pp 1-27 | Cite as

Flow-Assisted Synthesis of Heterocycles via Multicomponent Reactions

  • Seger Van Mileghem
  • Cedrick Veryser
  • Wim M. De Borggraeve
Chapter
Part of the Topics in Heterocyclic Chemistry book series

Abstract

Multicomponent reactions (MCRs) are of great significance in organic synthesis. They often decrease the number of synthesis steps since three or more reactants are incorporated in the product in a single step. This increases the number of combinatorial options and allows more efficient processes in less time. The pharmaceutical industry is therefore very fond of MCRs for the construction of libraries. As a consequence, the field is being investigated intensely for the enhancement of chemical processes and the discovery of new types of MCRs.

The combination of the benefits of flow technology and MCRs for heterocycle synthesis is an interesting and specialized field. This chapter serves as an overview of the literature covering this topic starting from 2010, up to when the literature on this matter is reviewed in a book chapter in this book series by Cukalovic et al. (Top Heterocycl Chem 23:161–198, 2010).

Keywords

Continuous flow Heterocycles Multicomponent reactions Synthesis 

Abbreviations

2-MeTHF

2-Methyltetrahydrofuran

AcOH

Acetic acid

Boc

tert-Butoxycarbonyl

BPR

Back-pressure regulator

DBU

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCM

Dichloromethane

DIPEA

N,N-Diisopropylethylamine

DMA

N,N-Dimethylacetamide

DMAP

4-Dimethylaminopyridine

DME

1,2-Dimethoxyethane

DMF

N,N-Dimethylformamide

EDC

1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide

eq

Equivalents

Et2O

Diethyl ether

Et3N

Triethylamine

EtOAc

Ethyl acetate

EtOH

Ethanol

HOBt

1-Hydroxybenzotriazole

kHz

Kilohertz

M

Molar

MCR

Multicomponent reaction

MeCN

Acetonitrile

MeOH

Methanol

MW

Microwave

PEG200

Polyethylene glycol 200

PEG300

Polyethylene glycol 300

PFA

Perfluoroalkoxy alkane

psi

Pound-force per square inch

PTFE

Polytetrafluoroethylene (Telfon®)

t-BuONO

tert-Butyl nitrite

TMSN3

Trimethylsilyl azide

References

  1. 1.
    Cukalovic A, Monbaliu J-CMR, Stevens CV (2010) Microreactor technology as an efficient tool for multicomponent reactions. Top Heterocycl Chem 23:161–198Google Scholar
  2. 2.
    Hantzsch A, Weber JH (1887) Ueber Verbindungen des Thiazols (Pyridins der Thiophenreihe). Ber Dtsch Chem Ges 20(2):3118–3132CrossRefGoogle Scholar
  3. 3.
    Hantzsch A (1890) Ueber das sogenannte Cyanaceton. Ber Dtsch Chem Ges 23(1):1472–1474CrossRefGoogle Scholar
  4. 4.
    Ugi I (1962) The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew Chem Int Ed 1(1):8–21CrossRefGoogle Scholar
  5. 5.
    Mannich C, Krösche W (1912) Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Arch Pharm 250(1):647–667CrossRefGoogle Scholar
  6. 6.
    Strecker A (1850) Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann Chem 75(1):27–45MathSciNetCrossRefGoogle Scholar
  7. 7.
    Biginelli P (1893) Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 23:360–413Google Scholar
  8. 8.
    Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chem 16(6):2958–2975CrossRefGoogle Scholar
  9. 9.
    Bienayme H, Hulme C, Oddon G, Schmitt P (2000) Maximizing synthetic efficiency: multi-component transformations lead the way. Chem Eur J 6(18):3321–3329CrossRefPubMedGoogle Scholar
  10. 10.
    Syamala M (2009) Recent progress in three-component reactions. An update. Org Prep Proced Int 41(1):1–68CrossRefGoogle Scholar
  11. 11.
    Herath A, Cosford NDP (2010) One-step continuous flow synthesis of highly substituted pyrrole-3-carboxylic acid derivatives via in situ hydrolysis of tert-butyl esters. Org Lett 12(22):5182–5185CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Debus H (1858) Ueber die Einwirkung des Ammoniaks auf Glyoxal. Justus Liebigs Ann Chem 107(2):199–208CrossRefGoogle Scholar
  13. 13.
    Radzisewski B (1882) Ueber Glyoxalin und seine Homologe. Ber Dtsch Chem Ges 15(2):2706–2708CrossRefGoogle Scholar
  14. 14.
    Kong LJ, Lv XM, Lin Q, Liu XF, Zhou YM, Jia Y (2010) Efficient synthesis of imidazoles from aldehydes and 1,2-diketones under superheating conditions by using a continuous flow microreactor system under pressure. Org Process Res Dev 14(4):902–904CrossRefGoogle Scholar
  15. 15.
    Zimmermann J, Ondruschka B, Stark A (2010) Efficient synthesis of 1,3-dialkylimidazolium-based ionic liquids: the modified continuous Radziszewski reaction in a microreactor setup. Org Process Res Dev 14(5):1102–1109CrossRefGoogle Scholar
  16. 16.
    Maton C, De Vos N, Roman BI, Vanecht E, Brooks NR, Binnemans K, Schaltin S, Fransaer J, Stevens CV (2012) Continuous synthesis of peralkylated imidazoles and their transformation into ionic liquids with improved (electro)chemical stabilities. ChemPhysChem 13(13):3146–3157CrossRefPubMedGoogle Scholar
  17. 17.
    Carneiro PF, Gutmann B, de Souza ROMA, Kappe CO (2015) Process intensified flow synthesis of 1H-4-substituted imidazoles: toward the continuous production of daclatasvir. ACS Sustain Chem Eng 3(12):3445–3453CrossRefGoogle Scholar
  18. 18.
    Breen JR, Sandford G, Yufit DS, Howard JAK, Fray J, Patel B (2011) Continuous gas/liquid-liquid/liquid flow synthesis of 4-fluoropyrazole derivatives by selective direct fluorination. Beilstein J Org Chem 7:1048–1054CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Poh JS, Browne DL, Ley SV (2016) A multistep continuous flow synthesis machine for the preparation of pyrazoles via a metal-free amine-redox process. React Chem Eng 1(1):101–105CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Pagano N, Heil ML, Cosford NDP (2012) Automated multistep continuous flow synthesis of 2-(1H-indol-3-yl)thiazole derivatives. Synthesis 44(16):2537–2546CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fischer E, Jourdan F (1883) Ueber die Hydrazine der Brenztraubensäure. Ber Dtsch Chem Ges 16(2):2241–2245CrossRefGoogle Scholar
  22. 22.
    Fischer E, Hess O (1884) Synthese von Indolderivaten. Ber Dtsch Chem Ges 17(1):559–568CrossRefGoogle Scholar
  23. 23.
    Noël T, Hessel V (2013) Membrane microreactors: gas–liquid reactions made easy. Chemsuschem 6(3):405–407CrossRefPubMedGoogle Scholar
  24. 24.
    Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV (2011) The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew Chem Int Ed 50(5):1190–1193CrossRefGoogle Scholar
  25. 25.
    Pastre JC, Browne DL, O’Brien M, Ley SV (2013) Scaling up of continuous flow processes with gases using a tube-in-tube reactor: inline titrations and fanetizole synthesis with ammonia. Org Process Res Dev 17(9):1183–1191CrossRefGoogle Scholar
  26. 26.
    Groebke K, Weber L, Mehlin F (1998) Synthesis of imidazo[1,2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998(6):661–663CrossRefGoogle Scholar
  27. 27.
    Blackburn C, Guan B, Fleming P, Shiosaki K, Tsai S (1998) Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett 39(22):3635–3638CrossRefGoogle Scholar
  28. 28.
    Bienaymé H, Bouzid K (1998) A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3-aminoimidazoles. Angew Chem Int Ed 37(16):2234–2237CrossRefGoogle Scholar
  29. 29.
    Butler AJE, Thompson MJ, Maydom PJ, Newby JA, Guo K, Adams H, Chen BN (2014) Regioselective synthesis of 3-aminoimidazo 1,2-a-pyrimidines under continuous flow conditions. J Org Chem 79(21):10196–10202CrossRefPubMedGoogle Scholar
  30. 30.
    Ware E (1950) The chemistry of the hydantoins. Chem Rev 46(3):403–470CrossRefPubMedGoogle Scholar
  31. 31.
    Monteiro JL, Pieber B, Corea AG, Kappe CO (2016) Continuous synthesis of hydantoins: intensifying the Bucherer-Bergs reaction. Synlett 27(1):83–87Google Scholar
  32. 32.
    Huisgen R (1963) 1,3-dipolar cycloadditions. Past and future. Angew Chem Int Ed 2(10):565–598CrossRefGoogle Scholar
  33. 33.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599CrossRefGoogle Scholar
  34. 34.
    Tornoe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: 1,2,3-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064CrossRefPubMedGoogle Scholar
  35. 35.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRefGoogle Scholar
  36. 36.
    Bogdan AR, Sach NW (2009) The use of copper flow reactor technology for the continuous synthesis of 1,4-disubstituted 1,2,3-triazoles. Adv Synth Catal 351(6):849–854CrossRefGoogle Scholar
  37. 37.
    Ceylan S, Klande T, Vogt C, Friese C, Kirschning A (2010) Chemical synthesis with inductively heated copper flow reactors. Synlett (13):2009–2013Google Scholar
  38. 38.
    Teci M, Tilley M, McGuire MA, Organ MG (2016) Handling hazards using continuous flow chemistry: synthesis of N1-aryl-[1,2,3]-triazoles from anilines via telescoped three-step diazotization, azidodediazotization, and [3 + 2] dipolar cycloaddition processes. Org Process Res Dev 20(11):1967–1973CrossRefGoogle Scholar
  39. 39.
    Zhang P, Russell MG, Jamison TF (2014) Continuous flow total synthesis of rufinamide. Org Process Res Dev 18(11):1567–1570CrossRefGoogle Scholar
  40. 40.
    Stazi F, Cancogni D, Turco L, Westerduin P, Bacchi S (2010) Highly efficient and safe procedure for the synthesis of aryl 1,2,3-triazoles from aromatic amine in a continuous flow reactor. Tetrahedron Lett 51(41):5385–5387CrossRefGoogle Scholar
  41. 41.
    Baumann M, Garcia AMR, Baxendale IR (2015) Flow synthesis of ethyl isocyanoacetate enabling the telescoped synthesis of 1,2,4-triazoles and pyrrolo-[1,2-c] pyrimidines. Org Biomol Chem 13(14):4231–4239CrossRefPubMedGoogle Scholar
  42. 42.
    Matsumoto K, Suzuki M (2001) Ethyl isocyanoacetate. Encyclopedia of reagents for organic synthesis. Wiley, HobokenGoogle Scholar
  43. 43.
    Herath A, Cosford NDP (2017) Continuous-flow synthesis of highly functionalized imidazo-oxadiazoles facilitated by microfluidic extraction. Beilstein J Org Chem 13:239–246CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Grant D, Dahl R, Cosford ND (2008) Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. J Org Chem 73(18):7219–7223CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lau SH, Galvan A, Merchant RR, Battilocchio C, Souto JA, Berry MB, Ley SV (2015) Machines vs malaria: a flow-based preparation of the drug candidate OZ439. Org Lett 17(13):3218–3221CrossRefPubMedGoogle Scholar
  46. 46.
    Barnett DS, Guy RK (2014) Antimalarials in development in 2014. Chem Rev 114(22):11221–11241CrossRefPubMedGoogle Scholar
  47. 47.
    Griesbaum K, Liu XJ, Kassiaris A, Scherer M (1997) Ozonolyses of O-alkylated ketoximes in the presence of carbonyl groups: a facile access to ozonides. Liebigs Ann Recl (7):1381–1390Google Scholar
  48. 48.
    Ceylan S, Coutable L, Wegner J, Kirschning A (2011) Inductive heating with magnetic materials inside flow reactors. Chem Eur J 17(6):1884–1893CrossRefPubMedGoogle Scholar
  49. 49.
    Devine WG, Leadbeater NE (2011) Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. Arkivoc:127–143Google Scholar
  50. 50.
    Bagley MC, Fusillo V, Jenkins RL, Lubinu MC, Mason C (2013) One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J Org Chem 9:1957–1968CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vaddula BR, Yalla S, Gonzalez MA (2015) An efficient and more sustainable one-step continuous-flow multicomponent synthesis approach to chromene derivatives. J Flow Chem 5(3):172–177CrossRefGoogle Scholar
  52. 52.
    Cerra B, Mostarda S, Custodi C, Macchiarulo A, Gioiello A (2016) Integrating multicomponent flow synthesis and computational approaches for the generation of a tetrahydroquinoline compound based library. MedChemComm 7(3):439–446CrossRefGoogle Scholar
  53. 53.
    Pagano N, Herath A, Cosford NDP (2011) An automated process for a sequential heterocycle/multicomponent reaction: multistep continuous flow synthesis of 5-(thiazol-2-yl)-3,4-dihydropyrimidin-2(1H)-ones. J Flow Chem 1(1):28–31CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Chen XH, Xu XY, Liu H, Cun LF, Gong LZ (2006) Highly enantioselective organocatalytic Biginelli reaction. J Am Chem Soc 128(46):14802–14803CrossRefPubMedGoogle Scholar
  55. 55.
    Kim J, Cechetto J, No Z, Christophe T, Kim T, Nam JY, So W, Jo M, Ok T, Park C (2011) Anti viral compounds. WO 2010 046780Google Scholar
  56. 56.
    Pagano N, Teriete P, Mattmann ME, Yang L, Snyder BA, Cai Z, Heil ML, Cosford NDP (2017) An integrated chemical biology approach reveals the mechanism of action of HIV replication inhibitors. Bioorg Med Chem 25(23):6248–6265CrossRefPubMedGoogle Scholar
  57. 57.
    Silva GCO, Correa JR, Rodrigues MO, Alvim HGO, Guido BC, Gatto CC, Wanderley KA, Fioramonte M, Gozzo FC, de Souza ROMA, Neto BAD (2015) The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. RSC Adv 5(60):48506–48515CrossRefGoogle Scholar
  58. 58.
    Lei M, Tian W, Hu R, Li W, Zhang H (2012) An efficient synthesis of 2-(trifluoromethyl)-2H- 1,3 oxazino 2,3-a isoquinolines via a three-component cascade approach using a continuous-flow microreactor. Synthesis 44(16):2519–2526CrossRefGoogle Scholar
  59. 59.
    Engen K, Savmarker J, Rosenstrom U, Wannberg J, Lundback T, Jenmalm-Jensen A, Larhed M (2014) Microwave heated flow synthesis of spiro-oxindole dihydroquinazolinone based IRAP inhibitors. Org Process Res Dev 18(11):1582–1588CrossRefGoogle Scholar
  60. 60.
    He Z, Bae M, Wu J, Jamison TF (2014) Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis. Angew Chem Int Ed 53(52):14451–14455CrossRefGoogle Scholar
  61. 61.
    Filipponi P, Gioiello A, Baxendale IR (2016) Controlled flow precipitation as a valuable tool for synthesis. Org Process Res Dev 20(2):371–375CrossRefGoogle Scholar
  62. 62.
    Salvador CEM, Pieber B, Neu PM, Torvisco A, Andrade CKZ, Kappe CO (2015) A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J Org Chem 80(9):4590–4602CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Seger Van Mileghem
    • 1
  • Cedrick Veryser
    • 1
  • Wim M. De Borggraeve
    • 1
  1. 1.Molecular Design and Synthesis, Department of ChemistryKU LeuvenLeuvenBelgium

Personalised recommendations