, Nishimoto M (2006) Preparation of 1,1-anhydro-1-C-[2-(hydroxyalkyl)aryl]-β-D-glucopyranose compounds as SGLT2 inhibitors. WO2006080421A1

    Google Scholar 

  59. Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu SY, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153

    Article  CAS  PubMed  Google Scholar 

  60. Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827

    Article  CAS  Google Scholar 

  61. Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu SY, Ahn KH, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840

    Article  CAS  PubMed  Google Scholar 

  62. Ross SA, Gulve EA, Wang M (2004). Chem Rev 104:1255–1282

    Article  CAS  PubMed  Google Scholar 

  63. Morral N (2003). Trends Endocrinol Metab 14:169–175

    Article  CAS  PubMed  Google Scholar 

  64. Baker DJ, Greenhaff PL, Timmons JA (2006). Expert Opin Ther Pat 16:459–466

    Article  CAS  Google Scholar 

  65. Khan M (2007). Top Heterocycl Chem 9:33–52

    Article  CAS  Google Scholar 

  66. Somsák L, Czifrák K, Tóth M, Bokor E, Chrysina ED, Alexacou KM, Hayes JM, Tiraidis C, Lazoura E, Leonidas DD, Zographos SE, Oikonomakos NG (2008). Curr Med Chem 15:2933–2983

    Article  PubMed  Google Scholar 

  67. Praly J-P, Vidal S (2010). Mini-Rev Med Chem 10:1102–1126

    Article  CAS  PubMed  Google Scholar 

  68. Henke BR (2012) Inhibition of glycogen phosphorylase as a strategy for the treatment of type 2 diabetes. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 324–365

    Chapter  Google Scholar 

  69. Gaboriaud-Kolar N, Skaltsounis A-L (2013). Expert Opin Ther Pat 23:1017–1032

    Article  CAS  PubMed  Google Scholar 

  70. Donnier-Maréchal M, Vidal S (2016). Expert Opin Ther Pat 26:199–212

    Article  CAS  PubMed  Google Scholar 

  71. Somsák L, Nagy V, Hadady Z, Docsa T, Gergely P (2003). Curr Pharm Des 9:1177–1189

    Article  PubMed  Google Scholar 

  72. Somsák L (2011). C R Chim 14:211–223

    Article  CAS  Google Scholar 

  73. Praly J-P, Boyé S, Joseph B, Rollin P (1993). Tetrahedron Lett 34:3419–3420

    Article  CAS  Google Scholar 

  74. Elek R, Kiss L, Praly J-P, Somsák L (2005). Carbohydr Res 340:1397–1402

    Article  CAS  PubMed  Google Scholar 

  75. Somsák L, Nagy V, Vidal S, Czifrák K, Berzsényi E, Praly J-P (2008). Bioorg Med Chem Lett 18:5680–5683

    Article  CAS  PubMed  Google Scholar 

  76. Nagy V, Benltifa M, Vidal S, Berzsényi E, Teilhet C, Czifrák K, Batta G, Docsa T, Gergely P, Somsák L, Praly J-P (2009). Bioorg Med Chem 17:5696–5707

    Article  CAS  PubMed  Google Scholar 

  77. RajanBabu TV, Reddy GS (1986). J Org Chem 51:5458–5461

    Article  CAS  Google Scholar 

  78. Enderlin G, Taillefumier C, Didierjean C, Chapleur Y (2005). Tetrahedron Asymmetry 16:2459–2474

    Article  CAS  Google Scholar 

  79. Benltifa M, Vidal S, Gueyrard D, Goekjian PG, Msaddek M, Praly J-P (2006). Tetrahedron Lett 47:6143–6147

    Article  CAS  Google Scholar 

  80. Zhang P-Z, Li X-L, Chen H, Li Y-N, Wang R (2007). Tetrahedron Lett 48:7813–7816

    Article  CAS  Google Scholar 

  81. Benltifa M, Hayes JM, Vidal S, Gueyrard D, Goekjian PG, Praly JP, Kizilis G, Tiraidis C, Alexacou KM, Chrysina ED, Zographos SE, Leonidas DD, Archontis G, Oikonomakos NG (2009). Bioorg Med Chem 17:7368–7380

    Article  CAS  PubMed  Google Scholar 

  82. Goyard D, Kónya B, Chajistamatiou AS, Chrysina ED, Leroy J, Balzarin S, Tournier M, Tousch D, Petit P, Duret C, Maurel P, Somsák L, Docsa T, Gergely P, Praly J-P, Azay-Milhau J, Vidal S (2016). Eur J Med Chem 108:444–454

    Article  CAS  PubMed  Google Scholar 

  83. Tite T, Tomas L, Docsa T, Gergely P, Kovensky J, Gueyrard D, Wadouachi A (2012). Tetrahedron Lett 53:959–961

    Article  CAS  Google Scholar 

  84. Benltifa M, Kiss MD, Garcia-Moreno MI, Mellet CO, Gueyrard D, Wadouachi A (2009). Tetrahedron Asymmetry 20:1817–1823

    Article  CAS  Google Scholar 

  85. Toumieux S, Compain P, Martin OR (2005). Tetrahedron Lett 46:4731–4735

    Article  CAS  Google Scholar 

  86. Somsák L, Kovács L, Gyóllai V, Ősz E (1999). Chem Commun 7:591–592

    Article  Google Scholar 

  87. Páhi A, Czifrák K, Kövér KE, Somsák L (2015). Carbohydr Res 403:192–201

    Article  CAS  PubMed  Google Scholar 

  88. Somsák L, Kovács L, Tóth M, Ősz E, Szilágyi L, Györgydeák Z, Dinya Z, Docsa T, Tóth B, Gergely P (2001). J Med Chem 44:2843–2848

    Article  CAS  PubMed  Google Scholar 

  89. Czifrák K, Páhi A, Deák S, Kiss-Szikszai A, Kövér KE, Docsa T, Gergely P, Alexacou K-M, Papakonstantinou M, Leonidas DD, Zographos SE, Chrysina ED, Somsák L (2014). Bioorg Med Chem 22:4028–4041

    Article  CAS  PubMed  Google Scholar 

  90. Szabó KE, Kun S, Mándi A, Kurtán T, Somsák L (2017). Molecules 22:1760

    Article  CAS  PubMed Central  Google Scholar 

  91. Czifrák K, Gyóllai V, Kövér KE, Somsák L (2011). Carbohydr Res 346:2104–2112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Université Claude Bernard Lyon 1 and the CNRS for financial support. MP is grateful to the Ministère de l’Enseignement supérieur et de la Recherche for a PhD stipend.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pommier, M., Vidal, S. (2019). Anomeric Spiro-Annulated Glycopyranosides: An Overview of Synthetic Methodologies and Biological Applications. In: Somsák, L. (eds) Carbohydrate-spiro-heterocycles. Topics in Heterocyclic Chemistry, vol 57. Springer, Cham. https://doi.org/10.1007/7081_2019_33

Download citation

Publish with us

Policies and ethics