Advertisement

pp 1-46 | Cite as

Spiroketal Phthalane C-Glycosides: Synthesis of Papulacandins and SGLT2 Inhibitors

  • Yoshihiko YamamotoEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series

Abstract

Spiroketals are important structural motifs found in diverse natural products, many of which display unique biological activity. Among them, spiroketal phthalane C-glycosides, in which a phthalane ring and sugar unit form a spiroketal framework, have garnered enormous attention from wide research areas because such a fascinating spirocycle motif is found in antibiotic natural products, i.e., papulacandins and their relatives. Moreover, recent reports from pharmaceutical researchers have revealed that spiroketal phthalane C-glycosides are potent drug candidates for type 2 diabetes. Accordingly, the efficient and selective construction of the spiroketal phthalane C-glycoside motif is an important research objective in synthetic organic chemistry. In this chapter, recent advances in the synthesis of spiroketal phthalane C-glycosides will be discussed.

Keywords

Antibiotics C-arylglycosides Papulacandins SGLT2 inhibitors Spiroketals 

References

  1. 1.
    Aho JE, Pihko PM, Rissa TK (2005). Chem Rev 105:4406–4440Google Scholar
  2. 2.
    Sperry J, Wilson ZE, Rathwell DCK, Brimble MA (2010). Nat Prod Rep 27:1117–1137Google Scholar
  3. 3.
    Atkinson DJ, Brimble MA (2015). Nat Prod Rep 32:811–840Google Scholar
  4. 4.
    Rihs G, Traxler P (1981). Helv Chim Acta 64:1533–1539Google Scholar
  5. 5.
    Traxler P, Fritz H, Fuhrer H, Richter WJ (1980). J Antibiot 33:967–978Google Scholar
  6. 6.
    Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1145–1146Google Scholar
  7. 7.
    Barrett AGM, Peña M, Willardsen JA (1995). J Chem Soc Chem Commun:1147–1148Google Scholar
  8. 8.
    Barrett AGM, Peña M, Willardsen JA (1996). J Org Chem 61:1082–1100Google Scholar
  9. 9.
    Denmark SE, Regens CS, Kobayashi T (2007). J Am Chem Soc 129:2774–2776Google Scholar
  10. 10.
    Denmark SE, Kobayashi T, Regens CS (2010). Tetrahedron 66:4745–4759Google Scholar
  11. 11.
    Somsák L, Bokor É, Czifrák K, Juhász L, Tóth M (2011) Carbohydrate derivatives and glycomimetic compounds in established and investigational therapies of type 2 diabetes mellitus. In: Zimering MB (ed) Topics in the prevention, treatment and complications of type 2 diabetes. InTech, Rijeka, pp 103–126Google Scholar
  12. 12.
    Washburn WN (2012) SGLT2 inhibitors in development. In: Jones RM (ed) New therapeutic strategies for type 2 diabetes: small molecule approaches. The Royal Society of Chemistry, Cambridge, pp 29–87Google Scholar
  13. 13.
    Zhang Y, Liu Z-P (2016). Curr Med Chem 23:832–849Google Scholar
  14. 14.
    Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA (2018). Org Process Res Dev 22:467–488Google Scholar
  15. 15.
    Traxler P, Gruner J, Auden JAL (1977). J Antibiot 30:289–296Google Scholar
  16. 16.
    Traxler P, Fritz H, Richter WJ (1977). Helv Chim Acta 60:578–584Google Scholar
  17. 17.
    Pérez P, García-Acha I, Durán A (1983). J Gen Microbiol 129:245–250Google Scholar
  18. 18.
    Baguley BC, Römmele G, Gruner J, Wehrli W (1979). Eur J Biochem 97:345–351Google Scholar
  19. 19.
    Pérez P, Varona R, Garcia-Acha I, Durán A (1981). FEBS Lett 129:249–252Google Scholar
  20. 20.
    Varona R, Pérez P, Durán A (1983). FEMS Microbiol Lett 20:243–247Google Scholar
  21. 21.
    Römmele G, Traxler P, Wefrli W (1983). J Antibiot 36:1539–1542Google Scholar
  22. 22.
    Traxler P, Tosch W, Zak O (1987). J Antibiot 40:1146–1164Google Scholar
  23. 23.
    VanMiddlesworth F, Omstead MN, Schmatz D, Bartizal K, Fromtling R, Bills G, Nollstadt K, Honeycutt S, Zweerink M, Garrity G, Wilson K (1991). J Antibiot 44:45–51Google Scholar
  24. 24.
    VanMiddlesworth F, Dufresne C, Smith J, Wilson KE (1991). Tetrahedron 47:7563–7568Google Scholar
  25. 25.
    Bartizal K, Abruzzo G, Trainor C, Krupa D, Nollstadt K, Schmatz D, Schmartz R, Hammond M, Balkovec J, VanMiddlesworth F (1992). Antimicrob Agents Chemother 36:1648–1657Google Scholar
  26. 26.
    Kaneto R, Chiba H, Agematu H, Shibamoto N, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:247–250Google Scholar
  27. 27.
    Chiba H, Kaneto R, Agematu H, Yoshioka T, Nishida H, Okamoto R (1993). J Antibiot 46:356–358Google Scholar
  28. 28.
    Aoki M, Andoh T, Ueki T, Masuyoshi S, Sugawara K, Oki T (1993). J Antibiot 46:952–960Google Scholar
  29. 29.
    Okada H, Nagashima M, Suzuki H, Nakajima S, Kojiri K, Suda H (1996). J Antibiot 49:103–106Google Scholar
  30. 30.
    Chen RH, Tennant S, Frost D, O’Beirne MJ, Karwowski JP, Humphrey PE, Malmberg L-H, Choi W, Brandt KD, West P, Kadam SK, Clement JJ, McAlpine JB (1996). J Antibiot 49:596–598Google Scholar
  31. 31.
    Ohyama T, Iwadate-Kurihara Y, Hosoya T, Ishikawa T, Miyakoshi S, Hamano K, Inukai M (2002). J Antibiot 55:758–763Google Scholar
  32. 32.
    Schmatz DM, Romancheck MA, Pittarelli LA, Schwartz RE, Fromtling RA, Nollstadt KH, Vanmiddlesworth FL, Wilson KE, Turner MJ (1990). Proc Natl Acad Sci U S A 87:5950–5954Google Scholar
  33. 33.
    Jaramillo C, Knapp S (1994). Synthesis:1–20Google Scholar
  34. 34.
    Bililign T, Griffith BR, Thorson JS (2005). Nat Prod Rep 22:742–760Google Scholar
  35. 35.
    Wellington KW, Benner SA (2006). Nuclos Nucleot Nucleic Acids 25:1309–1333Google Scholar
  36. 36.
    Kitamura K, Ando Y, Matsumoto T, Suzuki K (2018). Chem Rev 118:1495–1598Google Scholar
  37. 37.
    Bokor É, Kun S, Goyard D, Tóth M, Praly J-P, Vidal S, Somsák L (2017). Chem Rev 117:1687–1764Google Scholar
  38. 38.
    Yang Y, Yu B (2017). Chem Rev 117:12281–12356Google Scholar
  39. 39.
    Liao H, Ma J, Yao H, Liu X-W (2018). Org Biomol Chem 16:1791–1806Google Scholar
  40. 40.
    Schmidt RR, Frick W (1988). Tetrahedron 44:7163–7169Google Scholar
  41. 41.
    Rosenblum SB, Bihovsky R (1990). J Am Chem Soc 112:2746–2748Google Scholar
  42. 42.
    Czernecki S, Perlat M-C (1991). J Org Chem 56:6289–6292Google Scholar
  43. 43.
    Hamdouchi C, Sanchez-Martinez C (2001). Synthesis:833–840Google Scholar
  44. 44.
    Hamdouchi C, Jaramillo C, Lopez-Prados J, Rubio A (2002). Tetrahedron Lett 43:3875–3878Google Scholar
  45. 45.
    Parker KA, Georges AT (2000). Org Lett 2:497–499Google Scholar
  46. 46.
    Friesen RW, Sturino CF (1990). J Org Chem 55:5808–5810Google Scholar
  47. 47.
    Dubois E, Beau J-M (1990). Tetrahedron Lett 31:5165–5168Google Scholar
  48. 48.
    Dubois E, Beau J-M (1992). Carbohydr Res 223:157–167Google Scholar
  49. 49.
    Liu G, Wurst JM, Tan DS (2009). Org Lett 11:3670–3673Google Scholar
  50. 50.
    Wurst JM, Liu G, Tan DS (2011). J Am Chem Soc 133:7916–7925Google Scholar
  51. 51.
    Butkevich AN, Corbu A, Meerpoel L, Stanfield I, Angibaud P, Bonnet P, Cossy J (2012). Org Lett 14:4998–5001Google Scholar
  52. 52.
    Parkan K, Pohl R, Kotora M (2014). Chem A Eur J 20:4414–4419Google Scholar
  53. 53.
    van der Kaaden M, Breukink E, Pieters RJ (2012). Beilstein J Org Chem 8:732–737Google Scholar
  54. 54.
    Danishefsky S, Phillips G, Ciufolini M (1987). Carbohydr Res 171:317–327Google Scholar
  55. 55.
    Balachari D, O’Doherty GA (2000). Org Lett 2:863–866Google Scholar
  56. 56.
    Balachari D, O’Doherty GA (2000). Org Lett 2:4033–4036Google Scholar
  57. 57.
    Ahmed MM, O’Doherty GA (2005). Tetrahedron Lett 46:4151–4155Google Scholar
  58. 58.
    Mainkar PS, Johny K, Rao TP, Chandrasekhar S (2012). J Org Chem 77:2519–2525Google Scholar
  59. 59.
    DeFronzo RA, Norton L, Abdul-Ghani M (2017). Nat Rev Nephrol 13:11–26Google Scholar
  60. 60.
    Ehrenkranz JRL, Lewis NG, Kahn CR, Roth J (2005). Diabetes Metab Res Rev 21:31–38Google Scholar
  61. 61.
    Ohtake Y, Sato T, Kobayashi T, Nishimoto M, Taka N, Takano K, Yamamoto K, Ohmori M, Yamaguchi M, Takami K, Yeu S-Y, Ahn K-H, Matsuoka H, Morikawa K, Suzuki M, Hagita H, Ozawa K, Yamaguchi K, Kato M, Ikeda S (2012). J Med Chem 55:7828–7840Google Scholar
  62. 62.
    Suzuki M, Honda K, Fukazawa M, Ozawa K, Hagita H, Kawai T, Takeda M, Yata T, Kawai M, Fukuzawa T, Kobayashi T, Sato T, Kawabe Y, Ikeda S (2012). J Pharmacol Exp Ther 341:692–701Google Scholar
  63. 63.
    Ikeda S, Takano Y, Cynshi O, Tanaka R, Christ AD, Boerlin V, Beyer U, Beck A, Ciorciaro C, Meyer M, Kadowaki T (2015). Diabetes Obes Exp Metab 17:984–993Google Scholar
  64. 64.
    Poole RM, Prossler JE (2014). Drugs 74:939–944Google Scholar
  65. 65.
    Xu B, Lv B, Feng Y, Xu G, Du J, Welihinda A, Sheng Z, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:5632–5635Google Scholar
  66. 66.
    Lv B, Xu B, Feng Y, Peng K, Xu G, Du J, Zhang L, Zhang W, Zhang T, Zhu L, Ding H, Sheng Z, Welihinda A, Seed B, Chen Y (2009). Bioorg Med Chem Lett 19:6877–6881Google Scholar
  67. 67.
    Lv B, Feng Y, Dong J, Xu M, Xu B, Zhang W, Sheng Z, Welihinda A, Seed B, Chen Y (2010). ChemMedChem 5:827–831Google Scholar
  68. 68.
    Ohtake Y, Emura T, Nishimoto M, Takano K, Yamamoto K, Tsuchiya S, Yeu S-Y, Kito Y, Kimura N, Takeda S, Tsukazaki M, Murakata M, Sato T (2016). J Org Chem 81:2148–2153Google Scholar
  69. 69.
    Yamane M, Kawashima K, Yamaguchi K, Nagao S, Sato M, Suzuki M, Honda K, Hagita H, Kuhlmann O, Polirier A, Fowler S, Funk C, Simon S, Aso Y, Ikeda S, Ishigai M (2015). Xenobiotica 45:230–238Google Scholar
  70. 70.
    Murakata M, Ikeda T, Kimura N, Kawase A, Nagase M, Kimura M, Maeda K, Honma A, Shimizu H (2017). Tetrahedron 73:655–660Google Scholar
  71. 71.
    Yang X-D, Pan Z-X, Li D-J, Wang G, Liu M, Wu R-G, Wu Y-H, Gao Y-C (2016). Org Process Res Dev 20:1821–1827Google Scholar
  72. 72.
    Liu Y-H, Fu T-M, Ou C-Y, Fan W-L, Peng G-P (2013). Chin Chem Lett 24:131–133Google Scholar
  73. 73.
    Liu Y, Fu T, Chen Z, Ou C (2015). Monatsh Chem 146:1715–1721Google Scholar
  74. 74.
    McDonald FE, Zhu HYH, Holmquist CR (1995). J Am Chem Soc 117:6605–6606Google Scholar
  75. 75.
    Yamamoto Y, Hashimoto T, Hattori K, Kikuchi M, Nishiyama H (2006). Org Lett 8:3565–3568Google Scholar
  76. 76.
    Yamamoto Y, Yamashita K, Hotta T, Hashimoto T, Kikuchi M, Nishiyama H (2007). Chem Asian J 2:1388–1399Google Scholar
  77. 77.
    Subrahmanyam AV, Palanichamy K, Kaliappan KP (2010). Chem Eur J 16:8545–8556Google Scholar
  78. 78.
    Awasaguchi K, Miyazawa M, Uoya I, Inoue K, Nakamura K, Yokoyama H, Kakuda H, Hirai Y (2010). Synlett:2392–2396Google Scholar
  79. 79.
    Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H (2014). Chem Rev 114:2432–2506Google Scholar
  80. 80.
    Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA (2015). J Med Chem 58:8315–8359Google Scholar
  81. 81.
    Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H (2016). Chem Rev 116:422–518Google Scholar
  82. 82.
    Yerien DE, Bonesi S, Postigo A (2016). Org Biomol Chem 14:8398–8427Google Scholar
  83. 83.
    Sadurní A, Gilmour R (2018). Eur J Org Chem 2018:3684–3687Google Scholar
  84. 84.
    Bucher C, Gilmour R (2010). Angew Chem Int Ed 49:8724–8728Google Scholar
  85. 85.
    Sadurní A, Kehr G, Ahlqvist M, Wernevik J, Sjögren HP, Kankkonen C, Knerr L, Gilmour R (2018). Chem Eur J 24:2832–2836Google Scholar

Copyright information

© Springer Nature Switzerland AG  2019

Authors and Affiliations

  1. 1.Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical SciencesNagoya UniversityNagoyaJapan

Personalised recommendations